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High-grade serous tubo-ovarian cancer
refined with single-cell RNA sequencing:
specific cell subtypes influence survival and
determine molecular subtype classification
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Abstract

Background: High-grade serous tubo-ovarian cancer (HGSTOC) is characterised by extensive inter- and intratumour
heterogeneity, resulting in persistent therapeutic resistance and poor disease outcome. Molecular subtype classification
based on bulk RNA sequencing facilitates a more accurate characterisation of this heterogeneity, but the lack of strong
prognostic or predictive correlations with these subtypes currently hinders their clinical implementation. Stromal
admixture profoundly affects the prognostic impact of the molecular subtypes, but the contribution of stromal cells to
each subtype has poorly been characterised. Increasing the transcriptomic resolution of the molecular subtypes based
on single-cell RNA sequencing (scRNA-seq) may provide insights in the prognostic and predictive relevance of these
subtypes.

Methods: We performed scRNA-seq of 18,403 cells unbiasedly collected from 7 treatment-naive HGSTOC tumours. For
each phenotypic cluster of tumour or stromal cells, we identified specific transcriptomic markers. We explored which
phenotypic clusters correlated with overall survival based on expression of these transcriptomic markers in microarray
data of 1467 tumours. By evaluating molecular subtype signatures in single cells, we assessed to what extent a
phenotypic cluster of tumour or stromal cells contributes to each molecular subtype.
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Results: We identified 11 cancer and 32 stromal cell phenotypes in HGSTOC tumours. Of these, the relative frequency
of myofibroblasts, TGF-β-driven cancer-associated fibroblasts, mesothelial cells and lymphatic endothelial cells predicted
poor outcome, while plasma cells correlated with more favourable outcome. Moreover, we identified a clear cell-like
transcriptomic signature in cancer cells, which correlated with worse overall survival in HGSTOC patients. Stromal cell
phenotypes differed substantially between molecular subtypes. For instance, the mesenchymal, immunoreactive and
differentiated signatures were characterised by specific fibroblast, immune cell and myofibroblast/mesothelial cell
phenotypes, respectively. Cell phenotypes correlating with poor outcome were enriched in molecular subtypes
associated with poor outcome.

Conclusions: We used scRNA-seq to identify stromal cell phenotypes predicting overall survival in HGSTOC patients.
These stromal features explain the association of the molecular subtypes with outcome but also the latter’s weakness of
clinical implementation. Stratifying patients based on marker genes specific for these phenotypes represents a promising
approach to predict prognosis or response to therapy.

Keywords: Single-cell RNA sequencing, High-grade serous tubo-ovarian cancer, Molecular subtypes, Stromal
heterogeneity, Transcriptomic markers, Tumour microenvironment, Prognosis, Overall survival

Background
High-grade serous tubo-ovarian cancer (HGSTOC) af-
fects worldwide 239,000 women each year [1] and is typ-
ically characterised by a high recurrence rate with poor
long-term survival [2, 3]. HGSTOC often becomes re-
sistant to most treatment options, a phenomenon that
has been attributed to the extensive inter- and intratu-
moural heterogeneity in this cancer type [4–7]. Indeed,
HGSTOC is characterised by very pronounced patterns
of chromosomal instability, which are often highly dis-
tinct within the same tumour [7, 8] or between their
different metastatic localisations [9], but can often also
change during disease progression [10]. In addition, vari-
ous cellular phenotypes involved in immune activation,
hypoxia and extracellular matrix remodelling may deter-
mine a tumour microenvironment that favours disease
progression and metastases [11–15]—hence contributing
to the poor clinical outcome of HGSTOC [12–14, 16, 17].
Several initiatives, such as the Australian Ovarian Cancer

