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We discuss specific challenges and solutions in infant MEG, which is one of the most

technically challenging areas of MEG studies. Our results can be generalized to a variety

of challenging scenarios for MEG data acquisition, including clinical settings. We cover a

wide range of steps in pre-processing, including movement compensation, suppression

of magnetic interference from sources inside and outside the magnetically shielded room,

suppression of specific physiological artifact components such as cardiac artifacts. In the

assessment of the outcome of the pre-processing algorithms, we focus on comparing

signal representation before and after pre-processing and discuss the importance of the

different components of the main processing steps. We discuss the importance of taking

the noise covariance structure into account in inverse modeling and present the proper

treatment of the noise covariance matrix to accurately reflect the processing that was

applied to the data. Using example cases, we investigate the level of source localization

error before and after processing. One of our main findings is that statistical metrics of

source reconstruction may erroneously indicate that the results are reliable even in cases

where the data are severely distorted by head movements. As a consequence, we stress

the importance of proper signal processing in infant MEG.

Keywords: magnetoencephalography (MEG), artifact, movement compensation, infant, signal space separation,

brain, signal space projection, signal processing

INTRODUCTION

Magnetoencephalography (MEG) is a functional imaging technique that offers excellent temporal
resolution and good spatial resolution. The sensors in the MEG helmet measure the weak
magnetic fields associated with electrical currents produced in the brain, e.g., during sensory,
motor or cognitive tasks. The spatial sources of the detected magnetic fields can be estimated
using a combination of anatomical information (digitized head shape, structural MRI) and known
properties of electromagnetic field propagation, a process known as “source localization.” MEG is
also passive, silent, and non-invasive, making it an excellent tool to study neural dynamics in the
developing brain. However, MEG is known to be extremely sensitive to artifacts and distortions
that can affect source localization. In adult populations, some artifacts can be minimized by, e.g.,
asking participants to stay still during the measurement, which reduces signal distortions caused by
head movements. Such approaches fail in measurement sessions with awake infant subjects, and,
therefore, efficient signal processing methods for movement compensation are essential for reliable
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infant MEG analysis. Additionally, other infant-specific
distortion mechanisms exist, and based on our experience, the
three most significant issues in infant MEG data that bias source
localization are: (1) frequent head movement; (2) decreased
signal-to-noise ratio (SNR) from increased scalp-to-sensor
distance; and (3) strong cardiac artifacts which resemble brain
signals in their spatial distribution. The SNR issue is mainly
related to the relative positioning of the MEG sensor array and
the infant head, and in this paper we focus on the methodology
concerning points (1) and (3) above.

A number of processing methods have been developed to
address the issues listed above, many of which exist in both adult
and infant data. For example, head movement, its effect on MEG
data and subsequent results after the application of movement
compensation has been shown in adults (1), school-aged children
(2), infants (3), as well as in clinical populations (4). In this
paper, we review some of the most relevant methodological
aspects of processing and analysis of infant MEG data. Special
emphasis is given to the infant-specific mechanisms of signal
distortion leading to source localization errors. Using real
movement information from a set of 6, 7, and 12-month-old
subjects, we show the effects of these distortions on magnetic
field topographies and source localization, using several different
processing approaches. Notably, we demonstrate that statistical
metrics, such as the goodness-of-fit of equivalent current dipole
models, do not necessarily capture source localization bias,
meaning that significant source localization errors may remain
undetected in data that have not been processed with movement
compensation algorithms.

SIGNAL DISTORTIONS AND THEIR
CORRECTION IN INFANT MEG

External Artifacts
External artifacts arise from generators of magnetic fields that
lie outside the body of the MEG subject. Common sources are
power lines, elevators, electronic devices, moving vehicles, and
mechanic vibration of the room housing the MEG instrument.
Signal space separation (SSS) (5, 6) and its temporal extension,
temporal signal space separation (tSSS) (7, 8) are commonly
used methods that compensate for external interference artifacts
in MEG data. The signal space separation method (SSS) is
based onMaxwell’s equations, where spatially discretized samples
of magnetic flux (MEG data) are decomposed into amplitude
coefficients of basis functions that span detectable magnetic fields
in space that is free of sources of magnetic fields, i.e., in the
region where MEG sensors are located. Since separate linearly
independent basis functions exist for signals generated inside and
outside the sensor volume, SSS provides a straightforward means
of removing field components attributable to external sources. In
cases where the artifact sources are not clearly distinguishable as
internal or external, the temporal extension of SSS (tSSS) can be
used to detect and remove components arising from these nearby
artifact sources. Other efficient and widely used interference
suppression methods include, e.g., signal space projection (SSP)

(9) and reference sensor-based methods (10). For a review of
MEG artifacts and their suppression, see Taulu et al. (11).

