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ABSTRACT

Kink turns are widely occurring motifs in RNA, lo-
cated in internal loops and associated with many
biological functions including translation, regula-
tion and splicing. The associated sequence pattern,
a 3-nt bulge and G-A, A-G base-pairs, generates
an angle of ∼50◦ along the helical axis due to A-
minor interactions. The conserved sequence and
distinct secondary structures of kink-turns (k-turn)
suggest computational folding rules to predict k-
turn-like topologies from sequence. Here, we anno-
tate observed k-turn motifs within a non-redundant
RNA dataset based on sequence signatures and ge-
ometrical features, analyze bending and torsion an-
gles, and determine distinct knowledge-based poten-
tials with and without k-turn motifs. We apply these
scoring potentials to our RAGTOP (RNA-As-Graph-
Topologies) graph sampling protocol to construct
and sample coarse-grained graph representations of
RNAs from a given secondary structure. We present
graph-sampling results for 35 RNAs, including 12
k-turn and 23 non k-turn internal loops, and com-
pare the results to solved structures and to RAG-
TOP results without special k-turn potentials. Signif-
icant improvements are observed with the updated
scoring potentials compared to the k-turn-free po-
tentials. Because k-turns represent a classic exam-
ple of sequence/structure motif, our study suggests
that other such motifs with sequence signatures and
unique geometrical features can similarly be utilized
for RNA structure prediction and design.

INTRODUCTION

The kink turn (k-turn) is a widespread structural motif
found in double stranded RNA structures. Since it was first
defined as a new structural element in the ribosome by Klein

et al. (1), k-turns have been noted in many RNAs, includ-
ing riboswitches and ribozymes, and associated with impor-
tant regulatory and catalytic cellular roles. The Lilley group
has recently explored k-turns extensively (2–10). The k-turn
serves as a key architectural element that helps define spe-
cific ligand binding pockets by generating a kink between
two helices with an angle of ∼50◦ (3). Hence, k-turns can of-
fer important specialized components for the regulation of
cellular functions, and can act as conformational switches
upon binding to ligands (11–13). K-turns are also good el-
ements for constructing nanostructures, as shown recently
for 2–8 k-turns complexes (14).

K-turns occur in internal loops where two single strand
regions are connected by two helices (Figure 1). The con-
sensus k-turn sequence consists of a three-nucleotide single
strand region and G•A and A•G base-pairs on the 3′ side
(9,15,16). The k-turn motif includes a tertiary interaction
called A-minor motif where Adenine (A) close to a G–C
base pair (17). Recent experimental studies by Lilley et al.
have offered structural and functional insights into k-turn
motifs (3,9. These researchers also collected a database of k-
turn structures in which structures are grouped into classes
based on base pair characteristics (2). They described a set
of rules relating the sequence to the resulting structure and
the folding process, emphasizing the important roles of k-
turns in the folding of RNAs (9). More generally, such ex-
perimental structural information can provide folding rules
to predict RNA structures from sequence, and thus assist
in the understanding of RNA functional mechanisms. In
recent studies, it was shown that an adjacent base pair to
G–A, (3b, 3n), as illustrated in Figure 1, determines both
the folding properties of the k-turn and the specific confor-
mation class of the k-turn (7,10).

Experimental crystal structures have revealed that k-turn
motifs have highly conserved sequence contents and sec-
ondary structures (1,15,16). In Figure 2, we illustrate the
U4 snRNA k-turn as an example of a standard k-turn
class. Yet, there are some cases where k-turns do not fol-
low this rule. Lilley et al. divide the k-turns into simple
and complex k-turns based on existence of consensus se-
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Figure 1. The consensus sequence of simple kink-turns.

quence signatures. In our study, we employ sequence signa-
tures of simple k-turns in the context of structure prediction
from sequence or secondary structure; complex k-turns do
not follow the consensus sequence rule and are more dif-
ficult to identify. When such a target sequence contains a
k-turn sequence signature, a modified potential is applied.
We test this approach in our coarse-grained modeling pro-
tocol, RAG, where RNAs are represented as graphs, thereby
simplifying atomic representations and allowing rapid sam-
pling of the candidate conformations.

