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Glioblastoma is the most common primary intracranial tumor and is also one of

the most malignant central nervous system tumors. Its characteristics, such as

high malignancy, abundant tumor vasculature, drug resistance, and

recurrence-prone nature, cause great suffering to glioma patients.

Furthermore, glioma stem cells are the primordial cells of the glioma and

play a central role in the development of glioma. Integrins—heterodimers

composed of noncovalently bound a and ß subunits—are highly expressed

in glioma stemcells and play an essential role in the self-renewal, differentiation,

high drug resistance, and chemo-radiotherapy resistance of glioma stem cells

through cell adhesion and signaling. However, there are various types of

integrins, and their mechanisms of function on glioma stem cells are

complex. Therefore, this article reviews the feasibility of treating gliomas by

targeting integrins on glioma stem cells.
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Introduction

Glioblastoma

Glioblastoma (GBM) is the most common primary malignant brain tumor,

representing approximately 57% of all gliomas and 48% of all primary malignant

central nervous system (CNS) tumors (Tan et al., 2020). Glioblastoma multiforme is

the most common and aggressive primary malignant CNS tumor in adults (Huang et al.,

2020). Aggressive tumor growth correlates with a short median overall survival (OS) that

oscillates between 14 and 17 months (Litak et al., 2019). The current treatment modalities

for GBM are mainly maximum safe tumor resection, postoperative radiotherapy, and

chemotherapy (Li et al., 2020; Weller and Le Rhun, 2020). Unfortunately, despite more

than two centuries of technological advances in the treatment of glioma, the death rate

associated with GBM patients remains exceptionally high, especially due to high GBM

recurrence and drug resistance.
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Glioma stem cells (GSCs)

In recent years, cancer stem cells (CSCs) have come to the

forefront and have become a target for the treatment of

malignant tumors. CSCs are a subpopulation of tumor cells

with stem cell properties characterized by their self-renewal

ability and tumor proliferation potential (Biserova et al., 2021)

and their possession of embryonic or tissue stem cell genes (Chen

et al., 2012; Shibue and Weinberg, 2017).

Many studies have shown that a small proportion of cells in

gliomas have been identified to be having functional and

phenotypic similarities to neural stem cells; these are known

as GSCs (Galli et al., 2004; Singh et al., 2004; Tirosh et al., 2016)

or glioma-initiating cells (GICs) (Tabatabai and Weller, 2011;

Lathia et al., 2015; Yi et al., 2019; Biserova et al., 2021). Neural

cancer stem cells and central nervous system tumor stem cells,

including GSCs, can maintain their unique cellular stemness and

various malignancies and are also associated with the tumor

microenvironment or niche (Lathia et al., 2011). The

microenvironment includes the vasculature, various infiltrating

and resident immune cells, other glial cell types, and glioma cells

in addition to GSCs. These microenvironmental niches also

exhibit various forms of signaling, such as direct contact or

paracrine signaling. These signals ensure that tumor cell and

GSC growth is not monitored and that these cells are not

destroyed by the immune system (Hambardzumyan and

Bergers, 2015). In addition to their functions, such as self-

renewal, ability to differentiate into multiple cell lineages,

proliferation potential, and tumor angiogenesis, GSCs exhibit

strong therapeutic resistance (Brooks and Parrinello, 2017; Ruiz-

Garcia et al., 2020; Suva and Tirosh, 2020; Biserova et al., 2021)

and can resist conventional chemotherapy and radiation therapy

through DNA repair (Bao et al., 2006a; Huang et al., 2010).

In summary, glioma stem cells are likely to rely on these abilities

to survive after treatment and eventually lead to tumor recurrence.

Biserova et al. (2021) noted an association between glioma stem cells

and the development of glioma recurrence. In addition, GSCs are at

the apex of an entropic hierarchy (Prager et al., 2020) and are also

considered to be the basis of gliomagenesis (Nakada et al., 2013).

Some researchers have proposed using the cell expression molecule

CD133 as a screening tool. This is because the glioma subpopulation

of CD133 shows a greater ability to self-renew, proliferate, and form

tumors in vitro while retaining the homogenous histological

characteristics of the original donor (Singh et al., 2004).