Physiological Artifacts
MEG is also sensitive to physiological artifacts which arise from
generators inside the body of the subject (e.g., heart, eyes, skeletal
muscles). Blink- and saccade-related artifacts tend to occur less
frequently in infants than adults, as the mean spontaneous blink
rate in infants is <2 blinks per minute (12). In contrast, infant
and child cardiac artifacts are often more than an order of
magnitude larger than the brain signals of interest (13) and
appear as volume currents within the skull due to the shorter
distance between the heart and the MEG sensors. Additionally,
infant heart rate is much faster than adults: from newborn to 6
months of age the mean heart rate is 125–145 beats per minute
(bpm), compared to a mean heart rate of 80 bpm in adolescents
and adults (14). Furthermore, the QRS peak is narrower for
infants than for adults, ranging from 50 to 80ms in duration,
contributing electromagnetic activity in the 12.5 to 20Hz range
(14). Adolescents, on the other hand, have a QRS complex lasting
between 90 and 110ms (15). Both the increased proximity and
frequency of magnetic contributions from the heart make it
essential to properly characterize and remove cardiac artifacts in
infant data.

Common methods used to remove both ocular and cardiac
artifacts in MEG data include independent component
analysis (ICA) (16–23) and SSP based on principal component
analysis (PCA).

Movement Related Artifacts
Headmovements are generally unavoidable in infant populations
(3), due to the larger space available for head movements (in
common adult sized helmets) and infants’ inability to remain
still on command. Such movements distort the magnetic field
distribution across theMEG sensors and can result in large errors
in source localization (1). Fortunately, movement compensation
algorithms have been developed to repair such artifacts (6,
24). Using head position indicator (HPI) coils that emit high-
frequency sinusoidal fields, the head position can be continuously
and accurately determined during an MEG recording. By forcing
the spatial “expansion origin” of the internal basis functions
derived from SSS to match the origin of the head coordinate
system (even as the head moves over time), one can decompose
the MEG signals into a representation that is specific to the
brain regardless of its location with respect to the sensors. Thus,
by continuously tracking the head position, the basis function
coefficients can be interpreted in a static head coordinate system,
as if the subject had remained still. Typically, the coefficients
are used to create a virtual sensor-level signal representation
corresponding to some target head position defined by the user.
This is the basis of head movement compensation, and it is
an essential task in the processing of infant data as will be
demonstrated in subsequent sections.

Effect of Noise Covariance
Sensor covariance matrices, which quantify the spatial
correlation structure between each pair of sensors, are central
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to many MEG source localization algorithms such as minimum
norm estimation, equivalent current dipole fits, mixed-norm
solvers, and beamformers, as well as many applications of
machine learning to MEG data. Covariance matrices are typically
estimated from the data, either from specific segments during a
subject recording (e.g., the baseline period before each trial as a
“noise covariance,” or during the trial for a “data covariance”)
or from data recorded just before or after the experimental
session (“empty-room” data). It is important that the true
underlying sensor covariance structure is accurately reflected in
the estimated noise covariances, otherwise a reduction in SNR
and errors in source localization can be introduced (25). In the
context of source localization of movement-compensated data
in particular, it is also important that full (rather than diagonal)
noise covariances are used (3).

Fortunately, direct empirical source covariance estimates can
be improved by using automated regularization techniques (26).
However, even when using such techniques, it is important to
properly account for the rank of the data. In source imaging for
example, the pseudo-inverse square root of the noise covariance
matrix must be computed to whiten the data. During this
computation, the rank of the data must be explicitly accounted
for in order to avoid amplifying data components that are
numerical noise. Common operations such as SSP, ICA, and SSS
can all reduce the rank of the data, and this must be explicitly
taken into account (26). In other words, the noise covariance
rank (and effective null space) directly affect the accuracy of
source localization (and by extension, other methods that rely on
covariance estimates).