In brief, coarse-grained graphs representing RNA sec-
ondary structures have been introduced in the 1970s by Wa-
terman (18) and Nussinov (19) and developed later by oth-
ers (20,21). See (22,23) for recent reviews.

Graphs are mathematical objects where nodes are con-
nected by vertices to represent various connectivity net-
works, such as social, economic, and transportation net-
works. Though simplifications of the atomic structures are
involved, the number of degrees of freedom is drastically re-
duced (from sequence space to node space), and this makes
structure enumeration, analysis, and sampling much sim-
pler with graphs.

We have introduced the RAG (RNA-As-Graphs)
database in 2004 to aid the cataloging, analyzing, and
designing RNA structures (24–30). RAG translates RNA
2D structures into tree graphs by representing helices as
edges, and loops (hairpins, bulges, helix ends, junctions)
as vertices. See Supplementary Figure S2. Recently, we
have extended RAG to 3D representations to include both
connectivity of 2D structure and helical orientations in
3D space (31). Specifically, in RAG-3D, we added vertices
at helix ends and centers of junctions, as well as scaled
edges to reflect helix lengths. See Supplementary Figure
S2. This graph-based approach has proven effective for
enumerating RNA motif space (25), suggesting RNA-like
motifs for design (32), identifying modular units/recurring
motifs in observed RNAs (28), and assembling RNAs from
fragments (27). Here, we focus on our recent application
of predicting tertiary topologies of RNAs from given or
predicted secondary structures using RAGTOP.

The RAGTOP (RNA-As-Graphs-Topologies) hierarchi-
cal graph sampling approach has shown promise for char-
acterizing 3D helical arrangements in RNAs and predicting
riboswitch 3D structures from a given 2D structure repre-

sented by a graph (33,34). Starting with a given RNA se-
quence, we predict the 2D structure using programs such
as Mfold (35), RNAfold (36) and MC-fold (37), or extract
2D information from known 3D structures using programs
such as RNAView (38), FR3D (39), and MC-Annotate (40).
A 2D RNA graph is then built using the rules shown in
Supplementary Figure S2. Then, we use our data-mining
prediction program called RNAJAG (RNA-Junction-As-
Graphs) to predict junction topologies based on classifica-
tions of junction families for three-way and four-way junc-
tions (30). The junction family is predicted based on a
random forest data-mining approach that classifies a fam-
ily type by base content, loop length and free energy esti-
mates of base pairs. Then 3D graphs are built and sampled
by knowledge-based statistical potentials using a Monte
Carlo/Simulated Annealing (MC/SA) protocol (34) to find
low scored graph states. These guiding potentials include
terms for bending and torsion angles of internal loops
and radii of gyration patterns, and are calculated based on
known RNAs. This overall structure prediction combina-
tion has shown significant improvements over current ap-
proaches (NAST (41), FARNA (42,43) and MC-Sym (37))
for predicting 3D global helical arrangements in various
RNAs computed as graphs (33,34). The final graph model
was previously converted into an atomic model manually,
but now this process is being automated using our fragment
assembly approach based on the RAG-3D search tool for
similar RNA motifs (S. Jain and T. Schlick, in preparation).
Thus, RAGTOP predicts a 3D graph structure from a given
secondary structure and then converts that graph candidate
into an atomic model.

In this study, we focus on kink-turn structures, which
are special cases of internal loop topologies. Our goal is
to employ sequence signatures into our graph sampling
approach by using k-turn statistical potentials. Thus, we
calculate two different sets of knowledge-based poten-
tials based on two separate datasets for potential calcula-
tions: (i) a dataset of internal loops including k-turn mo-
tifs, (ii) a dataset of internal loops without k-turn motifs.
These datasets are determined by identifying the k-turn
motifs using the DSSR (Dissecting the Spatial Structure
of RNA) software, designed for RNA structure analysis
(44) over a non-redundant RNA dataset, and dividing the
whole dataset into these two subsets accordingly. The non-
redundant dataset contains 1445 RNA structures and was
taken from the available Nucleic Acids Database (NDB) by
April 2016 (45,46). We then apply our scoring function and
the RAGTOP graph sampling approach to predict global
topologies of 12 known RNAs, from small RNAs including
only k-turn motifs to large RNAs including k-turn motifs
as well as other motifs. During the RAGTOP protocol, we
identify the k-turn motifs based on the consensus k-turn se-
quence signatures and apply k-turn specific potentials if rel-
evant. This approach of using sequence patterns could be
generalized to other motifs, as there exist many recurrent
modules in RNAs, such as described by Leontis et al. (47).

