
Targeted Disruption of CD44 in MDAY-D2 Lymphosarcoma Cells 
Has No Effect on Subcutaneous Growth or Metastatic Capacity 
MariSt te  H. E. Driessens,* Peter J. M. S t r0eken ,*  N. Felix Rodr iguez  Erena ,*  Mar t in  A. van  der  Valk,* 
El len A. M. van  Ri j thoven,*  and  Ed  Roos* 
Divisions of *Cell Biology and *Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands 

Abstract. CD44 splice variants have been shown to be 
involved in metastasis of carcinomas. In addition, the 
standard form of CD44 has been implicated in metasta- 
sis, particularly of melanomas and lymphomas. To in- 
vestigate this, we have generated a CD44-negative mu- 
tant of the highly metastatic murine MDAY-D2 
lymphosarcoma. The two CD44 alleles of this diploid 
cell line were sequentially disrupted by homologous re- 
combination, using isogenic CD44 genomic constructs 
interrupted by a neomycin or hygromycin resistance- 
conferring gene. The resulting double knockout (DKO) 
cells had completely lost the capacity to bind to immo- 
bilized hyaluronic acid, but did not differ from MDAY- 
D2 cells in integrin expression or in vitro growth. 

Subcutaneous (s.c.) growth potential and metastatic 
capacity of MDAY-D2 and D K O  cells were assessed 

by s.c. and i.v. injection of the lowest cell dose (103 or 
104 , respectively) that gave rise to tumor formation by 
MDAY-D2 cells in N100% of the mice. Quite unex- 
pectedly, we observed no difference at all in either s.c. 
growth rate or local invasion into surrounding tissues 
between MDAY-D2 cells and the CD44-negative D K O  
cells. Also hematogenous metastasis formation upon 
i.v. injection was similar: both parental and D K O  cells 
metastasized extensively to the spleen, liver, and bone 
marrow. We conclude that, at least for these MDAY- 
D2 lymphosarcoma cells, the standard form of CD44 is 
dispensable for tumor growth and metastasis. Our  re- 
suits show that targeted disruption of genes in tumor 
cells is a feasible approach to study their role in tumori- 
genesis and metastasis. 

C 
D44 is a cell surface protein expressed by many dif- 

ferent cell types (for reviews see references 21 and 
42) that can act as a receptor for the extracellular 

matrix component hyaluronic acid (HA) 1 (2) and the pro- 
teoglycan serglycin (41). CD44 is required for in vitro lym- 
phopoiesis, particularly of B cells (24), that use CD44 to 
bind to the abundant HA. In addition, CD44 can act as co- 
stimulator in lymphocyte activation (32) and the induction 
of lymphocyte effector functions (5, 11, 28). In addition to 
the standard 85-95-kD form, various larger CD44 variants 
can be generated by alternative splicing of at least 10 exons 
(40). 

CD44 has been proposed to play a major role in me- 
tastasis of different types of tumor cells (for review see ref- 
erence 31). The most compelling evidence concerns a splice 
variant of CD44 containing exon v6 that upon transfection 
into a rat pancreatic carcinoma cell line conferred metastatic 
potential (12). In these cells, the standard form of CD44 is 
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1. Abbreviat ions used in this paper. DKO, double knockout; HA, hyalu- 
ronic acid; LFA-1, leukocyte function-associated antigen 1; SKO, single 
knockout; SM, spontaneous mutant. 

apparently not involved. In contrast, there is extensive evi- 
dence for a role of standard CD44 in metastasis of melano- 
mas and lymphomas. CD44 was shown to be involved in 
the invasiveness of melanoma cells in vitro (8). Human 
melanoma cells expressing standard CD44 and sorted for 
high expression showed enhanced lung colonization (4), 
and an anti-CD44 antibody inhibited melanoma metasta- 
sis (13). Furthermore, CD44-HA interaction stimulated 
subcutaneous (s.c.) growth of a melanoma cell line (3). 

In non-Hodgkin lymphomas, high CD44 levels correlate 
with tumor aggressiveness and extensive tumor spread (17, 
25). More direct evidence for CD44 involvement was pro- 
vided by Sy et al. (34), who transfected the standard form 
of CD44 into Namalwa lymphoma cells, which grew very 
poorly when injected subcutaneously. The transfectants 
did grow well and metastasized. This enhanced tumorige- 
nicity was suppressed by a CD44-immunoglobulin fusion 
protein (35). 