In the context of movement compensation, the data rankmust
be taken into account carefully. The number of components used
to reconstruct data can vary as a function of time, as the different
head positions can yield different regularized internal bases in
MNE-Python’s implementation of Maxwell filtering. While a
sensor covariance computed from the movement-compensated
data can directly reflect this, empty-room data processed directly
using SSS by default will not—it will reflect the rank of non-
movement-compensated data (i.e., as if the head remained
stationary), which will likely differ. Therefore, it is important
that empty room data are processed the same way as movement
compensated data, i.e., by using the same initial device-to-head
transformation, expansion origin (in the head coordinate frame),
and time-varying head position parameters as the actual data,
despite the fact that there was no actual subject motion during
the empty room recording.

Reduced SNR of Infant MEG
Measurements
Magnetic fields from any source (including sources in the brain)
decay rapidly with distance. In traditional adult superconducting
quantum interference device (SQUID)-based MEG systems,
helmets are designed to place the sensors as close as possible
to the helmet’s inner surface, given the restrictions posed by
thermal insulation between the head and the liquid helium vessel
containing the SQUID sensors. When this larger helmet is used
with infants, the distance reduces the strength of the measured

magnetic field and negatively affects the SNR. At the same time,
infants’ smaller heads allow for a considerable range ofmovement
inside adult-sized helmets. In SQUID systems, the sensors are
not attached to the head, and therefore movement of the head
relative to the sensors significantly distorts the distribution of
the magnetic signals and thus biases source localization. While
this effect is not an artifact in the strict sense, the resulting
reduced strength of magnetic field components originating from
the brain makes the suppression of external and physiological
artifacts all the more critical. In the rest of this paper, we illustrate
some of the above-mentioned artifact suppression approaches
and demonstrate some common pitfalls when processing infant
MEG data.

METHODS

To quantify the effects of SSS, movement compensation, and
noise covariance on source localization of infant MEG data, we
simulated data based on real infant head movements. Simulated
datasets were analyzed using four different methods: (1) no
artifact suppression (Raw), (2) Maxwell filtering (SSS), and (3,
4) Maxwell filtering with movement compensation using two
different covariance estimation methods (see Data Processing,
below). In addition to simulated data (where ground truth source
locations are known), we show the effect of each approach on real
infant data to illustrate what the effects look like in practice.

Subjects and Data Acquisition
Data from nine 6-month, twenty-three 7-month, and fourteen
12-month-old typically developing subjects were drawn from two
previously conducted studies at the University of Washington
Institute for Learning and Brain Sciences. All infants were from
monolingual English-speaking environments, had no reported
hearing difficulties, no history of ear infections, and were
born full-term (between 39 and 42 weeks of gestational age).
Both studies were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. Informed consent was obtained
from parents or caregivers of all infants included in both studies.
MEG data were recorded in a magnetically shielded room with
a whole head adult-sized 306 channel Elekta Neuromag R© MEG
system (Elekta Oy, Helsinki, Finland). Prior to scanning, each
subject had a fabric cap fitted to the head, with five (83,143, 203,
263, 323Hz) HPI coils attached. Anatomical landmarks (left and
right preauricular points, nasion), HPI coils and additional points
along the head surface were digitized using Fastrak R© 3D digitizer
(Polhemus, Colchester, VT, USA) to construct an individual
Cartesian head-centric coordinate system. Infants were seated in
a custom-made chair under the MEG helmet while listening to
various auditory stimuli. For specific details about the paradigm,
see Kuhl et al. (27) and Mittag et al. (28).

Data Processing
MEG data were pre-processed using MNE-Python (29, 30).
All data were analyzed using four different methods: (1) no
artifact suppression (Raw), (2) Maxwell filtering only (tSSS for
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FIGURE 1 | Field topographies of bilateral evoked auditory responses (at 150ms) in a 6-month-old participant. (A) Raw data (no artifact suppression), (B) data

processed with tSSS, and (C) data processed with tSSS + movement compensation. Black arrows represent estimation of equivalent current flow at the MEG sensor

locations.

experimental data and SSS for simulated data), and (3, 4) two
versions of Maxwell filtering with movement compensation and
translation to the time-averaged head position: one localized
using a covariance from (simulated) empty-room data processed
using plain SSS (MCerm−cov); and one using a noise covariance
computed from the baseline of the simulated data (MC). Note
that, based on how the simulations were set up, a noise covariance
calculated from simulated empty-room data that had been
processed using the same time-varying position parameters as
the simulated data would be equal to the baseline covariance
computed from the actual data, and hence the difference between
(3) and (4) tells us the importance of processing empty-room data
using the same time-varying position information as task data.

