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Dynamic changes in gene‑to‑gene 
regulatory networks in response 
to SARS‑CoV‑2 infection
Yoshihisa Tanaka1,2, Kako Higashihara3, Mai Adachi Nakazawa3, Fumiyoshi Yamashita1, 
Yoshinori Tamada3,4* & Yasushi Okuno2,3*

The current pandemic of SARS-CoV-2 has caused extensive damage to society. The characterization 
of SARS-CoV-2 profiles has been addressed by researchers globally with the aim of resolving this 
disruptive crisis. This investigation process is indispensable to understand how SARS-CoV-2 behaves 
in human host cells. However, little is known about the systematic molecular mechanisms involved in 
the effects of SARS-CoV-2 infection on human host cells. Here, we present gene-to-gene regulatory 
networks in response to SARS-CoV-2 using a Bayesian network. We examined the dynamic changes 
in the SARS-CoV-2-purturbated networks established by our proposed framework for gene network 
analysis, thus revealing that interferon signaling gradually switched to the subsequent inflammatory 
cytokine signaling cascades. Furthermore, we succeeded in capturing a COVID-19 patient-specific 
network in which transduction of these signals was concurrently induced. This enabled us to explore 
the local regulatory systems influenced by SARS-CoV-2 in host cells more precisely at an individual 
level. Our panel of network analyses has provided new insights into SARS-CoV-2 research from the 
perspective of cellular systems.

The newly emerging coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread 
rapidly worldwide1,2, with more than 24,000,000 cases of coronavirus disease 2019 (COVID-19) and 830,000 
deaths as of August 28, 20203. This pandemic outbreak has drastically changed our society and has compelled 
us to be vigilant of the continuous risk of SARS-CoV-2 infection4. To overcome this dire situation, the develop-
ment of novel drugs or vaccines continues to be an urgent global challenge. During the therapeutic development 
process, the elucidation of cellular mechanisms is essential for the discovery of potential targets; the fundamental 
question to be solved is how the SARS-CoV-2 influences host cells and causes COVID-19 at the molecular level. 
However, the cellular mechanisms underlying COVID-19 are poorly understood.

High-throughput technologies have contributed to the acquisition of a large amount of “omics” data, which 
has provided comprehensive information on cellular systems. These technologies have also been utilized dur-
ing the current research into SARS-CoV-2. Several reports have provided various clues to understanding the 
global cellular signatures in response to SARS-CoV-2 infection at both the proteome and transcriptome levels5–7. 
Recently, network-based approaches have attracted great interest in the use of emerging omics data for drug 
discovery and systems biological analysis in the current field of SARS-CoV-2 research8–13. Their major approaches 
combine publicly available sources, including knowledge of the already established pathways and drugs with 
these omics data to reconstruct molecular networks. However, these networks do not sufficiently represent a real 
cellular system for the following two main reasons: 1) public data consist of heterogeneous knowledge that has 
been accumulated throughout longstanding biological research; and 2) previous studies use mixed networks that 
combine data from various samples, but cannot reflect an individual cell-/patient-specific network.

To address these problems, we recently developed a method to extract a core sample-specific network from 
a massive gene network generated from a Bayesian network14. Gene regulatory network estimation has been 
developed as a prospective method to model the cellular system using omics data15–19. Although the Bayesian 
network-based approach can infer the cause-and-effect relationships between genes with transcriptome data, 
the key issue is the extraction of biologically significant information from a huge, complicated network, which 
is often sarcastically referred to as a hairball20. Our unique framework consists of the following three steps: 1) 
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estimation of a global gene network; 2) extraction of context-specific core networks based on differences in 
molecular systems from the global network; and 3) identification of a sample or patient-specific network (Fig. 1). 
The prominent advantage is that it enables us to identify putative context-specific or sample-specific potential 
sets of edges in the form of a network, that is, gene-to-gene relationships with directions as well as nodes.

In this study, by using our developed framework for gene network analysis, we have presented the core host 
cellular systems involved in SARS-CoV-2 over several in vitro experiments, including different viral loads, cell 
lines, and respiratory viruses. No studies have been performed on the computational data-driven gene regula-
tory network approach for SARS-CoV-2. We characterized interferon signaling and subsequent inflammatory 
signaling cascades as significantly changed networks in human host cells, which represent the innate antiviral 
immune system in response to SARS-CoV-2 infection. Additionally, recent studies have reported that patients 
with COVID-19 exhibit various clinical outcomes depending on each patient, and that a certain proportion of 
patients will experience a severe disease21–23. Therefore, it is much more important to reveal the cellular mecha-
nisms causing these clinical symptoms at the individual level. To this end, we have further identified the gene 
networks specifically for patients with COVID-19. We believe that our landscape of gene networks is beneficial 
for understanding the mechanisms by which cellular systems respond to SARS-CoV-2 and to further drug 
development.