Study (AOCS) [18, 19] and The Cancer Genome Atlas
(TCGA) [4], have studied HGSTOC by applying conven-
tional bulk gene expression analysis on tumours, identifying
4 molecular subtypes: the mesenchymal, immunoreactive,
differentiated and proliferative HGSTOCs. Statistically sig-
nificant survival differences were found between these
molecular subtypes, with better outcome for the immuno-
reactive subtype [3, 4, 18, 20]. However, cross-study robust-
ness of these signatures remains poor as different subtyping
algorithms were used between these studies [19–22] and
they were not prospectively validated. In addition, stratifica-
tion of patients according to these molecular subtypes failed
to demonstrate differences in response rates to various
therapies in clinical trials [23, 24]. Recently, Schwede et al.
[25] demonstrated that assigning individual tumours to one
of the molecular subtypes was affected by the stroma ad-
mixture. After correction for the stromal content, these

molecular subtypes lost their prognostic value, while the
stromal gene expression in bulk tumour itself was associ-
ated with overall survival. These findings underline the im-
portance of the tumour microenvironment in HGSTOC
and highlight the necessity to more accurately explore its
heterogeneity and how this contributes to disease
progression.
Single-cell RNA sequencing (scRNA-seq) has recently

enabled us to explore the transcriptomic diversity of tu-
mours and their stroma at an unprecedented level in
various different cancer types (e.g. glioblastoma [26] and
lung cancer [27]). With the introduction of unique mo-
lecular identifiers (UMI) in droplet-based protocols,
thousands of single cells from one biopsy can be ana-
lysed simultaneously, reducing amplification errors and
facilitating the detection of small populations of cells
whose transcriptional programmes are often not de-
tected using bulk RNA sequencing [28]. In ovarian can-
cer, the potential of this technique was recently
demonstrated by Izar et al. [29] who characterised the
ascites from ovarian cancer patients by droplet-based
scRNA-seq describing several tumour, fibroblast and
macrophage subpopulations. Moreover, Olalekan et al.
[30] recently applied scRNA-seq to metastatic lesions of
the omentum of ovarian cancer patients and used un-
supervised clustering of T cells and macrophages to
identify high and low T cell infiltration in tumours.
Here, we applied scRNA-seq to several thousands of

cancer and stroma-derived cells residing in 7 HGSTOC
tumours. This allowed us to reconstruct the phenotypic
heterogeneity of the tumour microenvironment in
HGSTOC tumours, including non-immune cells, and to
identify transcriptional markers specific for each stromal
phenotype. Based on these markers, we could estimate
the prevalence of these phenotypes in conventional bulk
expression datasets, characterise the prognostic value of
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these stromal phenotypes and evaluate their contribution
to the established molecular subtypes.

Methods
Patient selection
Seven patients with ovarian cancer were pathologically di-
agnosed and treated in the University Hospitals Leuven,
Belgium. Written informed consent was obtained from all
patients and this study received ethical approval by the eth-
ical committee of University Hospitals Leuven (ML2524/
july2013). Fresh biopsies were obtained from these 7
treatment-naive patients during primary cytoreductive sur-
gery (patients P1 and P4) or during diagnostic laparoscopy
(patients P2–P3, P5–P7) and consisted of primary ovarian
tumour (P1, P4), intraperitoneal metastatic lesions (periton-
eum (P1–P3, P5–P7) or omentum (P1)) and normal adja-
cent tissue (P1 (omental and peritoneal tissue), P4 (ovary))
(Fig. 1A). All samples were analysed by a pathologist experi-
enced in gynaecological pathology (ASVR) and confirmed
to be HGSTOC (P1–P2, P4–P7), except patient P3 who
presented with a mixed ovarian epithelial carcinoma con-
sisting of clear cell and high-grade serous components. Sta-
ging was performed by diffusion-weighted whole-body
magnetic resonance imaging (DWI/MRI) [31] according to
the FIGO (International Federation of Gynaecology and
Obstetrics) classification 2014 [32]. One patient was diag-
nosed with a stage IC1, 2 patients with stage IIIC and 4
with stage IVB. A concise overview of the clinical character-
istics, treatment and response to treatment data is given in
Table 1 and Additional file 1: Table S1, respectively.