Interestingly, however, some CD133- glioma cells have been

reported to have a malignant phenotype with stronger tumor-

promoting potential (Beier et al., 2007). In addition, GSCs

showed CD15, CD36, CD44, and CD49f/integrin α6 markers,

which were also expressed on normal neural stem cells (NSCs)

(Ma et al., 2018).

Integrins

Integrins are protein complexes that link the

extracellular matrix (ECM) to the actin-based cytoskeleton

and were first proposed by Tamkun et al. (1986) in

1986. Integrins are present in many organisms and are

critical molecules involved in cell‒cell and

cell–microenvironment communication (Janiszewska et al.,

2020). Integrins are heterodimerized in the endoplasmic

reticulum (Mchugh et al., 2010; Dransart et al., 2022). They

can constitute the principal adhesion receptors for the

extracellular matrix (ECM) (De Franceschi et al., 2015).

The binding of unique a and ß subunits determines the

functional specificity of the receptor (Takada et al., 2007).

Integrins can be classified into four categories: LDV-binding

integrins, which bind to an acidic amino acid motif (referred to

as ‘LDV’); A-domain β1 integrins; non αA-domain-containing

laminin-binding integrins; and RGD (Arg-Gly-Asp)-binding

integrins (Humphries et al., 2006; Anderson et al., 2014b).

Integrins possess different conformational states, a feature

that determines the affinity of integrins for ligands. A

bent (closed) integrin represents the inactive form and has

a low affinity for ECM ligands. In contrast, a fully extended

(open) integrin is active and can trigger downstream

signaling and cellular responses upon ligand binding

(Markovic-Housley and Garavito, 1986). Integrins

represent a complex and highly dynamic mechanism

responsible for regulating various aspects of cell fate,

such as survival, migration, polarity, and differentiation

(Shen et al., 2012; Anderson et al., 2014a). Thus, integrin-

mediated adhesion and signaling are precursors to

the pathogenesis of many human diseases, including

bleeding disorders, cardiovascular disease, and cancer

(Winograd-Katz et al., 2014).

Integrins are expressed at high levels in GSCs and have a

“bridging” role. Most integrins transmit intracellular/

extracellular cell signaling/communication and are involved

in maintaining the stemness characteristics and functions

of GSCs. This includes the self-renewal and differentiation

of GSCs, invasion, migration, and the tumor

microenvironment of gliomas (Bello et al., 2001;

Nakada et al., 2013; Herrmann et al., 2020; Tao et al.,

2020). Currently, drugs that inhibit integrins, such as

cilengitide, have been found to treat gliomas by inhibiting

the activity of GSCs or increasing the effect of

autophagy (Lomonaco et al., 2011; Yu et al., 2018). This

review will provide a more systematic account of

the effects of integrins on GSCs. We hope it provides new

ideas and directions for glioma-targeted therapy (Figure 1;

Table 1).
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Integrins promote glioma
progression by acting on GSCs

Integrins are involved in the self-renewal
and differentiation of GSCs

It is well known that GSCs are characterized by their

tumorigenic entity and self-renewal, as well as

differentiation ability (Nakada et al., 2013). Yu et al. (2018)

demonstrated that integrins binding to fibronectin (FN) can

be increased in a concentration-dependent manner induced

by matrix metallopeptidase (MMP)-2 and MMP-9, which in

turn activate the FAK/paxillin/AKT signaling pathway,

leading to decreased levels of GSC markers such as

SOX2 and Nestin, along with increased levels of glial

fibrillary acidic protein (GFAP) and ß-tubulin. SOX2 plays

an important role in the maintenance and self-renewal

capacity of GSCs (Chen et al., 2021). In addition, GFAP

FIGURE 1
Roles of integrins in GSCs including self-renewal, differentiation, immune regulation, proliferation, migration, invasion, and angiogenesis.

TABLE 1 Pathophysiological role of integrins in GSCs in glioma.