A role for CD44 in invasion of tissues would be consis- 
tent with two observations on normal lymphocytes. First, 
CD44 on lymphocytes is required for optimal contact al- 
lergic responses, as shown by surface modulation of CD44 
before adoptive transfer (5). This suggested that CD44 is 
essential for optimal migration of lymphocytes into the skin, 
independent of the other adhesion molecules expressed, 
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possibly because CD44 can mediate motility on hyaluronic 
acid (39), a major component of the dermis (19). Second, 
among cytotoxic T cell clones directed against the malaria 
parasite Plasmodium yoelli, which were all highly active in 
vitro, only cells expressing high CD44 levels were effective 
in vivo. Moreover, CD44-negative cells sorted from a pro- 
tective clone lost in vivo activity, and this was independent 
of the expression of other relevant adhesion molecules, in 
particular leukocyte function-associated antigen 1 (LFA-1) 
and ~4~1 (28). Since this in vivo activity involves lysis of in- 
fected hepatocytes and thus requires migration into the 
liver parenchyma, this strongly suggested that CD44 is re- 
quired for migration. This requirement could also explain 
the correlation between CD44 and spread of hematopoi- 
etic tumors, in particular to the liver. 

To further investigate the mechanisms of CD44 function 
in s.c. tumor growth and metastasis, we have generated a 
CD44-negative mutant of the highly metastatic murine 
MDAY-D2 lymphosarcoma cell line. MDAY-D2 was origi- 
nally described as a sarcoma (18), but the cells express the 
integrin aL~2 (LFA-1) and are therefore of hematopoietic 
origin. MDAY-D2 cells express high levels of CD44 and 
bind to immobilized HA in vitro. To generate the mutant, 
we inactivated both alleles of the CD44 gene by homolo- 
gous recombination. We show here that CD44-negative 
MDAY-D2 double knockout (DKO) cells readily form s.c. 
tumors and, upon i.v. injection, metastasize extensively to 
liver, spleen, and bone marrow, comparable to the paren- 
tal MDAY-D2 cells. Hence, for this cell line, CD44 is dis- 
pensable for metastasis and s.c. growth. 

Materials and Methods 

Ceil Lines and Culture Conditions 

Parental MDAY-D2 (18) and variant cells were cultured in enriched 
RPMI 1640 medium (Hybridoma medium [29]). 

Antibodies 
Antibodies were obtained from the following sources: anti-CD44 mAb 
KM201 from Dr. P. Kincade; a6 integrin (CD49f) mAb GoH3 from Dr. A. 
Sonnenberg; hybridomas producing eq-integrin (CD49d) mAb PS/2 and 
et~-integrin (CDl la)  mAb M17/4 from the American Type Culture Col- 
lection, Rockville, MD; the Cts-integrin (CD49e) mAb MFR5 from Pharm- 
ingen, San Diego, CA; and mouse anti-rat IgK mAb conjugated to FITC 
from Zymed Laboratories, South San Francisco, CA. 

Generation of Targeting Constructs 
A genomic library of the murine DBA/2-derived ESb cell line was con- 
structed from 18-23-kb fragments obtained by fractionation of partial 
Sau3A-digested genomic DNA on 10-40% sucrose gradients. This DNA 
was ligated to BamHI-digested EMBL-3-bacteriophage half-site arms 
(Promega Biotec, Madison, WI), and after packaging, 106 independent 
plaques were plated on Escherichia coli strain KW251 (Promega Biotec). 
CD44 genomic clones were identified using a murine CD44 cDNA probe 
(kindly provided by Dr. I. Hart, ICRF, London, UK) and were mapped 
with partial CD44 cDNA probes to determine the location of exon 1. 