MATERIALS AND METHODS

Here we describe: (i) annotation of the k-turn motifs by
DSSR for a priori potential calculations, (ii) resulting po-
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Figure 2. The 2D and 3D structures of U4 snRNA k-turn, 1E7K. The k-turn comprising three-nucleotide bulge is colored magenta, and successive GA
and AG base-pairs colored green.

tentials for k-turn and other remaining internal loops and
(iii) RAGTOP protocol with annotation of the k-turn mo-
tifs by conserved sequence and secondary structure analysis
of internal loops.

Annotated k-turn motifs by DSSR

We collected 1445 non-redundant PDB structures for 3D
geometry analysis from NDB (45,46) representing a total of
2742 internal loops. The internal loops are identified using
the DSSR (Dissecting the Spatial Structure of RNA) tool
(44). In RAG, a helix is defined only if at least two consecu-
tive Watson–Crick base pairs are present. Hence, we filtered
out internal loops having only one base pair in one of the
helices among the internal loops annotated by DSSR (44)
and continued with remaining 1401 internal loops. Because
RAG defines an unpaired nucleotide as a bulge, we iden-
tified internal loops having only one unpaired nucleotide
in the bulge by our code and added those loops into our
dataset. The final dataset used in generation of statistical
potentials includes 1835 internal loops. Among those, 112
loops are annotated as k-turn-like. For deriving the k-turn
potential, we used 66 k-turn motifs defined as normal k-
turns by the DSSR tool (44). The remaining 39 were clas-
sified as either ‘undecided’ or reverse kink-turns, and seven
k-turn motifs have bend angles larger than 120◦ according
to our bend angle definition and therefore filtered out from
the dataset. See Supplementary Table S1 for the list of all
k-turn motifs used to derive the k-turn statistical potential.

Within this final dataset, we group internal loops into
27 different families with respect to the sizes of their single
stranded regions, L and R, where L ≤ R as (see Figure 3):
0/1, 0/2, 0/3, 0/4, 0/5, 0/6+, 1/1, 1/2, 1/3, 1/4, 1/5, 1/6+,
2/2, 2/3, 2/4, 2/5, 2/6+, 3/3, 3/4, 3/5, 3/6+, 4/4, 4/5, 4/6+,
5/5, 5/6+, 6+/6+, where 6+ means greater than or equal to
six (34). Figure 3 provides examples of L/R families.

Statistical potentials

We define our knowledge-based statistical potential �G as

�G = �G internal + �G Rg + �Gpk,

where �G internal denotes the bending and torsion compo-
nent, �G Rg denotes radii of gyration term, and �G pk de-
notes the pseudoknot term.

We calculate the bending and torsion angles of the inter-
nal loops and classify then by L and R classes to include
2D information for both k-turn-like and non k-turn-like
datasets separately (34). See SI for definitions of internal
loops, bend angles, and torsion angles.

The knowledge based potential for internal loops,
�G internal, is calculated for each L/R category based on
Boltzmann statistics as �G(θ ) = −kbT ln(Pr (θ )/Prandom).
The bend and torsion angle probabilities are calculated as
number of occurrences in 5◦ and 45◦ intervals, respectively,
over the total number of internal loops, and the random
probabilities are the uniform distribution probabilities pro-
portional to the size of the angular intervals. See our previ-
ous work for full details (34).

The total internal loop potential �G internal is determined
by summing up the potentials for all internal loops of a
structure:

�G internal =
∑

i

�G(θi ) + �G(τi ).