Integrin Category Self-renewal
and
differentiation

Angiogenesis Proliferation,
migration,
and invasion

Reference

α3 Laminin-binding
integrins

NO NO YES (D’abaco and Kaye, 2007; Nakada et al., 2013; Wu et al., 2021)

α6 Laminin-binding
integrins

YES NO YES (Velpula et al., 2012; Hale et al., 2014; Ying et al., 2014; Ma et al.,
2016; Tilghman et al., 2016; Herrmann et al., 2020; Tao et al.,
2020)

α7 Laminin-binding
integrins

NO NO YES Haas et al. (2017)

β1 A-domain
β1 integrins

YES NO YES (Edwards et al., 2011; Manini et al., 2019; Saleh et al., 2019; Tao
et al., 2020; Seguin et al., 2021)

β4 RGD-binding
integrins

YES NO NO Ma et al. (2019)

β8 RGD-binding
integrins

YES NO NO Guerrero et al. (2017)

αvβ3 RGD-binding
integrins

NO YES YES (Friedlander et al., 1995; Bello et al., 2001; Naik et al., 2003; Bao
et al., 2006b; Cheresh and Stupack, 2008; Schnell et al., 2008;
Peddibhotla et al., 2013; Roth et al., 2013; Ruiz-Ontanon et al.,
2013; Mikheev et al., 2015; Burgett et al., 2016; Wick et al., 2016)

α5β1 A-domain
β1 integrins

NO NO YES Siney et al. (2017)

α6β1 A-domain
β1 integrins

NO NO YES Tao et al. (2020)
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and ß-tubulin are differentiation-related markers (Perez et al.,

1988; Wang et al., 2020b).

Among integrins, α6 is a key molecule for GSC self-renewal

and differentiation and is also a GSC marker and invasion

promoter. Integrin α6 is widely expressed in four malignant

cell states in GBM (neural progenitor cell (NPC)-like,

oligodendrocyte progenitor cell (OPC)-like, astrocyte (AC)-

like, and mesenchymal stromal cell (MES)-like states). In

addition, glioma cells with higher integrin α6 expression are

able to form tumors in a shorter period of time (Lathia et al.,

2010; Tao et al., 2020). A study by Hale et al. (2014) proposed that

integrin α6 on GSCs is coexpressed with the malignancy marker

CD36, with the former decreasing with the latter and progressive

loss of its self-renewal and tumorigenic capacity (Hale et al.,

2014). Similarly, integrin α6 inhibition by Kruppel-like factor 9

(KLF9) reduced stemness and laminin-dependent GBM

neurosphere cell adhesion and cell migration in GBM. This

implies that the inhibition of integrin α6 may have antitumor

effects (Ying et al., 2014; Ma et al., 2019). Interestingly, the

upregulation of laminin-binding integrin α6 in the 3D

environment not only increases the expression of GSC

markers but also promotes the activation of stemness

signaling pathways (Ma et al., 2016). Furthermore, α6β1,
formed by the binding of two subunits of integrin α6 and β1,
acts as a signaling receptor for WISP1 to participate in the

autocrine loop of GSC proliferation and self-renewal (Tao

et al., 2020).

Integrins β4 and β8 also act in the self-renewal action of

GSCs. Ma et al. found that integrin β4 expression is increased

in GSCs and glioma tissues by mRNA sequencing analysis. In

addition, integrin β4 also correlates with glioma grading, as

determined by in vitro spheroid assays. When integrin

β4 was knocked down, the number and sphere-forming rate

of CD133+ GSCs were significantly reduced (Ma et al., 2019).

Similarly, when GSCs contain low levels of integrin β8,
not only is the sphericity rate low but also markers of

GSCs, such as CD133 and SOX2, are reduced (Guerrero

et al., 2017).

Notably, Barnes et al. also found that the integrin β1-linked
glycocalyx protein signaling pathway induces a mesenchymal

stem cell phenotype in GBM. Inhibiting integrin-ECM signaling

or glycoprotein bulkiness ultimately acts as a therapeutic

inhibitor of GBM (Barnes et al., 2018). All of the

aforementioned findings suggest that integrins in glioma stem

cells directly or indirectly contribute to the self-renewal and

differentiation capacity of GSCs.