Results
Estimation of the basal gene network in the involvement of respiratory virus infection using 
a Bayesian network.  We first characterized a global gene network (hereafter referred to as the basal net-
work) using a Bayesian network (see Methods) with a transcriptome dataset involved in the engagement of 
respiratory virus infection, including SARS-CoV-2, in several human cell lines7 (Supplementary Table S1). Since 
the outstanding characteristic of our approach is to capture sample-specific signatures from the basal network, 
it is preferable that various reactions are included to model complex gene regulatory systems14. To determine 
the basal network structure, we performed a network estimation using the neighbor node sampling and repeat 
algorithm24, and screened the best algorithm parameters for the target dataset, as described in our previous 
study14. Briefly, the network estimation was run three times independently, and the subsequent concordance 
test was performed to ensure the robustness and stability of the estimated basal network. We confirmed that 
the iteration number T = 500, 000 satisfied less than 5% error (Error=4.0% for T = 500, 000 ; error=5.3% for 
T = 300, 000 ). The final basal network comprised 127,126 edges and 15,258 nodes, with a threshold of 0.05 and 
an average degree of 16.7. We used this final basal network for subsequent analyses.

Figure 1.   Illustration of overview. The hairball (blue) is the basal network consisting of 127,126 edges and 
15,258 nodes established using the respiratory viruses RNA-seq including SARS-CoV-2. The highlighted-
network (magenta) in the basal network represents the COVID-19-perturbed network extracted by using the 
biopsy RNA-seq.
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Dynamics of host cellular network profiles at different viral loads of SARS‑CoV‑2.  To examine 
the transition of host cellular system dynamics during the increase of SARS-CoV-2 viral loads, we characterized 
the networks perturbed by SARS-CoV-2 with two viral loads, namely a low multiplicity of infection (MOI) of 
0.2 and a high MOI of 2 in A549 cells. We expected that cells exposed to different viral loads would present a 
unique cellular system, and that our approach could capture the fluctuation of system dynamics in whole cel-
lular systems. To obtain differential core gene networks for each viral load, we followed multiple steps using an 
edge quantification technique, called the edge contribution value (ECv), established in our previous study14. We 
first calculated �ECvs following Eq. (2), where S = SARS-CoV-2 infected and T = mock samples for each MOI 
condition (see Methods). The distributions of �ECv showed that the innate cellular system was extensively more 
perturbed in the cells exposed to the high MOI than those exposed to low MOI (Fig. 2A). We next set a thresh-
old of 1 for �ECv and obtained differentially regulated edges (DREs) from the basal network. The Venn diagram 
analysis for the �ECv-extracted DREs showed that the number of DREs in the high MOI was larger than that in 
the low MOI (Fig. 2B). Interestingly, the number of shared DREs between high- and low- MOIs was 42, which 
was only 6% of the total number of DREs in both conditions, thereby indicating that the underlying regulatory 
system between them was not similar. To confirm the biological involvement of the DREs, we performed canoni-
cal pathway analysis for the genes contained in the �ECv-obtained DREs, and showed that these genes were 
associated with some cellular antiviral systems (Fig. 2C). These results support that the components of the DREs 
are biologically relevant to viral infection.

To gain a greater insight into the profiles of the DREs from the perspective of network topology, we next 
generated networks using a set of all the DREs in the Venn diagram (Fig. 2B). These DREs connected mutually 
and, in turn, generated subnetwork fragments of various sizes (Fig. 2D). We reasoned that if these fragments had 
biological significance, these features should be reflected as modular, as biologically close functions in cellular 
systems link together and shape modules25. Hence, small-sized fragments were likely to be less informative, and 
we focused on the largest connected component among the various fragments. The largest connected component 
was extracted and the basal edges were additionally mapped on this network, which established the SARS-CoV-
2-perturbed network with 130 nodes and 305 edges (Fig. 3). We found that this network clearly consisted of three 
modules linked to each other. One module (module 1, yellow-marked region) was mainly composed of a set of 
DREs under low-MOI conditions, and its constituent elements were interferon (IFN)-stimulated genes (ISGs), 
namely IFIs, MXs, OASs, TRIMs, IFTMs, IRFs, and STATs. These highly orchestrated webs of various ISGs are 
induced by transductions of both IFN signaling and subsequent JAK/STAT signaling26. This evidence strongly 
suggests that module 1 represents the consequences of activation of both these signaling pathways by the acute 
antiviral response. Contrary to module 1, the other two modules (module 2, green-marked region; and module 
3, purple-marked region) are mainly shaped by a set of DREs in the high-MOI condition. Modules 2 and 3 were 
found to comprise fewer IFN-related genes. While module 2 appeared to be a GAS5-centralized module, module 
3 was composed of chemokines (CXCL1, CXCL2, CXCL3, CX3CL1, and CCL20), interleukins (IL6, IL1A, IL1B, 
and IL32), and colony-stimulating factors (CSF2 and CSF3), which have been implicated in inflammatory-related 
cytokine signaling followed by the acute activation of IFN and JAK/STAT signaling represented in module 
1. In particular, the cluster of modules 1 and 3 likely represents the transition of the gene regulatory system 
in response to SARS-CoV-2 infection. Specifically, the cellular system perturbed by SARS-CoV-2 gradually 
switched to inflammatory signaling (module 3) via IFN and JAK/STAT signaling (module 1) as the viral load 
increased. This was consistent with the clinical observations of COVID-19, and may thus partially explain the 
process of cytokine storm syndromes, which is a severe clinical feature of COVID-1921,23. We also performed 
the same analyses among the four respiratory viruses and found that module 3 was exclusive for SARS-CoV-2 
(Supplementary Fig. S1). Collectively, we identified the SARS-CoV-2-perturbed network and its three modules, 
which reflected distinctive host cellular functions in response to SARS-CoV-2 infection.