For data processed with SSS, an internal expansion order of
6 and an external order of 3 was used. The internal order is
smaller than the default of 8, which is typically used in adult
measurements, and it is justified by the fact that the infant head
is smaller and the overall source-to-sensor distance tends to be
larger than in adult subjects. Data processed with movement
compensation were transformed to the mean of each individual’s
head positions. To examine the effect of cardiac artifacts, PCA
was used to identify cardiac artifacts from ECG electrodes. Signal
space projection (SSP) was used to suppress the cardiac signal in
theMEG data by estimating two orthogonal vectors capturing the
spatial structure of heartbeats.

Data Simulations
For each subject, real subject time-varying head movements
were applied to the simulated brain sources to yield simulated
sensor data that mimicked the movement distortions seen in real
recordings. Source space activations were constructed by fitting a
sphere to the points along the head surface which were collected
during the digitization process. The sphere was used to create
a volumetric grid in which sources with random orientations
were simulated along 2 cm spacing at least 10◦ away from radial
orientations relative to the center of the sphere as in Larson and
Taulu (3). The dipole spacing was fixed across subjects, but due
to differences in head sizes, the number of dipoles differed across

subjects, averaging (mean± 1 SD) of 88.2± 13.7, 93.3± 7.6, and
112.3± 15.3 for the 6, 7, and 12 month groups, respectively.

The source time course for each subject was constructed
by individually activating a 100-nAm peak single source every
50ms. In addition to these activations, the source time course
included a (−200, 0) ms baseline period with no simulated
brain activity, to be used in the noise covariance estimation. In
addition, Gaussian noise was added to the sensors. For additional
details see (3). Each of the simulated datasets were then analyzed
using the four differentmethods: Raw, SSS,MCerm-cov, andMC.

Fitting of Equivalent Current Dipoles
To investigate the accuracy and reliability of source localization,
we fit equivalent current dipoles (ECD) to the simulated data.
This procedure entails choosing the location, orientation, and
strength of current dipoles so as to reconstruct the data as
accurately as possible. Mathematically, a non-linear optimization
algorithm searches for the best ECD parameters until the
goodness-of-fit (GOF) value is maximized. Expressing the
measured or simulated whitened data vector and the modeled
whitened data vector as d and m, respectively, the GOF value
is given as GOF = 1–(d-m)T(d-m)/dTd, where T indicates
transpose. Thus, the numerical value of GOF is in the range
0...1 (0...100% fit). We define the localization error as e =

|rq-re|, where rq and re are the true and estimated ECD
location, respectively.

RESULTS AND RECOMMENDATIONS

Compensation for Movement-Related Field
Distortions
Figure 1 shows field topographies of real data from a 6-month-
old subject from Mittag et al. (28), averaged across trials with
an auditory stimulus, processed in three different ways. In
Figure 1A no compensation is done for subject movement, and
the magnetic field topography of the evoked response is clearly
adversely affected by external artifacts and subject movement.
After the application of tSSS to the raw data (Figure 1B), the field
pattern resembles comparable adult data, and after application
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of movement compensation (Figure 1C) the spatial details of the
modeled field are further improved. In particular, the movement-
induced smooth appearance of the topography is compensated
for in Figure 1C as compared to Figure 1B.

Source Localization Error
Using simulated data distorted by head movements from real
recordings, we analyzed localization bias and goodness-of-
fit under the four different processing strategies described in
Methods: Data Processing. The head movements were drawn
from Kuhl et al. (27) (7 mo) & Mittag et al. (28) (6 and 12 mo).
The top panel of Figure 2 shows that between the first experiment
(27) and the second experiment (28), there was an improvement
in subject compliance in terms of reducedmovement, as reflected
in less subject deviation from the mean head position. For the
6, 7, and 12 month groups, paired t-tests of the bias of the
two movement compensation modes for each group were p =

0.1100, 0.0061, and 0.0334, respectively. Nevertheless, even the
smaller head movements seen in the later study yield localization
biases in excess of 10mm when movement compensation is
not applied to the data (Figure 2, second panel). Notably, if
we source localize using a noise covariance from empty-room
data processed with plain SSS (without applying equivalent
movement compensation to the empty-room recording), we find
that source localization is adversely affected, most noticeably
in the data simulated from 7-month-old’s head movements. In
all cases, acceptable goodness-of-fit values are obtained (>80%
in all cases), even when mean localization bias exceeds 20mm.
In some cases the GOF values are actually higher in the Raw
and SSS conditions compared to the movement-compensated
conditions, showing that high GOF does not necessarily indicate
high localization accuracy.