Translation of integrins affects GSC
proliferation, migration, and invasion

In addition to accelerating the self-renewal and

differentiation process of GSCs, integrins are also involved

in the development of gliomas, which is reflected

by promoting the proliferation, migration, and invasion

of GSCs.

In these studies, the upregulation of integrin α3 expression
was associated with GSC invasion. The researchers found that

integrin α3 was not only localized in GBM but was also found

around invading cells and blood vessels. This is due to integrin

α3 mediating the ERK1/2 signaling pathway, which enhances

GSC invasion (Nakada et al., 2013). Interestingly, Wu et al.

showed by survival analysis of GSCs that integrin α3 was

associated with a significantly longer survival time in GBM

patients. The data suggest that low levels of integrin

α3 expression are positively associated with prolonged

survival (Wu et al., 2021). In addition, integrin α7 can also

act on proliferation. Haas et al. suggested that the expression

of integrin α7 in normal human neural progenitor cells

(NHNPs) was significantly lower than that in GSCs.

Inhibition of integrin α7 affects the proliferation of GSCs.

This is because by silencing the gene for integrin α7, laminin-

induced activation of signaling proteins such as FAK, AKT,

and Src can be inhibited (Haas et al., 2017). Moreover, integrin

α6 plays an important role in tumor invasion, survival,

malignancy, and drug resistance. In 2012, Velpula et al.

(2012) showed that the interaction of integrin α6 and

N-calcineurin could modulate the invasive effects of GSCs

through the ERK signaling pathway. Herrmann et al. also

showed that in high-grade glioma cells, the integrin α6-FAK
signaling pathway increased the downstream signal transducer

and activator of transcription 3 (STAT3), transcription factor

13 (TET3), and 5-hydroxymethylcytosine (5 hm C) activities

and expressions. Upregulation of this pathway also leads to

hydroxy methylation of genes that are important for GSCs,

ultimately resulting in maintaining high survival and

proliferation rates of GSCs and promoting malignant

phenotypes and drug resistance in GSCs (Herrmann et al.,

2020). Inhibition of integrin α6 can affect ERK, FAK, and

other signaling pathways, thereby reducing the high drug

resistance and malignant phenotypic transformation of

GSCs (Tilghman et al., 2016).

In addition, integrin β1 and integrin β8 also play an

important role in the movement and growth of GSCs. Seguin

et al. found that integrin β1 co-localizes with galectin-3 (Gal-3) in
GSCs, and their experiment demonstrated that knocking down

integrin β1 significantly inhibits macropinocytosis effects. Gal-3/

RAB10 (a member of the Ras superfamily of small GTPases)/

integrin β1 promotes PI3K/Akt downstream signaling to

stimulate macropinocytosis and reveals that integrin

β1 provides favorable conditions for GSCs’ survival, invasion,

and tumorigenic ability (Seguin et al., 2021). Similarly, the 3D

nanofiber scaffold developed by Saleh et al. protects against

GSCs’ invasion by regulating integrin β1 and Gal-3 expression

(Saleh et al., 2019). In addition, Edwards suggested that

activation of the connective tissue growth factor (CTGF)-
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integrin β1-TrkA complex formed in GSCs could increase the

invasiveness of GBM (Edwards et al., 2011). Moreover, Manini

et al. showed in an in vitro model that integrin β1 on the surface

of GSCs binds directly to a ligand called premigratory protein-

SEMA7A. Integrin acts as an intermediate receptor to trigger

FAK signaling and phosphorylate it, thereby promoting

cytoskeletal reorganization and cell motility in GSCs (Manini

et al., 2019). Interestingly, data from Vehlow et al. (2017) showed

that dual inhibition of β1 integrin and JNK was effective in

enhancing GSC eradication when treated with concurrent

radiotherapy and chemotherapy. Malric et al. demonstrated

that integrin β8 could also be a marker of glioma grade, is

highly expressed in GSCs, and positively correlates with

SOX2. Silencing integrin β8 reduced the sphere-forming and

migratory abilities of GSCs and cell adhesion. Integrin β8 can

maintain GSC growth by reducing apoptosis so that integrin

β8 inhibition can induce a significant increase in caspase-

dependent GSC apoptosis and increase the efficacy of

radiotherapy (Malric et al., 2019).