Characterization of the SARS‑CoV‑2‑perturbed network at the individual sample level.  Next, 
we determined how the signaling represented in the SARS-CoV-2-perturbed network (Fig. 3) changed across 
the samples. To this end, we developed a novel quantitative method, called relative contribution (RC), to measure 
the edge contribution at an individual level. The mathematical definition of RC is described in the Methods sec-
tion. Within a set of pairwise parent-child relations for a certain child, the RC captures how parent genes influ-
ence a child gene in response to the pairwise parent’s mRNA expression, and it can therefore reveal local regula-
tory changes in response to SARS-CoV-2 infection at an individual sample level. To characterize the individual 
networks, we calculated RCs for 12 samples within four groups (mock × 3 for SARS-CoV-2-infected (MOI: 0.2), 
SARS-CoV-2-infected × 3 (MOI: 0.2), mock × 3 for SARS-CoV-2-infected (MOI: 2), SARS-CoV-2-infected × 3 
(MOI: 2)) involved in the network generation process, as shown in Fig. 3. Since we confirmed that the RC pro-
files exhibit almost the same between the replicates, we selected four representative samples from each group. 
By representing RCs as the sizes of edge widths, we depicted these four sample-specific individual networks 
(Supplementary Animation 1), and found that the vicinity of the GAS5-centralized module (module 2) drasti-
cally changed at an RC level (Fig. 4). Interestingly, this module included GAS5, SNHG8, ZFAS1, SNORD52, 
SNORD58C, SNORA24, and LOC100506548, which encode non-coding RNA (ncRNA) genes. Given that GAS5 
appears to function as a hub gene, these results suggest that the genes downstream of GAS5 are regulated by 
different cellular systems in the mock and SARS-CoV-2 infections at a local system level. In particular, GAS5, 
ZFAS1, and SNHG8 were found to be dominant for SLC9B1 in SARS-CoV-2-infected samples compared with 
the mock samples, suggesting that the regulatory system used was significantly different between them (Fig. 4). 
GAS5 is a single-stranded lncRNA, and one study demonstrated that the mRNA expression of GAS5 was ele-
vated in response to hepatitis C virus infection and that GAS5 impaired virus replication by the interaction 
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Figure 2.   Dynamics of the SARS-CoV-2-perturbed network for different viral loads in host cells. (A) The 
histograms of �ECv for different SARS-CoV-2 viral loads; a low MOI of 0.2 (blue) and a high MOI of 2 
(magenta). The X-axis corresponds to the threshold for each �ECv. The Y-axis shows the number of edges 
on a log scale. (B) The Venn diagram represents the numbers of differentially regulated edges (DREs) for two 
SARS-CoV-2 viral loads (blue: low MOI, magenta: high MOI) with a threshold of 1.0 for �ECv in Fig. 2A. (C) 
The top 10 terms of canonical pathway analysis for the genes comprising a union set of �ECv-extracted DREs in 
the Venn diagram analysis (Fig. 2B). (D) The whole illustration for the subnetwork fragments of various sizes is 
shown. Image of how the �ECv-extracted DREs mutually connected and generated the subnetworks.
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between truncated-GAS5 and HCV NS3 protein in human cells27. Combined with this evidence, our results 
suggest the possibility that this module 2 related to ncRNA may play a novel clear role in SARS-CoV-2 infection.

Conversely, of the four individual networks, the two networks for mocks exhibited no significant change in 
RC (Fig. 4 and Supplementary Animation 1). This is consistent with the prerequisite experimental design, as the 
mock samples are supposed to exhibit the same behavior, which further supports the validity of our method. 
Moreover, the RC-highlighted edges displaying little to no changes showed that their local regulatory system, 
presented as a set of pairwise parent-child relationships for one child, did not change between the individual 
samples. Collectively, our data demonstrate that we can capture the local system differences in network signal-
ing at an individual level.