We calculate bend and torsion potentials for our k-turn-
like dataset, non k-turn-like dataset, and all dataset sepa-
rately. In Supplementary Figure S3, we plot bend and tor-
sion angle potentials for k-turn-like, non k-turn-like, and
all internal loops for categories L/R = 2/5, 2/6+ and 3/6+
since most of the k-turn-like motifs are found in these three
categories. The bend angles of the kink-turns are calculated
to be ∼50◦ as expected.

The statistical potentials also include terms for radii of
gyration (as also used by Hofacker et al. (48)) and pseudo-
knot length. See SI for details.
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Figure 3. Examples of L/R families of internal loops.

RAGTOP

Our RAGTOP approach for predicting a graph candidate
from a given 2D structure involves two main steps: (i) pre-
diction of junction topologies using RNAJAG, (ii) MC/SA
graph sampling guided by k-turn and non k-turn statistical
potentials. We analyze the resulting ensemble using score,
RMSD and clustering. The next step of RAGTOP is to gen-
erate atomic models based on the predicted graph structure
(S. Jain and T. Schlick, in preparation).

Assessment of initial graphs and junction prediction. The
initial tree graph is generated based on the 2D structure in-
formation given in BPSEQ format. To generate 2D struc-
tures, we use available tools such as RNAView (38), FR3D
(39) and MC-Annotate (40) based on known 3D structures.
We also tested our approach by predicting 2D structures
by RNAfold (36) based on the dynamic programming al-
gorithm proposed by Nussinov (49,50). We translate the
given 2D structure into a graph topology. In our graph
representation, helices are represented as edges and loops
(hairpins, internal loops, helix ends, junctions) as vertices
(31,33,34). Then, if the structure has junction(s), we use
our RNAJAG tool to predict the coordinates of the junc-

tion vertices. RNAJAG predicts 3 three-way and 9 four-way
junction families based on the random forests data-mining
technique using three measures (adenine base content, loop
length, and free energy estimates of base pairs) and deter-
mines junction families and coaxial stacking (30,34). Then,
we generate the 3D graph topology from the 2D graph by
adding vertices at the helical ends, and scaling edges to re-
flect helix lengths and base-pair content. We also add a ver-
tex at the center of the junction to represent spatial proper-
ties of the junctions.

MC/SA graph sampling. After initial graph and junction
predictions, we perform Monte Carlo/Simulated Anneal-
ing sampling until satisfactory convergence for a fixed num-
ber of steps (50,000 steps). For each move, we randomly
select an internal loop, and then randomly select one of
the helices of the internal loop for rotation (along with all
linked vertices) along a randomly selected axis (x, y and
z). We apply ‘random moves’ (see (34)) with an angle ran-
domly selected between 0◦ and 360◦ at each MC step to-
gether with a simulated annealing cooling protocol (see be-
low) to ensure convergence. The sample graphs are scored
based on knowledge-based statistical potentials (bend and
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torsion angles of internal loops, radii of gyration and pseu-
doknot length) (33,34).

We use sequence signatures to identify all possible k-turn
motifs. If the selected internal loop has a k-turn sequence
signature, we use k-turn bend and torsion angle potentials
and use non k-turn potentials otherwise. We search for sim-
ple k-turn sequence signatures having (i) ‘GAGG’ and ‘CC’,
or (ii) ‘GAGC’ and ‘GC’, or, (iii) ‘GAGC’ and ‘GU’, or, (vi)
‘CAGC’ and ‘GC’, or (v) ‘UAGC’ and ‘GC’ sequences in
their (1b, 2b, 3b, 4b) and (3n, 4n) positions (see Figure 1).
We list the k-turn structure data with sequence patterns in
Supplementary Table S2.