Integrin αvβ3, as one of the widely studied integrins, has been
shown to be involved in the migration and proliferation of GSCs.

Ruiz-Ontanon et al. (2013) revealed that integrin αvβ3 and low

levels of cytoplasmic p27 and its downstream effector proteins

Rac and RhoA GTPases provide GSCs isolated from tumor

peripheral regions with more migratory capacity and

infiltration into adjacent tissues. Moreover, tumor-associated

macrophages (TAMs) and GSCs are located in the

perivascular region in large numbers (Ye et al., 2012; Pietras

et al., 2014). Interestingly, the interaction between GSCs and

TAMs was involved in the regulation of GSC proliferation. This

interaction is due to the binding of the periosteal protein

(POSTN) secreted by GSCs to integrin αvβ3 of TAMs (Zhou

et al., 2015). Integrin αvβ3 on TAMs acts as a receptor for

POSTN. Mikheev et al. also showed that the binding of integrin

αvβ3 to POSTN can cause adhesion and migration of GSCs and

can promote the growth of GSCs by activating the FAK signaling

pathway. The binding of integrin αvβ3 to POSTN can also inhibit

the cytotoxic effect of cilengitide (an inhibitor that can inhibit

integrin αvβ3) on GSCs (Mikheev et al., 2015). Similarly,

cilengitide can reverse the effect on FN that can modulate

GSCs in terms of cell adhesion, proliferation, and

differentiation, making GSCs more chemoresistant to

alkylating agents. Thus, they demonstrated the involvement of

integrin αvβ3 in the regulation of GSCs by the AKT pathway (Yu

et al., 2018). These results suggest that integrin αvβ3 can be

involved in the migration and proliferation of GSCs. In addition,

integrin α5β1 interacts with recombinant A disintegrin and

metalloprotease 10 (ADAM10) or recombinant A disintegrin

and metalloprotease 17 (ADAM17) and adheres to FN, exerting

an adhesive role in GSCs and promoting GSC migration through

this adhesion (Siney et al., 2017), while integrin α6β1 binds to

WISP1 secreted by GSCs and promotes GSC proliferation

through Akt-activated phosphorylation (Tao et al., 2020).

Integrins contribute to tumor
angiogenesis in GSCs

GBM is a highly malignant brain tumor with an extensive

and abnormal tumor vasculature, including multiple types of

blood vessels (Shao et al., 2015). A high angiogenic phenotype is a

prominent feature of GBM and is thought to contribute to the

aggressive growth and tumor recurrence of these tumors

(Ahluwalia and Gladson, 2010; Onishi et al., 2011; Shao et al.,

2015). Bao et al. (2006b) suggested that GSCs are more likely to

form in the tumor vasculature than non-tumor stem cell gliomas

under the same conditions. In addition, GSCs can also promote

tumor angiogenesis through VEGF and stromal-derived factor 1

(SDF-1) (Folkins et al., 2009). However, multiple integrins are

also involved in the angiogenesis of GBM.

Integrin αvβ3 is alleged to be involved in angiogenesis in

GSCs, and integrin αvβ3 and integrin αvβ5 are key regulatory

molecules of the tumor microenvironment that are highly

expressed not only in gliomas but also in glioma vessels (Bello

et al., 2001; Schnell et al., 2008; Roth et al., 2013). In turn, the

tumor microenvironment can elevate the expression of the

vascular endothelial growth factor and promote the formation

of blood vessels from endothelial precursors in GSCs (Bao et al.,

2006b). The direct intercellular contact that occurs through the

binding of αvβ3 on vascular endothelial cells to RGD peptides in

the extracellular structural domain of L1 cell adhesion molecules

(L1CAM) on GSCs in the presence of bFGF triggers the

activation of bone marrow tyrosine kinase on chromosome X

(BMX), FAK, and P130 Crk-associated substrate (p130CAS) on

bone marrow X chromosome, resulting in migration

(Peddibhotla et al., 2013; Burgett et al., 2016). Integrin

αvβ3 has been reported to bind to the basic fibroblast growth

factor (bFGF), thus promoting angiogenesis (Friedlander et al.,

1995; Naik et al., 2003; Cheresh and Stupack, 2008).