To generate the targeting construct, we used a 7-kb SalI-SacI fragment, 
cloned into pBluescript K S -  (Stratagene, La Jolla, CA). Into the unique 
NcoI site, at the translation start site in exon 1, we introduced a pgk-1 (1) 
neo cassette that had been digested with EcoRI and Sail and to which a 
NcoI-EcoRI adaptor (upper strand: 5 ' C A T G G G G C A A C G A A G G T G 3 ' ,  
lower strand: 5 'AATTCACCTTCGTI 'GCCC3' )  and an XhoI-NcoI adap- 
tor (upper strand: 5 'TCGAGCGGTACCGGATCC3 ' ,  lower strand 
5 'CATGGGATCCGGTACCGC3 ' )  had been ligated. The 3' XhoI-NcoI 
adaptor contains a BamHI site (see Fig. 1 A). The hygromycin B resistance 

gene-containing vector was constructed by digestion of the pBluescript/ 
CD44/neo targeting vector with SphI (site in the pgk-1 promoter) and 
BgllI (site downstream of the polyA signal), removal of the pgk-1 neo in- 
sert and ligation of an SphI-BgllI-digested pgk-1 hygromycin fragment 
(38). Targeting constructs, digested with Sail and SacI, were separated from 
vector sequences by gel electrophoresis and purified by electroelution. 

Immunofluorescence Analysis 
Antibody incubations and washing steps were performed at 4°C in PBS 
containing 0.5% BSA, 0.02% Na-azide, 1 mM Mg 2÷, and 1 mM Ca 2÷. 
Mouse anti-rat lgK mAb conjugated to FITC was used as secondary anti- 
body. Fluorescence was measured on a FACScan ® (Becton Dickinson & 
Co., Mountain View, CA) using the lysis II program. Cells incubated with 
only secondary antibody were used as negative controls. 

Generation of Knockout Cells 
2 × 107 MDAY-D2 cells in 800 ixl RPMI medium were electroporated in 
the presence of 100 Dxg of targeting construct, using a gene pulser (Bio- 
Rad Laboratories, Richmond, CA) (0.42 kV, 960 IxF). Cells were seeded 
in 48-well tissue culture dishes at 5 × 104, 1 × 104 and 2 × 103 cells/well in 
medium with 20% FCS. Drug selection (1 mg/ml G418; Gibco, Paisley, 
UK) or 1.2 mg/ml hygromycin B (Calbiochem-Novabiochem, Corp., La 
Joi1a, CA) was started after 1 d. CD44-negative cells were sorted using a 
FACS ®. 

DNA and RNA Analysis 
Genomic DNA (15 Ixg) was digested with BamHI and loaded on a 0.7% 
agarose gel for Southern analysis. RNA was isolated with the Ultraspec 
kit according to the manufacturer's protocol (BIOTECX, Houston, TX). 
20 ~g was loaded on a 1.0% agarose formaldehyde gel. After electro- 
phoresis, material was transferred to Nytran 13N membrane (Schleicher 
and Schuell, Inc., Dassel, Germany) and hybridized using standard tech- 
niques. 

Adhesion to Hyaluronic Acid 

96-well U-bottom plates (model 650101; Greiner, Frickenhausen, Ger- 
many) were coated with 100 ~l HA (1 mg/ml; Sigma Chemical Co., St. 
Louis, MO) in PBS overnight at 4°C. Plates were washed three times be- 
fore the addition of ceils. Cells were labeled with 100 i.tCi S~Cr (Amer- 
sham International, Little Chalfont, UK) per 10 × 106 cells in 250 p.l cul- 
ture medium for 45 min. To test inhibition of adhesion by the KM201 
mAb, cells were preineubated with 10 txg/ml mAb for 15 min at room tem- 
perature. Each well contained 5 x 104 cells in a final volume of 100 p.l 
RPMI. After incubation for 30 min at 5% CO2 and 37 °C, nonadherent 
cells were removed by washing three times with 100 ~l PBS containing 1 
mM Ca 2÷ and 1 mM Mg 2÷ and inverting the plate. The percentage of 
bound cells was determined by lysing the cells with 1 N NaOH and count- 
ing the radioactivity. Percentages were corrected for spontaneous release 
of 51Cr and background binding to wells. Results are the mean of triplicate 
wells. 

Subcutaneous Growth and Experimental Metastasis 
DBA/2 mice were injected subcutaneously in the flank with 103 cells in 
200 tzl PBS with I mM Mg 2+ and 1 mM Ca 2+, s.c. tumor growth was moni- 
tored once a week. Animals were killed when the tumor was larger than 
2 cm 3 or when ulceration of the tumor occurred. Metastatic capacity was 
assessed by injecting 104 cells in 200 ILl PBS with 1 mM Mg 2÷ and 1 mM 
Ca 2÷ into the tail vein of syngeneic DBA/2 mice. 