Sample preparation for single-cell profiling
Part of the biopsy was embedded in formaldehyde for
anatomopathological confirmation, bulk RNA sequen-
cing and/or low-coverage whole-genome sequencing
(see below). The other part of the biopsy with a minimal
size of 5 mm3 was transported in DMEM on ice and
digested within 2 h after prelevation to a single-cell sus-
pension. First, the biopsy was rinsed with PBS, minced
on ice to small pieces (less than 1 mm3) and transferred
to 10ml digestion solution containing DNAse I (Sigma),
0.2% collagenase I/II (Thermo Fisher Scientific) and 25
units dispase (Invitrogen) in DMEM (Thermo Fisher Sci-
entific) [27]. Next, the solution was incubated for 10 min
at 37 °C, with manual shaking after 5 min. After incuba-
tion, the samples were vortexed for 10 s and pipetted up
and down for 1 min using pipettes of descending sizes
(25 ml, 10 ml and 5ml). Next, we added 30ml ice-cold
PBS (pH 7.4) with 2% fetal bovine serum (Thermo Fisher
Scientific) and filtered our samples using a 40-μm nylon
mesh (Thermo Fisher Scientific). This solution was cen-
trifuged at 300g and 4 °C for 5 min. After discarding the
supernatant, the cell pellet was resuspended in 2 ml red
blood cell lysis buffer and transferred to a 2-ml DNA

low bind tube. This solution was incubated for 5 min at
room temperature. After a second centrifugation at 120g
and 4 °C for 5 min, 1 ml PBS containing 8 μl UltraPure
BSA (50 mg/ml; AM2616, Thermo Fisher Scientific) was
added, followed by filtration of the over Scienceware
Flowmi 40-μm cell strainers (VWR) using wide-bore 1ml
low-retention filter tips (Mettler-Toledo). Next, the concen-
tration of remaining viable cells was determined by adding
10 μl of this cell suspension into an immunofluorescence-
mediated automated cell counter (Luna FL Cell counter,
Logos Biosystems). Cells were kept on ice whenever pos-
sible throughout the procedure to avoid dissociation-
related artefacts.

Droplet-based scRNA-seq
Single-cell RNA sequencing libraries were created using
the Chromium Single Cell 3’ Library, Gel Bead & Multi-
plex kit and chip kit (10X Genomics) aiming for 5000
cells per library according to manufacturer conditions.
All cells from the same patient were treated with the
same master mix and in the same reaction vessel. This
droplet-based system uses barcodes (1 for each cell) and
unique molecular identifiers (UMIs, 1 for each unique
transcript) to obtain a unique 3′-mRNA gene expression
profile from every captured cell. All samples were se-
quenced by the Illumina HiSeq4000 and mapped to the
human reference genome (GRCh38) by Cell Ranger
(10X Genomics). An overview of the most important
metrics including the number of unique molecular iden-
tifiers (nUMIs), detected genes and sequencing satur-
ation (76.7% on average) are provided in Table 1. The
full metrics, as well as the detailed distribution of the
number of cells, genes detected and transcripts (UMI
counts) for the major cell types and subtypes can be
found in Additional file 2: Table S2 and Additional file
3: Figure S1A.

Bulk RNA sequencing
Conventional bulk RNA-seq was performed using KAPA
stranded mRNA sequencing kits (Roche). After library
preparation, all samples were sequenced using the
Illumina HiSeq 4000. Reads were trimmed with Trim
Galore and mapped using the STAR aligner v2.5 to
Ensembl release 90. Transcripts were counted using the
summarizeOverlaps function from the GenomicAlign-
ments package v1.22.0 in Bioconductor as described in
Love et al. [33].