Identification of specific individual networks in patients with COVID‑19.  Finally, we aimed to 
establish COVID-19 individual networks with a human biopsy dataset (healthy: two samples; COVID-19-pos-
itive: two samples) on the basis of the estimated basal network model. We expect that the in vivo biopsy dataset 
would provide a more clinically relevant perspective compared with the in vitro experiments. Usually, network 
estimation is impossible with such a small number of samples due to the difficulty in acquisition of a robust 
network structure, yet our approach using the basal network model was capable of generating a context-specific 
network, even with a few samples of a different dataset (Fig. 1). By using the B-spline regression model of the 
Bayesian network acquired by the estimation of the basal network, we first computed the ECv for the preproc-
essed biopsy dataset, despite the absence of some genes compared with the dataset used for the basal network 
estimation. To obtain DREs, we calculated �ECv between healthy (regarded as control) and COVID-19-positive 
samples according to Eq.  (2), where S = healthy ( |S| = 2 ) and T = COVID-19-positive ( |T| = 2 ) (see Meth-
ods). The �ECvs were distributed over a broad range, and 4,242 DREs were observed at a threshold of 1 for �
ECv (Fig. 5A). To extract more reliable DREs induced by COVID-19, we set a threshold of 2.3, corresponding 

Figure 3.   The SARS-CoV-2-perturbed network. The SARS-CoV-2-perturbed host cellular network in response 
to different viral loads in A549 cells (the SARS-CoV-2-perturbed network). The network comprises 130 nodes 
and 305 edges (including 155 basal edges). The colored solid edges represent the SARS-CoV-2-perturbed DREs; 
high MOI of 2 (magenta), low MOI of 0.2 (blue), and high MOI ∩ low MOI (purple). Dotted edges represent 
basal edges (gray). The nodes (green) represent the known drug target genes (Supplementary Table S2). The 
node size represents the extent of outdegree.
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approximately to log2 FC where FC=5, which resulted in 638 DREs. These DREs were mapped as networks and 
the largest connected component (167 DREs) was depicted with inclusion of the basal edges, generating the 
COVID-19-perturbed network, which comprised 127 nodes and 412 edges (Fig. 5B). This network is suppos-
edly a representation of the distinctive cellular system in patients with COVID-19. The pathway analysis of genes 
contained in this network showed that they were involved in the immune and inflammatory response (Fig. 5C), 
thereby supporting the consistency of our established network with biological observations in COVID-19.

To determine the signatures of the acquired DREs in the COVID-19-perturbed network, we measured the 
ECv similarity for a set of the 167 DREs across the other experimental samples. This result showed that the 
ECv profiles in COVID-19 were similar to the sample with HPIV3 rather than SARS-CoV-2 in the in vitro 
experiments (Supplementary Fig. S2A), thus suggesting that there is a physiological gap between in vitro and 
in vivo. We further explored the extent to which the 167 COVID-19-related DREs overlapped with the Venn 
diagram illustrated in Fig. 2B. We observed that a moderate number of DREs were shared by the cell models of 
SARS-CoV-2 perturbation (Fig. 5D), then these overlapped edges were mapped onto the COVID-19-perturbed 
network (Supplementary Fig. S2B). Unlike the network observations shown in Fig. 3, we found that both the 
ISG-related webs (module 1) and subsequent cytokine signaling (module 3) involved in inflammatory cascades 
were concurrently present in the COVID-19-perturbed network, indicating that these two modules continued 
to be mutually activated in COVID-19.

To uncover the differences in the local regulatory system, we next examined the profiles of the COVID-
19-perturbed network at an individual level using the RC method (Fig. 1). As the two COVID-19 samples 
were originally derived from a single patient who tested positive for COVID-19, we calculated RCs for three 
individuals (healthy 1, healthy 2, and COVID-19 patient). The depiction of the RC as the edge sizes eventually 
led to the establishment of the COVID-19 patient-specific network, which was likely to show how the cellular 
system changed in the patients with COVID-19 compared with the healthy controls (Fig. 6A). The panel of three 
individual networks dramatically exhibited a great magnitude of differences, showing that the cellular regula-
tory systems were quite distinctive among individuals (Supplementary Animation 2). As our approach captures 
differences in the system between COVID-19 and healthy individuals as a network, genes that are not normally 

Figure 4.   Sample-specific individual networks around the GAS5-centralized module. The GAS5-centralized 
module (module 3) in the SARS-CoV-2-perturbed network (presented in Fig. 3) is displayed for four 
representative samples from each group (mock for SARS-CoV-2-infection (low MOI: 0.2), SARS-CoV-2-
infected (low MOI: 0.2), mock for SARS-CoV-2-infection (high MOI: 2), and SARS-CoV-2-infected (high MOI: 
2)). RCs are represented as edge sizes to show individual differences. The node size represents the extent of 
outdegree.
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considered to be up/down-regulated in healthy people will also be included in the network. In comparison with 
the SARS-CoV-2-perturbed network established by the well-organized in vitro experiments using cell lines 
(Supplementary Animation 1), this broad range of RC fluctuation for each in vitro sample likely reflects further 
differences among individuals. The representative regions where local regulatory systems are different among 
individuals are illustrated in Fig. 6B. In the zoom 1 region, PELI1 is a parent gene for both TNF and RGS16; 
these two signals were dominant in the healthy individuals, but not in the patient with COVID-19. In contrast, 
the zoom 2 and 3 regions showed that local signals were clearly different, not only between the healthy patients 
and the patient with COVID-19, but also even between two healthy individuals.