Histology 
Tissues were fixed in ethanol-acetic acid-formol-saline fixative, embedded 
in paraffin, and 5-p.m sections were mounted onto slides and stained with 
hematoxylin and eosin according to standard procedures. 

Results 

Generation of  CD44 Single and Double Knockout Cells 

Our aim was to study the role of the CD44 protein in me- 

The Journal of Cell Biology, Volume 131, 1995 1850 



tastasis of the M D A Y - D 2  lymphosarcoma cell line. Tar- 
geted disruption of genes in embryonal  stem cells for the 
generation of  knockout  mice has rapidly become a routine 
procedure. For other cell types, this is more difficult. How- 
ever, since others have shown that this is feasible (6, 9, 15), 
we attempted to use this approach to generate well-defined 
CD44-negative mutants of the MD A Y -D 2  cells. To increase 
the frequency of homologous recombination, we used 
isogenic D N A  (37). 

The targeting constructs were generated from a 7-kb SalI- 
SacI fragment of the CD44 gene, isolated from a DBA/2-  
derived genomic library. Either the neomycin-resistance or 
the hygromycin-resistance (38) gene, under control of the 
pgk-1 promoter  (1), was inserted into the translation initia- 
tion site in exon 1 (Fig. 1 A). First, M D A Y - D 2  cells were 
transfected with the construct containing the neomycin 
cassette. Disruption of one CD44 allele was expected to 
result in a reduced CD44 surface level  Therefore, the 186 
G418-resistant clones obtained were analyzed for CD44 ex- 
pression by FACS ® analysis; 24 clones with 20-45% de- 
creased CD44 surface levels were examined by Southern 
analysis. Because of  the introduced BamHI  site in the con- 
struct (Fig. 1 A), correct targeting should result in hybrid- 
ization with a 4.0-kb BamHI  restriction fragment, in addition 
to the 12.5-kb fragment of the wild-type allele. One of the 
clones showed this hallmark (Fig. 1 B) and was termed sin- 
gle knockout  (SKO). The CD44 surface level of  SKO cells 
was 62% of that of parental M D A Y - D 2  cells (see Table I). 

To disrupt the second CD44 allele, the SKO cells were 
transfected with the hygromycin-containing fragment, and 
CD44-negative cells were sorted from a bulk culture of 
transfected cells. Approximately 0.08% of the population 
was sorted and plated as single cells; 50% of these clones 
were CD44 negative, and Southern analysis revealed that 
29 of the 30 CD44-negative clones were genuine D K O  (Fig. 
1 B). In one of the CD44-negative clones, the second allele 
was not disrupted. Apparently,  this was a spontaneous 
mutant  (SM). Because the D K O  cells were sorted from 
the bulk population, they cannot be considered indepen- 
dent clones. Therefore, the SM clone was used as a second 
independent CD44-negative cell line in some experiments. 

Northern analysis (Fig. 1 C) of MD A Y -D 2  cells revealed 
the 1.6-, 3.3-, and 4.0-kb m R N A  bands of the standard CD44 
transcript (21). R N A  levels were reduced in the SKO cells, 
and in the D K O  cells no CD44 m R N A  was detected. Hy- 
bridization of this blot with a probe specific for variant ex- 
ons 4-10 of CD44 (40) did not reveal any bands, even after 
prolonged exposure (not shown). Thus, M D A Y - D 2  cells 
express only the standard CD44 isoform. 