Low-coverage whole-genome sequencing
DNA was extracted from one HGSTOC tumour (patient
P1) and sequenced genome-wide at low coverage (9 mil-
lion 51 bp single-end reads) to construct a copy number
profile. The reads were mapped to the human reference
genome; QDNAseq [34] was used to count reads in
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Fig. 1 ScRNA-seq-based tumour microenvironment analysis of 18,403 single cells from 7 treatment-naive HGSTOC patients. A Schematic overview
of the sampling site (ovary, omentum or peritoneum) and tissue type (normal or tumour tissue) of the 12 biopsies from seven treatment-naive
patients as well as the analysis workflow. B t-SNE representation of all single cells colour-coded for their assigned major cell type (left) and for the
expression of three marker genes used for this annotation as indicated on the top row. Marker genes: B cell (CD79A, IGHG3, IGKC), dendritic cells
(CD1C, CD1A, CLEC9A), endothelial cells (CLDN5, PECAM1, VWF), fibroblasts (COL1A1, COL1A2, BGN), myeloid cells (CD68, LYZ, AIF1), ovarian stroma
cells (STAR, FOXL2, DLK1), T cells (CD3D, CD3E, TRAG), epithelial cancer cells (EPCAM, PAX8, CD24). Dendritic cells remained co-clustered with
myeloid cells in the first clustering step, but separated from myeloid cells before further subclustering based on established marker genes
(CLEC9A, CD1C, CD1A). C Barplot showing for each of the 32 stromal and 11 cancer subclusters (from left to right) the number of cells, tissue type
(normal or tumour), their distribution across the 7 patients, their distribution across sampling sites (ovary, omentum and peritoneum) and their
correlation to the copy number alteration (CNA) profile of patient 1 using low-coverage whole-genome sequencing. D t-SNE visualisation of
dendritic cell (up) and myeloid cells (down) subclusters containing tissue-specific cells enriched in the omentum, defined as Langerhans-like
dendritic cells (DC_CD207) and lipid-associated macrophages (M_MMP9). E CNA profiles of fibroblasts compared to those from the tumour
subclusters and monocyte subclusters using inferCNV confirming the CN stable profile of all fibroblast subclusters
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preselected, fixed-sized bins and to adjust read counts
for mappability and GC content. ASCAT [35] was then
used for segmentation and estimation of copy numbers,
resulting in a genome-wide copy number profile of the
tumour genome for this patient [36].

Single-cell expression profiling and clustering into cell
subtypes
As the identification of (rare) cell type or cell type sub-
clusters from scRNA-seq data depends on the number
of cells profiled, we pooled all 12 samples to increase the
number of cells analysed [37]. Cell Ranger (10X Genom-
ics) was used to process UMIs (transcripts) and barcodes
(cells). For each barcode, the number of associated UMIs
was counted. A threshold was set by Cell Ranger at the
10th percentile of the UMI counts; barcodes with this
number of UMIs or more were regarded as cells, and
barcodes with a lower UMI count were discarded. This
procedure retained 20,483 cells across all twelve biopsies
(Additional file 2: Table S2). After this step, the Seurat
package v2.3.4 in R v3.5.1 was used for all downstream
processing as recommended by 10X Genomics. Standard
operations as advocated by the Seurat documentation
were followed, as described in the following paragraphs.
Genes expressed in < 10 cells were not considered,

while cells with < 200 genes expressed were considered
low-quality and removed from further analysis. Likewise,
cells having > 6000 genes and > 15% of mitochondrial
transcripts (indicative of apoptosis) were also removed.
In total, we retained an expression matrix of 23,152
genes in 18,403 single cells. This expression matrix was
normalised for the total number of transcripts per cell,
multiplied by a factor 10,000, and subsequently log-
transformed. Variable genes were filtered for genes with
an average expression between 0.0125 and 3 and a z-
score of the logarithmic variance-to-mean ratio > 0.5.
In addition, each cell was scored by Seurat for G2/M

and S cell cycle phases based on a gene list for the hu-
man genome by the Regev Lab [38]. We corrected for
G2/M and S cell cycle scores, the number of UMIs and
percentage of mitochondrial transcripts using a linear re-
gression model; the residuals of this model were then
scaled and centred to z-scores across cells. Regression
for cell cycle genes was particularly important for the T
cell/natural killer (NK) cell subcluster. Indeed, without
regression, a proliferating T cell subcluster containing a
heterogeneous mixture of different T cell and NK cell
phenotypes, including 2 types of NK cells as well as dif-
ferent CD4+ and CD8+ T cell phenotypes (Additional
file 3: Figure S1B–F), was identified.
Next, principal component analysis (PCA) was applied

to this rescaled data matrix. The number of informative
principal components (PC) covering the highest variance
in the dataset was set to 20 based on an elbow plot of