Discussion
Here, we have presented the host cellular gene networks perturbed by SARS-CoV-2 both in vitro and in vivo by 
using our proposed framework for gene network analysis. As the networks we established to be associated with 
SARS-CoV-2 were generated through RNA-seq data, these networks explained how genes were systematically 
regulated at the transcriptome level. Although our approach depends on the initial network estimation with an 
experimental dataset and may therefore risk the inclusion of false relationships or the exclusion of true relation-
ships, we have succeeded in capturing the biologically explainable immune response systems in human cells 
induced by SARS-CoV-2 at the level of signaling networks.

Sensing of viruses causes an immune defense system in host cells, which induces acute IFN signaling activa-
tion followed by the expression of IFNs. These IFNs amplify the JAK/STAT signaling to promote the expression 
of various ISGs and accelerate subsequent cytokine signaling26. As illustrated in Fig. 3, the mutually interacting 

Figure 5.   The COVID-19-perturbed network analysis. (A) The histograms of �ECv for the biopsy dataset. The 
X-axis corresponds to the threshold for the �ECv. The Y-axis stands for the number of edges with log scale. (B) 
The COVID-19-perturbed network is shown. The network is composed of 127 nodes and 412 edges (including 
245 basal edges). The colored solid edges represent DREs perturbed by COVID-19 (yellow). The dotted edges 
represent the basal edges (gray). The nodes (green) represent the known drug target genes (Supplementary 
Table S2). The node size represents the extent of outdegree. (C) The top 10 terms of canonical pathway analysis 
for the genes in the COVID-19-perturbed network. (D) The Venn diagram shows the numbers of the �ECv-
extracted DREs ( �ECv threshold 2.3) induced by COVID-19 perturbation for the biopsy dataset (yellow) 
overlapped with the two DREs through the Venn diagram analysis in Fig. 2B.
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Figure 6.   Establishment of the COVID-19 patient-specific individual network. (A) The COVID-19 patient-
specific network with RCs represented by edge sizes. The network comprises 127 nodes and 412 edges 
(including 245 basal edges). The colored solid edges represent DREs; SARS-CoV-2 (high MOI: 2) ∩ COVID-19-
perturbed (magenta), SARS-CoV-2 (low MOI: 0.2) ∩ COVID-19-perturbed (blue), SARS-CoV-2 (high MOI: 
2) ∩ SARS-CoV-2 (low MOI: 0.2) ∩ COVID-19-perturbed (purple), COVID-19-perturbed exclusive edges 
(yellow). The dotted edges represent the basal edges (gray). The nodes (green) represents the known drug target 
genes (Supplementary Table S2). The node size stands for the extent of outdegree. (B) Zoomed regions indicated 
in Fig. 6A for three individuals (healthy 1, healthy 2, and the patient with COVID-19). RCs are represented as 
edge sizes to show individual differences.
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module of ISGs (module 1) followed by the IFN and JAK/STAT signaling was shown to be an early response to 
SARS-CoV-2 infection. During the process of cells exposed to high SARS-CoV-2 viral loads, the signaling appears 
to move to the next stage, represented by inflammatory signaling, including the involvement of various cytokines 
(Fig. 3). The recently reported drug, dexamethasone, could be effective for patients with severe COVID-19 via 
suppression of these orchestrated inflammatory signaling cascades28. In this network (Fig. 3), IL6 was located as 
a hub gene to regulate downstream cascades, including chemokines and colony-stimulating factors, which have 
been reported to be increased in patients with COVID-1921. The web of chemokines, such as CXCL1, CXCL2, 
and CXCL3, may represent how the SARS-CoV-2-infected cells present a signal to induce leukocyte chemotaxis 
and infiltration. The localization of ICAM1 in the vicinity of IL6 and chemokines is supportive of this, as ICAM1 
is known to be a scaffold for the accumulation of leukocytes at inflammatory sites and its expression is regulated 
by cytokines, including IL629,30. This tendency was also observed in the network comparison analyses across the 
four respiratory viruses, including SARS-CoV-2 (Supplementary Fig. S1C). These data showed that IL6 was not 
exclusive to SARS-CoV-2, but a universal factor in response to respiratory viral infection, with the exception of 
the influenza A virus. Given that several studies have reported that tocilizumab, an inhibitor of the IL6 receptor, 
is a potential drug that can suppress the cytokine storm observed in many critical patients with COVID-1931,32, 
the accumulated evidence strongly suggests that IL6 is a central regulator of the inflammatory cascade, even 
from a network perspective. Additionally, our network showed that CSF2 was regulated by various factors, 
including IL6, which strengthened previous reports suggesting that CSF2 might be a promising therapeutic 
target in combination with IL633,34. Moreover, other immune defense signaling pathways such as complement 
and macrophage were identified (Fig. 2C). In contrast, coagulation cascade reported abnormalities in patients 
with COVID-1935 was not identified, probably because this aberration of coagulation may have occurred at the 
physiological system level rather than at the cellular level. Our method only captures the system at the cellular 
level, and it is not yet possible to see the response of the entire biological system (e.g. between organs). This 
would be a limitation of our current approach.