At each step, if the score is lower than that of previous
conformation, the move is accepted. If it is higher, we cal-
culate probability of acceptance at step j as

P( j ) = 2Ej /Tj ,

where Ej = Score j − Score j−1 is the change in the score,
Tj = c/log2(1+ j/N) is the cooling temperature, and c =
1/20log2(10). Hence, the acceptance probability depends on
the score and the effective temperature. We start with Ti
= 521◦ K and slowly decrease the temperature until Tf =
0.015◦ K . In general, the number of accepted moves is
higher at high temperatures and decreases at low temper-
atures. The move is accepted if the acceptance probability
is higher than a randomly generated number between 0 and
1. We further extended the simulations to 105 steps to check
if we reached a minimum (data not shown). The system is
cooled until T = 0.009◦ K . The number of accepted moves
is around 300–400 steps after the first 50,000 steps. We also
apply a steric clash criteria based on the minimum distance
between any two edges of a graph. If the minimum distance
is <1 Å, the move is rejected.

Selection of candidate graph from MC graph ensemble

After generating the pool of accepted graphs, we calculate
the root mean square deviations (RMSD) using VMD (51)
for a candidate graph, as follows. P1 measures the best an-
swer among all ensemble graphs with respect to the graph
of the solved structure; this is a reference value only, since
the known structure cannot be considered in general. When
the reference structure is not known, for use in the selection
of the candidate graph, we apply two different procedures,
as follows. The lowest-scored graph in the pool is selected as
one candidate (C1), and the last accepted graph is selected
as another candidate (C2). The RMSDs of graphs C1 and
C2 with respect to graph of the solved structure are given in
Table 1.

RESULTS

In Table 1 and Supplementary Table S2, we show results
of RAGTOP applications with the updated k-turn statis-
tical potential to 30 RNAs from our previous work and
five new RNAs. Our set includes 11 structures with a k-
turn sequence signature (Supplementary Table S2) and 24
structures without a sequence signature (non k-turn). One
of the structures (1OOA) has a reverse k-turn which is not
modeled as a special pattern in this work. In reverse k-
turns, the turn towards the major groove rather than the mi-

nor groove, so it bends in the opposite direction compared
to canonical k-turns (52). We categorize the internal loops
based on the number of nucleotides in their single stranded
regions; L and R, where L ≤ R. (See Figure 3 for examples
of L/R families and the Materials and Methods for details.)
Our dataset includes four snRNAs of 2/5 family, four mR-
NAs and an rRNA of 2/6+ family and two riboswitches
of 3/6+ family. In terms of identifying the k-turns, our
approach works for all family classes, but these three are
the most common families recognized by our sequence sig-
nature definition. Although our k-turn sequence signature
definition includes most common k-turn sequences, there
are some k-turns that our definition misses. This is because
we only included the most common sequence signatures
to avoid false k-turn predictions. See Supplementary Ta-
ble S1 for the all k-turn structures and their correspond-
ing sequences found in our dataset. In particular, snoRNA
1RLG, is missed because its sequence signature ‘GACC’,
and ‘GG’ is not included in our k-turn definition. Although
we have no cases where a non k-turn is classified as k-turn
in this work, false positive predictions may occur in general.

RAGTOP’s MC/SA procedure locates low energy con-
figurations corresponding to the knowledge-based scoring
function (see Materials and Methods). To select candidate
graphs, we use two procedures: lowest scored graph (C1)
and last graph in the MC/SA protocol (C2). These graphs
are then compared to the graphs of the solved RNA to de-
termine the graph RMSD for C1 and C2. In addition, we
provide P1 for reference, the graph in the entire MC ensem-
ble that has the lowest graph RMSD with respect to experi-
mental reference graph. C1 and C2 are the predictions when
the reference graph is unknown. Table 1 provides P1, C1 and
C2 results based on k-turn specific potentials and general
potentials for 35 structures in our set. Supplementary Fig-
ure S4 illustrates predicted graph models for all structures
based on both the k-turn and non k-turn specific potentials.