Combination therapies with integrins

Currently, targeted integrins have not achieved significant

efficacy in the treatment of gliomas at the clinical stage. However,

we still believe that targeted integrins are feasible for treating

gliomas by killing or reducing GSC proliferation, differentiation,

self-renewal, and drug resistance.

Virus targets integrins on GSCs for
therapeutic effect

Zika virus (ZIKV) could have a therapeutic effect on integrin

avβ5, which is highly expressed in GBM tissues and expressed at

low levels in other normal tissues (Bello et al., 2001; Zhao et al.,

2016), and can be used as a stemness marker for glioma (Wang

et al., 2020a). Interestingly, ZIKV, a mosquito-borne positive-
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stranded RNA virus of the family Flaviviridae (genus Flavivirus)

(Song et al., 2017), can preferentially target neural precursor cells

for infection (Zhu et al., 2020). Zhu et al. concluded that the

SOX2-integrin avβ5 axis can promote the killing of GSCs by

ZIKV. Silencing integrin avβ5 reduces the infection effect of

ZIKV (Zhu et al., 2020).

In addition, Berghauser Pont’s team pointed out that the

adenovirus Delta24-RGD can enter cells via integrin αvβ3/αvβ5.
However, glioblastoma has a different sensitivity to Delta24-

RGD. In contrast, novel histone deacetylase inhibitors

(HDACis), such as LBH589 (panobinostat) and SCRIPTAID,

affect integrin αvβ3/αvβ5 and share a common cell death

pathway with Delta24-RGD. Overall, Delta24-RGD can

enhance the antitumor capacity in GSCs (Balvers et al., 2014;

Berghauser Pont et al., 2015). In addition, Przystal et al. proposed

that the recombinant adeno-associated virus genome (rAAV)

binds to a phage to form an adeno-associated virus and phage

(AAVP). Then, integrin αvβ3 can bind to the double-cyclic

CDCRGDCFC (RGD4C) ligand and internalize RGD4C/

AAVP (Tsafa et al., 2020). Of course, the αvβ5 heterodimer

can also bind RGD4C but to a lower extent than αvβ3. After
RGD4C and integrin binding, they can be therapeutically

effective in vitro by targeting GSC gene delivery and

expression (Przystal et al., 2019).

Inhibitors of integrins—Synthetic peptides

Cilengitide, a “cyclic-RGD segmental peptide,” can inhibit

integrins αvβ3 and αvβ5 and prevent them from binding to ECM

proteins such as vitronectin (VN) and FN (Burke et al., 2002;

Albert et al., 2006). Therefore, cilengitide can inhibit the adhesion

of integrins to the ECM and ultimately inhibit glioma

proliferation, migration, and angiogenesis. Antitumor effects

against gliomas were demonstrated in relevant clinical studies

(Tabatabai et al., 2010). Interestingly, cilengitide is also involved

in GSC inhibition. Lomonaco et al. showed experimentally that

cilengitide could inhibit GSC self-renewal by inducing autophagy

and thus reducing tumor cell survival. They also indicated that

cilengitide might also sensitize GSCs to γ-radiation. This was

supported by the presence of green fluorescent protein (GFP)-

LC3 (a signature protein on autophagosomal membranes) spots

and increased expression of LC3II and increased autophagic

vacuole (AV) formation (Lomonaco et al., 2011). In addition,

as mentioned previously, integrins can interact with FN in the

ECM in terms of adhesion to GSCs. It has also been specified that

cilengitide can also inhibit the reaction of integrins in GSCs with

FN and inhibit the expression of p-ERK1/2 and cyclin D1 via the

FAK/paxillin/AKT signaling pathway. Thus, cilengitide can

inhibit the biological behavior of GSCs in terms of cell

adhesion, proliferation, and differentiation. The article also

indicates that cilengitide can reverse FN adhesion, leading to

chemoresistance to carmustine (Yu et al., 2018). Furthermore,

Flavahan et al. showed that Glut-3 (glucose transporter 3)