Proliferation and  Integrin Expression 

Proliferation rates of the cell lines in vitro were found to be 
identical. Also, the expression levels of integrins that are 
potentially relevant for metastasis were determined. Fi- 
bronectin receptors have been implicated in metastasis of  
cells to the liver (33), the c~6131 integrin may be involved in 
melanoma metastasis to the lungs (30), and we have found 
that for T cell hybrids, the aLia2 integrin (LFA-1) is required 
for metastasis (29). M D A Y - D 2  cells express the fibronec- 
tin receptors eq[31 and et5131, and in addition the integrins 
(3t6[~ 1 and etL[32 (LFA-1) (Table I). MDAY-D2,  SKO, DKO,  
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Figure 1. Constructs used for CD44 targeting, and results of 
Southern and Northern analysis of MDAY-D2 parental, SKO, 
and DKO cells. (A) CD44 targeting constructs. CD44 locus 
around exon 1. The neo and hygromycin cassettes were inserted 
into the NcoI site, located at the translation initiation start site in 
exon 1. The probe used to detect homologous recombination at 
this locus is the indicated 0.8-kb NcoI fragment. (B) Southern 
analysis of genomic DNA of MDAY-D2, SKO, and DKO cells, 
digested with BamHI and hybridized with the 0.8-kb NcoI probe. 
In the parental cells, a 12.5-kb BamHI fragment is detected. In 
the correctly targeted gene, an additional BamHI site is present 
in the 3' adaptor, used to ligate the pgk-1 neo cassette into the 
NcoI site so that a 4-kb fragment is detected. (C) Northern analy- 
sis of MDAY-D2, SKO, and DKO cell lines, using the 1.4-kb 
standard CD44 cDNA probe. CD44 mRNAs of 4.0, 3.3, and 1.6 
kb are observed in MDAY-D2 and SKO cells, but not in the 
DKO cells. GAPDH hybridization is shown as a measure for the 
amount of RNA in the samples. 
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Table I. Surface Levels of CD44 and Integrins 

Specific median fluorescence 

Percent CD44 CD44 ct4 ca5 c~6 aL  

MDAY-D2 100 158 24 6 14 26 
SKO 62 98 24 6 18 21 
DKO 0 0.9 18 5 14 15 
SM 0 0.7 16 6 13 18 

Specific median fluorescence, median of cells incubated with primary antibody minus 
the median of controls (secondary antibody only) in arbitrary units. Percent CD44, 
compared with MDAY-D2 cells. 

and SM cells did not differ in the surface levels of et4131, 
tXs[31, and a6131 integrins; CtL~32 was expressed at a slightly 
lower level in the D K O  and SM cells (Table I). 

Adhesion to Immobilized Hyaluronic Acid 

Lesley et al. (20) have shown that CD44 can exist in three 
functional states with respect to H A  binding: nonactivat- 
able, activatable (by, e.g., the CD44 m A b  I R A W B  [20]), 
and constitutively active. As shown in Fig. 2, 38% of 
M D A Y - D 2  cells bound to immobilized H A  without acti- 
vation. Therefore, CD44 is in the active conformation. 
Binding of M D A Y - D 2  cells to H A  was blocked completely 
by the KM201 antibody against CD44 (24), and thus CD44 
is the only H A  receptor present on M D A Y - D 2  cells. In- 
deed, the D K O  cells did not bind H A  at all (Fig. 2). The 
SKO cells bound almost as well as parental MDAY-D2  cells 
(34%), despite the lower CD44 surface level (Fig. 2). 

Subcutaneous Tumor Take and Growth 

Sy et al. (34, 35) and Bartolazzi et al. (3) showed that trans- 
fection of CD44 into certain lymphomas and melanomas 
greatly increased s.c. tumor take and growth. To test the 
role of  CD44 for M D A Y - D 2  cells, we injected the paren- 
tal and mutant cells s.c. into syngeneic mice at the lowest 
dose of M D A Y - D 2  cells that resulted in a tumor take of 
~100%,  previously determined to be 103 cells (18; and our 
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Figure 2. Adhesion of MDAY-D2, SKO, and DKO cells to im- 
mobilized HA in the absence or presence of CD44 mAb KM201. 
Adhesion was measured as described in Materials and Methods. 
The results shown are the mean of triplicate wells. A representa- 
tive experiment out of three with similar results is shown. II, con- 
trol; [], KM201. 

unpublished results). The majority of mice developed a 
palpable tumor within 3 wk. Animals were killed when ul- 
ceration of the tumor occurred, when the tumor was larger 
than 2 cm 3, or after 35 d. Only in a few cases, metastases 
were observed in the liver and spleen, but in about half of 
the mice, local invasion through tissues into the thorax or 
abdomen was seen. This was observed for all of  the four 
cell lines, including the D K O  and SM CD44-negative cells. 
In Fig. 3, examples of the extensive invasion of muscle and 
fat tissues by the D K O  cells are shown. In Fig. 4, the s.c. 
tumor sizes are shown at 3, 4, and 5 wk after injection. Af- 
ter 5 wk a tumor larger than 2 cm 3 had developed in two 
out of five animals injected with M D A Y - D 2  cells, five out 
of nine with SKO cells, four out of  nine with SM cells, and 
six out of nine injected with the D K O  cells. Also, the total 
tumor take was similar: four out of five for MDAY-D2,  
seven out of nine for SKO, seven out of nine for SM, and 
six out of nine for D K O  cells. We conclude that s.c. growth 
of the CD44 negative D K O  and SM cells did not differ 
from that of the SKO or M D A Y - D 2  cells. 