We had already shown that comparing graph RMSDs is
similar to comparing atomic RMSDs (30). The results in
Table 1 show overall improvement compared to the general
statistical potentials. Significantly, the prediction RNAs
with k-turn sequence signatures improves for all k-turns.
The graph RMSDs of six k-turns (2XEB, 2VPL, 1ZHO,
2HW8, 1U63 and 1MZP) decrease from 6–9 Å values to
3–4 Å. Although C1 and C2 values are higher than P1 val-
ues (when the reference is known), the predictions are good.
We see that the predictions of four snRNA structures of
the 2/5 family (1E7K, 2XEB, 3SIU and 2OZB) slightly im-
prove, while the predictions of four mRNAs of the 2/6+
family (2VPL, 1ZHO, 2HW8 and 1U63) and one rRNA
(1MZP) significantly improve. In Supplementary Figure S5,
we present the score-RMSD landscapes as well as MC/SA
score convergence for 35 structures. The improvement is
also clear from score-RMSD landscapes where the land-
scapes indicate downhill shapes when k-turn specific po-
tentials are used. The predictions of pseudoknot structures,
two SAM riboswitches (2GIS and 3V7E) and one rRNA
(1MZP), also improve with k-turn specific potentials.

To determine which RNA parts realize improvement, we
show in Supplementary Table S3 the local RMSDs calcu-
lated as the RMSDs of only kink-turn parts (five vertices
indicated by cyan in Supplementary Figure S4) with respect
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Table 1. Graph results for RNAs including k-turn and non k-turn motifs using k-turn versus general potentials

K-turn potentials applied General potentials applied

PDB L RNA class
P1 (best
RMSD)

C1 (best
score)

C2 (last
graph)

P1 (best
RMSD)

C1 (best
score)

C2 (last
graph)

K-turns
1E7K D 17 snRNA 2.64 2.70 2.76 2.63 3.16 3.15
3SIU C 28 snRNA 2.46 3.23a 3.22 2.28 4.46 4.45
2XEB AB 33 snRNA 3.73 4.37 4.37 3.61 6.27 6.05
2OZB C 33 snRNA 3.49 6.10 5.68 3.25 6.90 6.90
2HW8 B 36 mRNA 2.33 3.00 3.04 2.34 7.16 6.44
1ZHO B 38 mRNA 2.45 2.84a 2.90 2.45 7.11 6.55
2VPL B 48 mRNA 2.78 3.91 3.77 2.67 7.59 7.05
1U63 B 49 mRNA 2.99 4.66 4.62 2.99 9.34 6.86
1MZP B 55 rRNA 2.68 4.66 4.62 3.70 6.72 6.60
2GIS A 94 SAM Ribosw. 13.58 17.87 18.07 13.45 18.31 18.52
3V7E D 127 SAM Ribosw. 13.15 21.17 21.23 13.15 22.26 22.30
Non K-turns
1RLG D 25 Box C/D RNA 2.43 3.81 3.97 2.49 3.80 3.58
1OOA D 29 Aptamer 2.65 3.76 3.15 2.65 3.76 3.15
2IPY C 30 IRE RNA 2.01 2.22 2.18 2.01 2.22 2.18
1MJI C 34 5S rRNA 2.38 3.26 3.24 2.38 3.44 3.39
1I6U D 37 rRNA fragment 1.56 2.44 2.30 1.61 2.39 2.39
1F1T A 38 Aptamer 1.93 2.77 2.77 1.96 2.67 2.65
1S03 B 47 mRNA 1.94 4.18 3.87 1.98 4.29 4.28
1XJR A 47 Viral RNA 3.99 6.26 6.32 4.23 6.43 6.30
2PXB B 49 SRP 1.99 3.88 2.72 1.99 3.88 2.72
2OIU P 51 Ribozyme ligase 4.51 6.61 6.87 4.51 6.61 6.87
2HGH B 55 5S rRNA 4.24 6.15 6.40 4.24 6.43 6.24
1DK1 B 57 rRNA fragment 4.42 6.76 8.67 4.42 6.73 10.43
1MMS C 58 rRNA fragment 4.64 9.19 9.26 4.64 9.19 9.26
1D4R AB 58 SRP 5.95 8.17 7.87 5.95 8.17 7.87
1KXK A 70 Group II intron 2.99 4.07 5.48 3.48 5.52 4.58
1SJ4 R 73 HDV ribozyme 6.51 7.36 7.92 6.07 7.00 7.06
1P5O A 77 HCV IRES 5.58 11.21 11.75 5.49 10.40 10.33
3D2G A 77 TPP ribosw. 7.16 16.81 17.05 6.06 13.11 13.46
2HOJ A 79 TPP ribosw. 6.63 17.24 16.24 6.63 18.06 16.85
2GDI X 80 TPP ribosw. 7.14 18.60 19.57 7.03 17.56 17.80
1LNG B 97 SRP 5.53 14.79 17.51 5.61 15.01 13.85
2LKR A 111 U2/U6 snRNA 14.25 21.82 22.32 14.25 18.20 20.66
1MFQ A 128 SRP 15.41 27.24 27.44 16.48 30.22 26.97
1GID A 158 Group I intron 14.66 26.18 25.65 14.66 25.13 26.19