addiction is also a feature of GSCs. They hypothesized that

cilengitide could target this feature and achieve eradication of

the most aggressive and drug-resistant GSCs (Flavahan et al.,

2013). In addition, Dahmani et al. also reported that integrin αv
on GSCs binds to CD9 and CD103 on NK cells, resulting in NK-

cell dysfunction and ultimately inhibiting the killing of GSCs by

NK cells. However, cilengitide significantly enhanced the

antitumor activity of NK cells in vivo by inhibiting integrin

αV (Dahmani and Delisle, 2018).

In in vitro and in vivo animal models, small-molecule integrin

antagonists (SMIAs) were identified to modulate migration and

apoptotic processes in glioma cell lines (Russo et al., 2013).

However, Paolillo et al. pointed out that a small-molecule integrin-

rgd antagonist (SMIA 1a-RGD) could act on RGD-binding integrins,

which recognize the RGD sequence present in components of the

extracellular matrix. These integrins serve a crucial function in the

dissemination of GSCs and are overexpressed in GBM. In addition,

the viability of GSCs treated with 25 μm SMIA 1a-RGD for 48 h was

significantly reduced, accompanied by a decrease in FAK and AKT

expressions. Interestingly, Paolillo et al. speculated that this

phenomenon may be related to the inhibition of GSC migration

and cysteine-dependent loss-of-nest apoptosis by SMIA 1a-RGD

(Paolillo et al., 2018).

CAR-T cells with integrins

The integrin αvβ3 axis plays a key role in POSTN-mediatedTAM

recruitment (Zhou et al., 2015). Interestingly, a recent study by Cobb

et al. pointed out that this immunotherapy by CAR-T cells targeting

integrin αvβ3 and POSTN complexes can inhibit the effective

treatment of glioma cells. CAR-T cells targeting integrin αvβ3 are

highly efficient in vivo and can reduce glioma growth (Cobb et al.,

2022). Thus, the site where GSC-secreted POSTN binds to integrins

may be a potential target for the design of effective immunotherapies

to improve the survival of GBM patients (Shi et al., 2015; Zhou et al.,

2015). However, it could be stated that one caveat to treatments such

as CAR-T cells is that the reason that gliomas recur is the ability of

GSCs to invade normal surrounding brain tissue and reside behind

the blood–brain barrier and, thus, escape the immune system that

operates in most of the body (Kubo and Takakura, 2002). This would

make CAR-T therapy less effective or ineffective against GBM

recurrence.

Conclusion

Integrins are widely expressed in most GSCs as “bridge”

proteins. Integrin-mediated signaling pathways can lead to

adhesion and self-renewal, differentiation, motility, and

angiogenesis, which are characteristics of tumor stem cells. In

conclusion, most integrins maintain the survival and stemness
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characteristics of GSCs. Therefore, we can use various properties

of integrins to target therapies precisely. However, the variety of

integrins and their complex mechanisms manifest different roles

in different pathways. Most integrins are upregulated, leading to

continued GSCs’ growth, motility, and maintenance of the stem

phenotype. However, some integrins can promote the entry of

adenoviral complexes into GSCs and produce killing effects. How

can the targeting of gliomas be achieved by inhibiting integrins

and promoting integrins as drug ligands? We need to further

increase our understanding of the oncogenic mechanism of

integrins in gliomas to classify the effects of integrins and

apply the binding sites of these integrins to design targeted

drugs. However, some integrins have been targeted as

therapeutic targets for gliomas. In future work, further

understanding of the oncogenic mechanisms of integrins in

glioma needs to be developed. Second, the binding sites of

these integrins can also be applied to design targeted drugs,

thus increasing the degree of killing of GSCs and ultimately

improving the treatment of GBM. Therefore, we believe that

using integrin targeting of GSCs in the treatment of gliomas is a

method worthy of further research.
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