Looking at systematic effects observed in the localization bias,
we see that inward bias (as quantified by the radius of the true
source minus the radius of the ECD fit location, relative to
the head center) for raw and SSS-processed data is positive for
6 and 12 months, and negative for 7 months (see Figure 3).
If the subject-by-subject inward bias is compared to their
average upward movement (+Z in MEG device coordinates),
a very strong Pearson correlation is observed for both Raw
(R2 = 0.51, p = 1e-8) and SSS-processed data (R2 = 0.54,
p = 5e-9), suggesting that subject head deviation from the
initial position upward or downward in the MEG helmet
tends to manifest as inward and outward source localization
bias, respectively.

Suppression of Cardiac Artifacts
As mentioned above, infant heart rates tend to be much higher
compared to adolescent or adult heart rates, and the QRS
complex of infant heart artifacts has a shorter duration as well
(Figure 4).

Additionally, in our experience a characteristic difference
between cardiac artifacts in infants and adults is the fact that in
infants, the spatial field distribution of the cardiac artifact often
tends to be very similar to a plausible brain signal (Figure 5),
which makes its algorithmic suppression inherently important
and difficult. This observation is confirmed by the fact that in

FIGURE 2 | In the top row, the mean plus or minus standard error (across

subjects) of the position deviation (from each subject’s mean head position)

shows smaller movements in the more recent recording (published in 2021)

compared to an older recording (published in 2014). In the second row,

localization bias is reduced by movement compensation, with greater

reduction in bias when the covariance is computed from

movement-compensated data. There are systematic outward and inward

(relative to the head center) localization biases shown for the newer (2021) and

older (2014) data, respectively. In the last row, mean goodness of fit values

exceed 80% in all cases.

many cases SSS reconstruction leaves the cardiac artifact intact,
cf. Figure 6.

Generally speaking, it is possible to overcome these challenges
by choosing among different artifact suppression methods. For
example, ICA may be more successful than SSP for some infant
datasets, and both are likely to be more successful than SSS alone
(though SSS is still useful for suppression of external artifacts, and
can be used alongside SSP or ICA; cf. Figure 6).

DISCUSSION

In this paper, we have reviewed the most important challenges
that may distort infant MEG data and thereby cause bias to
the associated source estimates. The topics covered are based
on our extensive experience with awake infant subjects and
many of these aspects are relevant to clinical MEG as well,
e.g., in epilepsy studies (4) or other settings where patients
may have difficulties staying still during the recording. We also
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FIGURE 3 | The average position in device coordinates relative to the initial position (x axis; +Z means upward) is strongly correlated with the inward bias of the ECD fit

dipoles relative to the true source locations for raw and SSS-processed data (first and second columns), but not either movement-compensated case (p > 0.05, both).

FIGURE 4 | The average QRS complex from exemplar infant (left) and adult (right) MEG recordings.

reviewed some of the most efficient processing methods that can
correct for these distortions along with results that demonstrate
the processing results and the associated accuracy of source
localization (see Figure 7; a schematic of data processing in the
Supplementary Material). Most importantly, we demonstrated
that without application of movement compensation the source
localization accuracy in infant MEG is severely compromised,
with localization errors >20mm in many cases, while statistical
metrics such as the goodness-of-fit erroneously indicate high
reliability of the obtained estimates based on non-compensated
data. However, even with large head movements, the SSS-
based movement compensation method is efficient, significantly
reducing source localization bias to a few millimeters while the
GOF value of source localization is almost intact compared to

the uncompensated data. Consequently, one cannot solely rely
on statistical confidence metrics of source modeling methods
in the case of MEG signals that have been distorted by head
movements. The reason is that the topography of the MEG
signal distribution may resemble the pattern of a plausible brain
signal despite movement-induced spatial modulation, which has
to be compensated for in order to obtain robust interpretation
of the data. This is a new consideration in the context of
infant MEG and it was not investigated in Larson and Taulu
(3), which otherwise demonstrated the efficacy of movement
compensation methodology.