aAll-atom models built using our fragment assembly approach (S. Jain and T. Schlick, in preparation) yield RMSDs of 3.62 Å for 3SIU, and 1.89 Å for
1ZHO, with respect to the experimental structures, as sketched in Supplementary Figure S6.
Best RMSDs when the reference structure is not known are indicated in bold in each row. After MC/SA sampling, the lowest graph RMSD with respect
to the reference graphs from solved structures (P1), lowest scored graph (C1) and last accepted graph (C2) are shown.

to native graph structure. The improvements are indeed in
the kink-turn regions of the structures.

The results for the 24 non k-turn structures do not ex-
hibit substantial changes. Six of them (1OOA, 2IPY, 2PXB,
2OIU, 1MMS and 1D4R) remain unchanged since the po-
tentials remain the same for those structures. For some
structures, predictions are slightly better with general po-
tentials compared to those with k-turn and non k-turn spe-
cific potentials. The score-RMSD landscapes of non k-turn
structures also remain similar (Supplementary Figure S5).
Three TPP riboswitches (3D2G, 2HOJ and 2GDI) have k-
junction motifs, i.e., a kink-turn motif in a three-way junc-
tion (8). In this work, we only consider the kink-turn motifs
in internal loops, because our potential accounts for motifs
in internal loops only.

To demonstrate that the k-turn potential is effective on
structures not included in the k-turn dataset, we also per-
formed a 10-fold cross validation procedure for our kink-
turn dataset. The entire dataset (Supplementary Table S1)
is divided into 10 subsets randomly, then nine subsets are

used to obtain training parameters, and one is used for test-
ing. The procedure is repeated 10 times for each tenth of the
dataset. The results (Supplementary Table S4) are in excel-
lent agreement with the overall results presented in Table 1.
That is, the difference is <0.5 Å.

In this work, we have used 2D structures derived from 3D
information using available tools, namely RNAView (38),
FR3D (39) and MC-Annotate (40), since our goal is to eval-
uate the k-turn potential’s performance. However, we also
experimented with using predicted 2D structures from se-
quence using RNAfold (36). The results are given in Sup-
plementary Table S5. The predicted 2D structure is dif-
ferent from the true structure for some cases, resulting in
RNA graphs with different number of vertices compared
to the known graph. In such cases, we used the align func-
tion of PyMOL (The PyMOL Molecular Graphics System,
Shrödinger LLC, http://www.pymol.org) to calculate graph
RMSDs. The align function performs a sequence alignment
followed by a structural superposition, and repeats refine-
ment cycles to reject outliers. We set the number of cycles to

http://www.pymol.org
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zero to avoid outlier rejection and considered all vertices in
graph RMSD calculations. From the comparisons in Sup-
plementary Table S5, we see that when the predicted 2D
structure is the same as the known structure (∼10 out of 35
total), the results are the same (1E7K, 3SIU, 2OZB, 2HW8,
1ZHO, 1OOA, 2IPY, 1MJI, 1F1T, 1XJR). When the pre-
dicted structure is different but close to the known struc-
ture (about 15 out of 35 total), we obtain somewhat higher
RMSD values. However, using the kink-turn potential still
improves the predictions. When the predicted 2D structure
is incorrect, as in ∼10 of the total structures, the predictions
are also poor.