Experimental Metastasis 

Metastatic potential was assessed by injecting 104 cells into 
the tail vein of syngeneic mice. This was the lowest dose of 
M D A Y - D 2  cells that reproducibly gave rise to metastasis 
in almost 100% of the mice. The results of the first experi- 
ment are summarized in Table II. Extensive metastasis to 
liver and spleen was seen in almost all mice, including those 
injected with the D K O  cells: seven out of seven for 
M D A Y - D 2  cells, and seven out of eight for both SKO and 
D K O  cells. The animals injected with M D A Y - D 2  cells 
showed symptoms of illness between days 13 and 17 after 
injection, with SKO or D K O  cells after 15-22 d, so no dif- 
ference was seen in survival between the CD44-positive 
SKO and CD44-negative D K O  cells. 

The distribution of metastases was assessed by histology 
in a second experiment in animals killed after a fixed period 
of 15-16 d. Lungs, thymus, lymph nodes, liver, spleen, bone 
marrow, kidneys, intestines, brain, and blood were exam- 
ined macroscopically and by histology. Many M D A Y - D 2  
cells were found circulating in the blood and therefore in 
blood vessels of lungs, meninges, and kidneys, but not in 
extravascular locations. However, in the spleen, tumor cells 
were located extravascularly in the red pulpa areas, and 
only when the metastases grew bigger, the cells invaded 
the white pulpa area (not shown). In the liver, diffuse and 
nodular infiltrates were observed, as shown in Fig. 3. In 
the bone marrow, tumor cells sometimes totally replaced 
the normal cell population (Fig. 3). The tissue distribution 
and invasion patterns of  the D K O  cells did not differ at all 
from SKO and M D A Y - D 2  cells. Therefore, we conclude 
that CD44 is dispensable for both metastasis formation 
and s.c. growth of M D A Y - D 2  lymphosarcoma cells. 

Discussion 

The most direct approach to elucidate the role of  a specific 
protein in a complicated in vivo phenomenon is the study 
of mutants that no longer express this protein. Previously, 
we have thus provided evidence for a decisive role of 
LFA-1 in metastasis of a T cell hybridoma, by showing 
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Figure 3. Invasive capacity of CD44-negative MDAY-D2 DKO cells. (A) Invasion of cells from the subcutaneously implanted tumor 
into muscular (M) and fat (F) tissue. Bar, 40 Ixm. (B) Higher magnification; bar, 20 ixm; isolated tumor cells have invaded between the 
muscle fibers (M). (C) i.v. injected tumor cells (7) have invaded the liver parenchyma (P). Tumor cells are also present in the larger ves- 
sel. Bar, 40 p.m. (D) Tumor nodule in sternal bone marrow. B, bone. Bar, 40 ~m. 

that LFA-l-deficient mutants hardly metastasized (29). 
However, these mutants were generated by chemical mu- 
tagenesis, and therefore it cannot be excluded that alter- 
ations in expression of other genes have contributed to the 
phenotype. A better approach is the targeted disruption of 
the genes of interest. However, this was generally consid- 
ered unfeasible for mammalian cells other than embryonal 
stem cells because of the low frequency of homologous re- 
combination. Recently, however, the generation of tar- 
geted mutants of different cell types has been reported (6, 
9, 15). Our present results confirm this and show that tar- 

geted disruption of genes is a viable and potentially very 
powerful approach to elucidate mechanisms of metastasis, 
at least of diploid tumor cell lines. 