Regarding the inadequacy of statistical metrics to perfectly
represent the integrity of obtained source estimation
results, the same is generally true for other algorithmic
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FIGURE 5 | Topographic maps of cardiac fields for sample infant and adult MEG recordings. (Top) SSP projector fields computed from a 100ms window surrounding

the average QRS peak from this figure was sufficient to capture the artifact. (Bottom) latent sources and field maps for cardiac-related latent components computed

with ICA. Both approaches show that fields from heart-generated volume currents in the brain may appear shallow or asymmetrical compared to adult cardiac fields.

interpretations of data. Therefore, we strongly recommend
visual inspection of data, before and after signal processing
and statistical analyses. For example, if an experienced
MEG researcher is unable to observe any interesting
effects on visual inspection of averaged sensor-level evoked
responses related to their neuroscientific question, then

any subsequent statistically significant interpretations
may be questionable. To prevent such problems, it is
advisable to expect poor SNR in infant MEG and plan
data acquisition accordingly, e.g., by over-collecting data to
account for time periods when the head has moved far from
the sensors.
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FIGURE 6 | Cardiac artifact on a subset of channels after different pre-processing approaches. Top: No processing; Second Panel: SSS only; Third Panel: SSS

followed by SSP (2 orthogonal projectors); Bottom Panel: SSS followed by ICA (4 cardiac-related latent sources removed). In the third and bottom panels the cardiac

artifacts have been successfully repaired. The spatial distribution of the cardiac artifact stays virtually intact in the SSS process, indicating that most of its signal energy

comes from the internal SSS volume where the head is located.
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Besides the movement distortions and other obvious infant-
related MEG challenges, we have observed that cardiac artifacts
are potentially especially problematic in infant MEG due to the
fact that they are often very close to plausible brain signals
in terms of their spatial topography. While spatial-domain
suppression of these artifacts with the help of SSP or ICA tends to
be efficient, there is a concern that removal of the artifact patterns
could cause bias to brain signals that is difficult to compensate for.
Further studies are needed to address this concern.

The above discussion relates to MEG research conducted by
standard SQUID-basedMEG instruments. Some of the described
signal distortions may become less significant when wearable
MEG systems [see, e.g., Boto et al. (31)], will be taken to use.
Specifically, movement-modulated distortions should be absent
in recordings conducted with sensors that are attached to the
head, but movement-related artifacts still remain when the
sensors are moving in the background magnetic field unless this
field has been perfectly compensated for.

The main purpose of our paper was to provide information
on specific challenges in infant MEG recordings that are not
necessarily obvious from the experience gathered from adult
MEG, and to demonstrate methodology that can be applied for
robust source reconstruction results in infant MEG despite the
challenges. Our recent paper on best practices of infant MEG
(submitted) provides a more general and practical perspective on
different aspects of a successful infant MEG study starting from
paradigm planning and data acquisition while this paper contains
a more detailed description of the methodology that should be
useful for anyone planning to conduct infant MEG experiments.

LIMITATIONS

As discussed throughout, one of the main difficulties of infant
MEG is the mismatch between an adult-sized MEG helmet and
small infant heads (due both to larger scalp-to-sensor distances
and to increased space for head movement, combined with
infants’ tendency toward frequent motion). A general limitation
is that if the head becomes too far from the sensor array (due
to large head movements), the brain signal will drop below the
level of sensor noise (i.e., reduced SNR). In addition, in such
a situation, the ability to estimate the head position from the
HPI coils deteriorates. One possible improvement would be to
use infant-specific MEG hardware, such as the Artemis123 (32)
or Baby MEG (33) systems, which would reduce the scalp-to-
sensor distance and allow less room for movement. Obviously,
this is a strategy with a multi-year implementation schedule
that can only be undertaken at an institutional level. As for
strategies that individual researchers might employ given their
existing data collection systems, it is probably clear from the
preceding sections that there is no magic bullet to fix poor
SNR in an existing recording (this is equally true of adult data
as of infant data). In most cases the best to be done with
existing data is to meticulously apply the methods of artifact
suppression described above, perhaps choosing a representative
sample of the data to test a few different parameter settings of
the algorithms employed, to ensure that the artifact suppression

algorithms are not overly aggressive and possibly suppressing
brain signal.

For collection of new data, perhaps the most practical advice is
to expect poor SNR and plan task designs and recruitment efforts
accordingly. Factoring in demographic controls, participants
exhibiting varying degrees of uncooperative behavior, the various
artifact and noise issues described here, and (for longitudinal
studies) participant attrition, it would not be unheard of for the
fraction of “usable” participants to be well-below 50% of the
total number recruited. While not a decision to be taken lightly,
sometimes throwing away data is both necessary and justified.
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