To illustrate our automated fragment assembly model-
ing approach to generate all-atom models from candidate
graphs (S. Jain and T. Schlick, in preparation), we use two
examples, an mRNA and a snRNA (1ZHO and 3SIU, re-
spectively). In Supplementary Figure S6, we show the steps
taken for the RNA graph candidates C1 given in Table 1:
graph partitioning by RAG-3D (31); assembly using 10 best
matching graphs and their corresponding all-atom mod-
els using common loops; adjustment of bases, helix and
loop lengths; geometry optimization by PHENIX (53); and
ranking of final model with respect to C1. The all-atom
RMSDs are 1.89 Å for 1ZHO, and 3.62 Å for 3SIU.

DISCUSSION

K-turn consensus sequence signatures are classic exam-
ples of sequence/structure motifs in RNAs. We have pre-
sented a first attempt to use sequence signatures for gen-
erating motif specific statistical potentials. We developed a
priori knowledge-based potentials from known RNA struc-
tures and generated k-turn (and non k-turn) specific po-
tentials. First, we predict initial graph geometries based on
2D topologies and junction predictions. Second, we sam-
ple graph topologies using MC/SA simulations, score them
based on sequence signatures, using derived statistical po-
tentials. When compared, results with k-turn specific poten-
tials yield superior results to those with general potentials.
More generally, other RNA sequence/motif patterns could
be used to improve statistical potentials and predictions of
RNA structures similarly.

The graph RMSDs are positively correlated to all-atom
RMSDs as shown previously (30). Furthermore, the scores
and graph RMSDs are positively correlated as shown in
Supplementary Figure S5. Hence, the lowest scored graphs
(C1) and the last accepted graphs (C2) in the MC/SA sim-
ulations are good candidates for all-atom models.

Although the junction topologies are mostly predicted
well by RNAJAG at the beginning of RAGTOP, some pre-
dictions are imperfect due to different helical orientations.
For example, for riboswitches 2GIS and 3V7E, the distances
between helical arms are not predicted well, although the
junction family and helical stacking are predicted correctly.
Thus, the MC/SA procedure optimizes the internal loops
while the junction prediction remains unchanged. In the fu-
ture, extended moves to junctions and hairpins could be in-
troduced to model different angular orientations of junc-
tion topologies. Furthermore, RNA junction families could
also be extended by considering more families to represent
the flexible helical orientations.

One of the difficulties in using sequence signatures is that
it is not always possible to find an exact conserved sequence
pattern, because many cases exist where the sequence breaks
the general rules. One example is complex kink-turns (4).
Some k-turns have unusual sequence variants: examples in-
clude Kt-23 from the 16S rRNA of T. thermophiles, and Kt-
7 from the 23S rRNA of the H. marismortui ribosome (2).
In such cases, the G–A pair of the (2b, 2n) positions is dif-
ferent.

Many RNA 3D motifs have been identified so far (54).
The RNA 3D Motif Atlas developed by Leontis et al.
(47,54) is one resource that is continuously updated. The
motifs in the Motif Atlas are identified based on conserved
interactions and overall geometry of the structure. Other re-
sources that classify or extract RNA motifs also exist (55–
58). However, the lack of integrated resources for annotat-
ing RNA motifs automatically remains a challenge in RNA
modeling and design (59).

Besides kink-turns, motifs such as C-loops, sarcin-ricin
motifs, RNA/protein or RNA/ligand binding sites also
could be included in knowledge-based potentials in com-
bination with structure prediction. RNA sequence and 2D
structure properties are important in the identification of
binding partners. Hence, including these properties could
improve RNA structure prediction. Our results support the
notion that employing motif specific parameters based on
sequence/structure features could improve RNA structure
prediction.

The importance of RNA motif prediction in RNA struc-
ture prediction was also emphasized in RNA-Puzzles II,
a collective and blind experiment in 3D RNA structure
prediction (60). That is, it was found that predictions im-
prove using various motif search tools, such as a sequence-
based motif prediction tool RMDetect (55) that can search
for G-bulge loop, kink-turn, C-loop and tandem-GA loop;
or JAR3D (61) that searches RNA motifs. However, these
tools are not currently integrated with structure prediction
tools for RNA. Nonetheless, as the RNA motif world be-
comes more annotated, sequence signatures for various mo-
tifs could define a strong foundation for structure prediction
from sequence.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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