Several recent studies have shown that ACE2 plays a key role in the process of SARS-CoV-2 infection. SARS-
CoV-2 enters into host cells via ACE236, and ACE2 was found to be an ISG in human airway epithelial cells37. 
Considering that the SARS-CoV-2-perturbed network includes several ISGs (Fig. 3), it can be reasoned that some 
clues regarding ACE2 may be present in this network. In this context, we found that ACE2 was closely located to 
this network and was downstream of TNFRSF9, ATF3, and ARRDC3 via ACHE (Supplementary Fig. S3); these 
are potential candidates for further investigation of the relationship between ACE2 and ISGs. Among them, 
ATF3 would be the most promising as it was found to be a direct transcriptional target for ACE238. Thus, our 
networks provide promising information to elucidate SARS-CoV-2 profiles from a broad biological perspective.

Our second noteworthy outcome in this study was that we succeeded in the characterization of sample-
specific individual networks by introducing the new edge-quantitative technique of RC. In particular, although 
it is impossible to estimate a network with a small number of samples, such as the four biopsy samples used in 
our case, the basal network model that was already obtained through the analysis of the in vitro dataset with 
both RC and ECv methods led to establishment of the COVID-19 patient-specific individual network. This 
process represents the method of extrapolation between in vitro and in vivo experiments. Each sample exhibits a 
unique regulatory profile, especially in actual individuals (such as those obtained from biopsy) rather than well-
controlled in vitro samples (Supplementary Animation 1 and 2). These results probably reflect a more realistic 
clinical situation and increase the importance of the most effective utilization of a biopsy dataset. In the current 
outbreak of COVID-19, we need to look into both biological and clinical aspects to explore COVID-19 therapy. 
The individual networks regarding COVID-19 show the extent to which individuals possess their own network, 
which ultimately links to the necessity of a personalized treatment. Therefore, our efforts are a potential contribu-
tion to the emerging field of personalized medicine. The biopsy dataset that we used was not sufficient to allow 
interpretation of the comprehensive information through individual networks in patients with COVID-19, as it 
contained fewer COVID-19 samples. In addition, since the lung samples were obtained postmortem patients with 
COVID-19, we could not determine at what time point in disease progression the identified regulatory system 
is in this study (Fig. 6). More clinical samples with time series and disease severity information from patients 
with COVID-19 can lead to the determination of key regulatory systems at a clinical level. As data regarding 
SARS-CoV-2 has been currently accumulated by the efforts of researchers, we hope that our panel of network 
analyses will be of help to the SARS-CoV-2 research field and to establishment further treatments for COVID-19.

Methods
Global gene network estimation and core network extraction.  In general, methods for gene net-
work analysis are intended for the extraction of gene-to-gene regulatory relationships that universally under-
lie given transcriptome datasets. Unlike commonly existing gene networks, we recently developed a method 
to extract sample-specific gene networks. Our method first estimates a global gene network, called the basal 
network, which includes all the genes in a dataset using a Bayesian network with B-spline nonparametric 
regression24,39. Bayesian network estimation is capable of capturing global cause-and-effect relationships among 
gene expression, rather than extracting locally co-regulated genes, such as co-expression correlation networks. 
This is realized by finding the conditional independencies among the variables. In gene network analysis using 
a Bayesian network, gene expression is regarded as an observed sample from the random variables that corre-
spond to genes or transcriptomes in a cell.

Let X1, . . . ,Xp be p variables of genes. In a Bayesian network, we consider the joint density of p variables and 
assume that it is decomposed as the product of local conditional densities, such that
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where j1, . . . , jqj are indices of qj dependent variables of the j-th variable. This decomposition can be represented 
as a directed acyclic graph (network), and variables Xj1 , . . . ,Xjqj

 are connected as parents or inputs of the j-th 
variable in the network.