the first 40 principal components (Additional file 3: Fig-
ure S2A). Similar to others [27, 39–42], we clustered the
20 PCs based on a shared nearest neighbour graph-
based clustering method implemented in Seurat, which
caters for both small and large populations of cells and
is optimised in terms of computing requirements for
information-dense, large datasets as the one we gener-
ated here. Furthermore, a previous comparative analysis
by our research group identified the Seurat clustering
method to have high concordance with other clustering
methods [27]. Next, clusters were calculated by the
Seurat FindClusters function and visualised using t-
distributed stochastic neighbour embedding (t-SNE) di-
mensional reduction method with a default perplexity of
30. Differential gene expression (DGE) analysis was per-
formed at various cluster resolutions by the Wilcoxon
rank sum test. The resolution was set at 0.35, because at
this resolution cell types that were expected to be identi-
fied based on previous studies [27, 39, 43, 44] were ef-
fectively recovered, while at lower resolution, they were
lost. These cell types were annotated based on the uni-
form expression of marker genes across the cluster. A
full list of these maker genes with Entrez Gene ID and
PMID can be found in Additional file 4: Table S3. With
this resolution, we were able to distinguish epithelial/
cancer cells (TUM), endothelial cells (EC), ovarian
stroma cells (OSC), fibroblasts (FB) and the common
immune cells (T cells (TC), B cells (BC), myeloid cells
(M)) while dendritic cells (DC) still remained co-
clustered with myeloid cells. Therefore, DCs were first
separated from myeloid cells based on established
marker genes (LILRA4, CXCR3, CLEC9A, CD1C, CD1A,
CD207) [39] and then pooled together for further sub-
clustering. Robustness of this clustering strategy was
confirmed by calculating the Normalised Mutual Infor-
mation (NMI) [45] and Adjusted Rand Index (ARI) [46]
between the clusters using different PCs, resolutions and
K values (lower and higher). Both indices quantify the
cluster concordance from 0 to 1, with 0 indicating ran-
dom clustering and 1 perfect concordance.
The cells of each major cell type were then merged and

reclustered by repeating the previously described pipeline.
The number of variably expressed genes was recalculated
for each cell type with the same cut-offs for normalised
expression and quantile normalised variance. The G2/M
and S cell cycle scores, together with number of UMIs
and percentage of mitochondrial transcripts, the patient,
interferon scores (BROWNE_INTERFERON_RESPON-
SIVE_GENES in the Molecular Signatures Database
MSigDB v6.1) and the sample dissociation-induced gene
signatures [47] were regressed out while rescaling the
matrix. Similar to the initial clustering, the choice of the
number of principal components and optimal resolution
for each cell type was guided by elbow plots and the
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expression of marker genes of known cell phenotypes in
the DGE analysis respectively. The new clusters obtained
after reclustering the major cell types are referred to as
“subclusters” or, when referring to their function, as “cell
phenotypes”.
Shannon indices [48] were calculated to score patient

and sample bias in the subclusters, with a low score indi-
cating dominance of a sample/patient in a subcluster
and a high score indicating a more even distribution of
samples/patients in the subclusters.
To correct for potential batch effects in the fibroblasts,

we applied 2 additional alignment methods, i.e. canon-
ical correlation analysis (CCA) [49, 50] and Single-CEll
regulatory Network Inference Clustering (pySCENIC).
The selection of CCA dimensions or canonical correc-
tion vectors (CC = 11) for subspace alignment was
guided by the CC bicor saturation plot (MetageneBicor-
Plot function in Seurat) as recommended, and cluster
resolutions were determined similar to the PCA-based
approach described above. PySCENIC [51], on the other
hand, analysed cells based on the shared activation of
gene regulatory networks. PySCENIC clusters were ob-
tained by Ward clustering of Jaccard distances between
binarised AUC scores of the pySCENIC algorithm.
Shannon indices for PCA-, CCA- and pySCENIC-
aligned fibroblasts were compared to choose the optimal
alignment for fibroblast downstream analysis.
Doublet subclusters, i.e. subclusters harbouring cells

from different major cell types, were identified on a sub-
cluster level based on the simultaneous expression of
marker genes from different cell types and were there-
fore excluded.
Finally, we repeated the normalised mutual informa-

tion analysis to score subcluster robustness by varying
the numbers of PCs (adding or subtracting up to 2 PCs)
or resolution (5 or 10% more or less than the selected
value). We did not perform this analysis on fibroblasts
as a CCA-based alignment was used, nor on B cells for
which we deliberately chose to identify only the 2 major
subtypes (memory and plasma cells) as further subclus-
tering was not meaningful given the low number of cells
(see “Results”).