We anticipated a strongly reduced s.c. growth potential 
and metastatic capacity of the CD44-negative MDAY-D2- 
DKO cells. This was based on the documented role of 
CD44 in in vitro invasion (8, 23), the correlation between 
CD44 levels and tumor spread (4, 17, 25), as well as on di- 
rect evidence from in vivo studies with anti-CD44 mAb 
and CD44-transfectants (3, 13, 34, 35). These results all 
pertained to the standard form of CD44 in lymphomas and 
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Figure 4. Local tumor growth of MDAY-D2, SKO, DKO, and mutant cells injected s.c. in the flank of syngeneic DBA/2 mice. Tumor 
size was scored as follows: 1+, <0.5 cm3; 2+ ,  0.5-1.0 cm3; 3+ ,  1.0-1.5 cm3; 4+ ,  1.5-2.0 cm 3. Shown is the percentage of animals with the 
indicated tumor size after 3, 4, and 5 wk. (3, 1+; E, 2+; II, 3+; II, 4+. 

melanomas. In addition, this expectation was based on the 
documented requirement of CD44 for properties of nor- 
mal blood cells that involve migration into tissues, particu- 
larly the skin (5) and the liver (28), despite similar expres- 
sion of adhesion molecules like LFA-1 and et4131. 

It was thus a surprise to find no significant difference in 
in vivo behavior between the parental and the mutant cells. 
In contrast to the CD44-negative Nawalma lymphoma cells, 
MDAY-D2-DKO mutant cells grew readily in a s.c. envi- 
ronment and not slower than the parental cells. Particularly 
striking was the extensive local invasion of the DKO cells 
from the tumor site, through the surrounding tissues, and 
into the thorax or abdomen, similar to parental cells. This 
involved, e.g., extensive migration between HA-rich muscle 
tissue (2, 19), as shown in Fig. 3. The distribution of me- 
tastases after i.v. injection, and the extent and pattern of 
invasion into the affected tissues (i.e., liver, spleen, and bone 
marrow) were also not different. The observation on spleen 
metastasis is consistent with a recent report by Zahalka et 
al. (43) that CD44 mAbs did not affect spleen metastasis 
of a lymphoma, whereas they did affect metastasis to lymph 
nodes, which are not affected by our MDAY-D2 cells. 

The results cannot be explained by redundancy, at least 
with respect to H A  binding. Motility of several cell types 
on H A  has in fact been ascribed to a different H A  recep- 
tor: RHAMM (14), which has also been found on blood 
cells (27). However, adhesion of MDAY-D2 cells to H A  
was completely blocked by anti-CD44 mAb, and indeed 
the DKO mutants did not adhere to H A  at all. The latter 
result also appears to exclude an involvement of intercel- 
lular adhesion molecule-1 (ICAM-1), which is in fact ex- 

Table IL Metastatic Potential of MDAY-D2, SKO, and DKO 
Cells 

Group MDAY-D2 SKO DKO 

(n) (n) (n) 

Liver 7/7 7/8 7/8 
Spleen 7/7 7/8 7/8 
I11 on day 13-17 15-22 16-22 

5-too-old DBA/2 mice were injected i.v. with 104 cells, and autopsy was performed 
when animals became ill after the indicated time period, n, number of animals with 
metastases in the liver and the spleen detected upon gross examination. 

pressed by MDAY-D2 cells (not shown) and was recently 
described to act as H A  receptor in the liver (22). 

A possible explanation for the discrepancy between our 
and previous results may be based on the function of 
CD44 as a transmitter of extracellular signals rather than 
on its presumed role in invasion. Anti-CD44 mAbs can act 
as costimulators for T cell activation (7, 16, 26, 32) and can 
induce natural killer cell (36) activity. This probably mim- 
ics signals triggered by the CD44 ligand HA, since both 
anti-CD44 mAbs and H A  itself can induce cytotoxic T 
lymphocyte activity through CD44 (10, 11). It is therefore 
conceivable that, e.g., in contact allergic responses (5), CD44 
is not essential for invasion of lymphocytes into the skin, 
but rather for the local proliferation and activation of these 
cells. 

If this hypothesis is correct, the CD44 dependence of 
growth of certain tumors may also be explained, if these 
tumors still require extracellular signals for proliferation. 
Thus, e.g., the Namalwa human lymphoma cell line may re- 
quire signals induced by CD44-HA interaction in the HA- 
rich s.c. environment for rapid growth (34, 35). The highly 
malignant MDAY-D2 cells may be growth autonomous in 
this respect and not require such signals. Also, the estab- 
lished correlation between CD44 expression and spread of 
lymphomas may be explained if some lymphomas require 
CD44-transmitted signals for proliferation at sites other 
than lymphoid tissues. Thus, our results suggest that not 
all highly malignant lymphomas require CD44 to grow and 
spread. 
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