The B-spline nonparametric regression version of the Bayesian network models gene-to-gene expression 
relationships as mathematical equations using B-spline curves, such that

where xj represents the expression value of the j-th gene, εj is the error term normally distributed with mean 
0 and variance σj , and m(j)

k (x) =
∑M

m=1 γjkmbjkm(x) is a regression function using M B-spline basis functions 
bjkm(·) , and their coefficients γjkm.

The structure search of the Bayesian network corresponds to finding the decomposition of the joint density. 
This is implemented by maximizing the posterior probability such that

where X is an n-by-p input matrix whose element xij corresponds to an expression value of the i-th sample for 
the j-th gene, G represents the network structure, π(G) is the prior probability of G, θG is the parameter vector 
of the local conditional densities, π(θG|�) is the prior distribution of θG , and � is the hyperparameter vector. The 
difficulty in gene network estimation by the Bayesian network is the step involving structure learning for large 
networks, as this is known to be an NP-hard problem, in other words, an exponential increase in search space 
due to the number of variables. We used the neighbor node sampling and repeat algorithm that realizes the 
estimation of the large Bayesian network structure24. It repeats the subnetwork estimation many times in parallel 
for the sampled variable sets by random walking, and thus it can estimate a large network within a realistic time.

After the basal network estimation, we then quantified every single edge with respect to a certain sample in 
terms of the system-level usage of the edge with the estimated mathematical model. Tanaka et al.14 defined an 
edge contribution value (ECv) of edge jk → j as ECv(u)(jk → j) = m

(j)
k (x

(u)
jk

) where x(u)jk
 represents the expression 

value of the jk-th gene in a certain sample denoted by u, and m(j)
k (·) is a regression function defined in Eq. (1). 

Note that sample u did not necessarily have to be a single sample for use in the network estimation. They proved 
that ECv could be used for the quantification of edge jk → j with respect to a given sample. To extract sample-
specific networks, they considered the differences of ECvs between two different conditions of samples, similar to 
extracting differentially expressed genes by comparing control and perturbed expressions. They defined �ECv as

where S and T are sets of samples observed in the particular conditions, respectively, in which |S| ≥ 1 and |T| ≥ 1 . 
Note that in the case of |S| = |T| = 1 , this allows consideration of the differences between just two samples, for 
example, control and perturbed samples. In general, we assume multiple replicated samples or a set of individual 
samples for both S and T. By extracting edges and their connected nodes with �ECvs greater or equal to a cer-
tain threshold, we can define the sample- or condition-specific core network from the basal network. In this 
study, S and T were sets of infected and control (mock) replicated samples, respectively. As the target dataset 
includes control samples for a particular series of experiments, we can extract certain core networks from them 
by calculating �ECv for the series of experiments using their corresponding control samples. For example, we 
extracted a SARS-CoV-2-perturbed core network by calculating �ECvs for the SARS-CoV-2-infected and their 
corresponding mock-triplicate samples. As performed in the previous study14, we generally employ �ECv ≥ 1.0 
for the threshold and carry out statistical t-tests to extract a core network. This threshold approximately corre-
sponds to 2-fold changes in differentially expressed genes for the extracted genes. Thus, we considered that the 
extracted networks, including edges and nodes, were significantly activated by the infection in cellular regulatory 
systems. In this study, we did not carry out statistical tests due to the small number of samples.

Proposed relative contribution of edges for characterization of individual networks.  This ECv 
development allowed for a new solution for gene network analyses. In the previous study14, we succeeded in 
characterizing network profiles by calculating ECvs for edges in a �ECv-extracted core network with respect to 
many samples from patients with cancer. Conventional clustering onto these calculated ECvs led to the iden-
tification of prognosis-related subgroups. Thus, we demonstrated that the differences and similarities in the 
edge profiles of the network could be captured as patterns of ECvs. Despite the high availability of ECvs, it is 
impossible to directly compare ECvs between individual samples because ECvs have different sizes depending 
on the estimated pairwise edge and the sample. The normalization of ECvs across samples is inappropriate for 
our purpose due to the mutual dependency of the individual network on each sample. Thus, it is not possible to 
highlight the differences in regulatory systems at an individual level.

For these reasons, ECvs are not appropriate for the analysis of individual networks. To overcome these draw-
backs, we have proposed a novel method, relative contribution (RC), to quantify edges with respect to individual 

f (X1, . . . ,Xp; θG) =

p
∏

j=1

f (Xj|Xj1 , . . . ,Xjqj
; θj),

(1)xj = m
(j)
1 (xj1)+ · · · +m

(j)
qj (xjqj )+ εj ,

p(G|X) ∝ π(G)

∫ n
∏

i=1

f (xi1, . . . , xip; θG)π(θG|�)dθG ,

(2)�ECv(S,T)(jk → j) =

∣

∣

∣

∣

∣

1

|S|

∑

s∈S

ECv(s)(jk → j)−
1

|T|

∑

t∈T

ECv(t)(jk → j)