Correlation of subclusters to copy number aberration
(CNA) profile and inferCNV
Copy number aberrations in single cells were estimated
in two ways. First, the tumour copy number profile of
patient P1 obtained by low-coverage whole-genome se-
quencing was used as a reference to compare copy num-
ber patterns detected in our single cells. We identified
which genes were contained in the copy number seg-
ments and correlated gene expression to the copy num-
ber of that segment. For this purpose, genes with overall
low expression across our single cells were excluded

(using the 5th percentile as a threshold), and each gene
was standardised by calculating z-scores across cells.
The Spearman rank order correlation coefficient be-
tween z-scores of genes and the copy number of the as-
sociated segment was calculated. Tumour cells are
expected to have overall higher expression in genomic
regions with copy number gains and overall lower ex-
pression in regions with copy number losses [52]; as
such, this correlation is taken as an indication that a cell
would be a tumour cell.
As a second, alternative approach, we applied inferCNV

version v1.0.3. For inferCNV, 50 cells per subcluster were
pseudorandomly chosen; raw expression data of these
cells was used as input matrix. Cells previously annotated
as monocytes were used as a reference population to infer
copy number profiles. The inferCNV cutoff parameter
was set to 0.1, and parameters denoise, cluster_by_groups
and HMM were set to TRUE.

Gene set enrichment analysis
To characterise the 43 obtained subclusters, we per-
formed single-sample gene set enrichment analysis
(ssGSEA) of the 50 hallmark gene sets of MSigDB (Mo-
lecular Signatures Database) [53, 54] for each single cell.
Similarly, we performed ssGSVA analysis of the meta-
bolic pathway signatures as listed by Gaude and Frezza
[55]. Genes that occur in multiple signatures were ex-
cluded for both sets of signatures.

Analysis of gene regulatory networks
To detect transcription factors driving these 43 different
subclusters, we applied Single-CEll regulatory Network
Inference and Clustering (SCENIC) using the pySCENIC
package [51]. SCENIC identifies regulons—gene sets that
are co-expressed with known transcription factors—by
cis-regulatory motif analysis. By scoring and comparing
the activity of these regulons in each cell, we were able
to cluster cells according to their active gene regulatory
networks. Finally, we evaluated ssGSEA scores for meta-
bolic and MSigDB hallmark signatures to investigate the
molecular pathways active in each regulon subcluster.

Selection of subcluster-specific transcriptomic markers
Within-cell-type marker genes for each of the subclus-
ters were generated by Seurat using the FindAllMarkers
function (based on Wilcoxon rank sum test, restricting
genes to log fold change ≥ 0.25 and p value ≤ 0.01). We
continued filtering these within-cell-type marker genes
by comparing them across the other subclusters. Expres-
sion of each candidate marker gene of a subcluster was
compared to the subcluster with the second highest ex-
pression for that marker gene; a Wilcoxon rank sum test
was used to select genes based on a p value ≤ 0.01,
Benjamini-Hochberg-adjusted p value ≤ 0.05, and log
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fold change ≥ 0.25. To further exclude genes with poten-
tial background expression outside of the intended sub-
cluster, we studied the distribution of the detection rate
of each TM across the intended subcluster, across the
subcluster with the 2nd highest expression as well as the
mean detection rate of each TMs across all subclusters.
We applied 3 additional criteria to select TMs. First, a
marker gene had to be representative for the majority of
cells belonging to that subcluster. Therefore, we added
the restriction that a marker gene must be expressed (at
least 1 UMI present) in > 40% of the cells of the subclus-
ter. Next, we removed genes exhibiting high expression
in another subcluster, though to a lesser extent, as well
as genes with a substantial detection rate across a large
number of other subclusters. We therefore added a sec-
ond and third criteria, i.e. a marker gene must be
expressed/detected (at least 1 UMI present) in < 50% of
the cells in the subcluster with the 2nd highest expres-
sion of that marker gene, and the median of the detec-
tion rates of this marker gene in all subclusters must be
< 10%. A candidate gene fulfilling all the abovemen-
tioned criteria was considered a subcluster-specific tran-
scriptomic marker (TM) for further analyses.
We scored subcluster TMs in 6 cohorts of HGSTOC