∣

∣

∣

∣

∣
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samples using the estimated gene network model. We hypothesized that the differences in individual samples 
in terms of the cellular system could be attributed to the differences in the ratios of the contributions of edges 
connecting to a certain node in the network. Edges with different samples need to be described as differently 
weighted edges according to the ratios of effects between parents that regulate or are connected to a certain gene. 
Additionally, the quantification of a network with a single sample needs to be independent from other samples 
and their distributions. To achieve this, we define the relative contribution of an edge with respect to a sample as

where u represents a certain sample ( 0 < RC ≤ 1 ). That is, an RC of the edge is the relative strength of the 
contribution of the edge to the maximum strength among the parents connecting to the same child node. The 
reason why an RC is not divided by the sum of the ECvs is that the range of RCs does not shrink depending on 
the number of parents of the child node. One drawback of RCs is that if the ratio of ECvs of the parents is not 
changed, the changes in parent values do not affect the RCs. However, the RCs of their downstream edges will be 
affected by such changes. Therefore, this drawback is not problematic in terms of the specification of differences 
in individual networks. Note that, similar to ECvs, sample u does not necessarily need to be a single sample used 
for the network estimation. As illustrated in the Results section, we have shown that RCs can be used to analyze 
individual networks, even if we have a single sample, or only a few samples, of gene expression data, as long as 
a basal network can be estimated from other datasets. RC, therefore, offers a significant enhancement to our 
framework for gene network analysis. Our data have demonstrated that the framework, through an integration 
of the three key pieces—Bayesian network estimation, ECv, and RC—provides a powerful data-driven solution 
to seek biological phenomena through cellular systems ranging from a global level to an individual level. Our 
proposed framework is mathematically illustrated in Supplementary Fig. S4.

Dataset.  The transcriptome dataset GSE147507 was downloaded from the NCBI Gene Expression 
Omnibus7. The samples were infected with respiratory viruses, including SARS-CoV-2, and biological replicates 
were performed. We first selected samples exclusive for human RNA-seq with 78 samples. The detailed descrip-
tions of samples are listed in Supplementary Table S1, which was created according to the source paper7. Among 
the samples, four samples of the in vivo experiment (biopsy) data were pre-eliminated. The log2-transformed 
dataset was filtered to remove genes with a mean percentile lower than 30%, resulting in 74 samples and 15,258 
genes. This preprocessed dataset of the 74 × 15,258 matrix was used as input for the basal network estimation. 
The biopsy dataset eliminated above, prior to global network estimation, consisted of four samples (two healthy 
samples and two COVID-19-positive samples). The RPM (reads per million)-normalized biopsy dataset was log2
-transformed, and genes with at least one zero value were removed to obtain more reliable data. The two tech-
nical replicate samples for COVID-19 were averaged for the RC calculation. Following this preprocessing, the 
input dataset for the RC calculation finally comprised a 3 × 4,516 matrix. The RNA-seq samples used for �ECv 
calculations in this study were: SARS-CoV-2 in A549 cells (MOI of 0.2/2 for 24 hr, n=3) and the corresponding 
mock (n=3); SARS-CoV-2 in normal human bronchial epithelial (NHBE) cells (MOI of 2 for 24 hr, n=3) and the 
corresponding mock (n=3); SARS-CoV-2 in Calu-3 cells (MOI of 2 for 24 hr, n=3) and the corresponding mock 
(n=3); human respiratory syncytial virus (RSV) in A549 cells (MOI of 2 for 24 hr, n=3) and the corresponding 
mock (n=3); human parainfluenza virus 3 (HPIV3) in A549 cells (MOI of 2 for 24 hr, n=3) and the correspond-
ing mock (n=3); influenza A virus (IAV) in A549 cells (MOI of 5 for 9 hr, n=2) and the corresponding mock 
(n=2); COVID-19 (n=2) and healthy (n=2).

Pathway analysis.  The canonical pathway analysis was performed through the use of Ingenuity Pathway 
Analysis software40.

Network analysis and visualization.  The network visualization and the network analysis were per-
formed using Cytoscape (version 3.7.2 and 3.8.0)41. The genes for known drug targets were acquired from IPA 
knowledge database40 and the representative drugs were listed in Supplementary Table S2.

Computational environments.  All the computations for the network estimation and the ECv calcula-
tions in this study were performed by the SHIROKANE supercomputer system (Shirokane5) at Human Genome 
Center, the Institute of Medical Science, the University of Tokyo, where the computation nodes were equipped 
with dual Intel Xeon Gold 6154 3.0GHz CPUs and 192GB memory per node.

Data availability
All the network files generated in this study are provided in the supplementary data. The networks are available at 
NDEx (see Supplementary Information). The program for network estimation is freely available for SHIROKANE 
users. The ECv/RC calculation program is available for non-commercial academic users from the corresponding 
author upon request.
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