bulk expression datasets (Table 2), by creating a matrix
of subcluster TM genes (rows) by samples (columns).
For each row, the z-scores of samples within the cohort
were calculated, and then averaged per sample for all
TMs of a subcluster, resulting in a subcluster-specific z-
score (SSZ score). This SSZ score was then used as an
independent variable in survival analyses.
We implemented xCell [59] to examine the enrich-

ment of a certain cell phenotype in bulk RNA data. We
mimicked the xCell pipeline as described by Aran et al.
[59], using the normalised expression matrix of our sub-
clusters instead of cell lines as main input. We deter-
mined the 10%, 25%, 33%, 50%, 67%, 75%, and 90%
percentiles of expression for each gene in each

subcluster and compared for each subcluster the differ-
ence in expression between the 10% percentile of that
subcluster and the highest of the 90% percentiles of all
other subclusters; the same was done for the 25–75%,
33–67% and 50–50% percentile pairs. Additionally, we
evaluated the same comparisons, but with the second
and third largest percentile of all other subclusters.
Based on these repeated comparisons, we filtered genes
that pass a certain threshold; we used the values 0, 0.10,
0.50 and 0.80 as thresholds for the differences, chosen
based on the observed range of differences. Genes that
pass such a threshold were recorded as a candidate sig-
nature for that subcluster. Only candidate signatures
containing 8 to 200 genes were retained. As a result, we
obtained for each subcluster a large number of candidate
signatures (648 in total), which were then tested with
ssGSVA. The top-3 candidate signatures for each sub-
cluster were selected based on the t-statistic of the
ssGSVA scores for each subcluster and constituted our
final subcluster signatures. ssGSVA scores for the top-3
signatures were always averaged to obtain a subcluster
score. However, as described in the xCell paper, a series
of operations followed to transform obtained ssGSVA
scores of the selected top-3 subcluster signatures. First,
we in silico generated dilutions of subclusters by pseudo-
randomly mixing single cells of a subcluster with single
cells of all other subclusters in 11 concentrations ran-
ging from 0.8 to 25%, with 10,000 random cells per mix-
ture, and 3 replicates of each concentration. We
calculated the average ssGSVA scores for the top-3 sig-
natures in each of these artificial mixture samples. The
obtained scores were shifted and rescaled to a value be-
tween 0 and 1 to enable application in other datasets; we
did this based on the 0.01 and 0.99 quantile as outer
bounds instead of the minimum and maximum value for
robustness. The averaged, shifted and rescaled scores
were then modelled as a function of the known concen-
trations in the mixture; the learned parameters of the

Table 2 List of the publicly available microarray expression datasets included for the survival analysis

Dataset GEO accession Microarray platform Sample size FIGO Stage IV Optimal debulking

Bentink et al. [56] E.MTAB. 386 Illumina HumanRef-8 v2.0 beadchip 128:128:42 15% 78%

Bonome et al. [57] GSE26712 Affymetrix
HG-U133A Array

185:185:46 20% 49%

Ferriss et al. [58] GSE30161 Affymetrix
HG-U133A Gene Chip array

58:47:38 9% 41%

Tothill et al. [19] GSE9891 Affymetrix HG-U133 Plus 2.0 260:235:42 9% 61%

TCGA [4] TCGA Affymetrix HT
HG-U133A

510:503:44 15% 73%

Konecny et al. [20] Mayo Clinic Agilent Whole Human Genome
4x44K Expression Arrays

382: 369:41 22% 77%

Six whole transcriptome studies with at least 40 patients were evaluated. Exclusion of samples with missing values for age, stage, histology, grade, debulking
status and survival data resulted in 1467 patients for downstream analysis. Sample size column provides the number of available samples: number of included
samples: median survival time in months

Olbrecht et al. Genome Medicine          (2021) 13:111 Page 8 of 30



power function as described in the xCell paper were
used to calibrate future samples. Lastly, the interference
caused by closely related cell types was corrected using
what the xCell paper describes as spillover compensa-
tion. A spillover matrix was constructed based on artifi-
cial mixtures of 10,000 single cells, with 25% of cells
selected from a target subcluster and 75% of non-target
subclusters. This spillover matrix enabled us to estimate
concentrations of subclusters in a future sample as a
constrained non-negative linear combination of the sim-
ulated mixture samples; for a detailed explanation, we
refer to the description of this algorithm in the original
paper [59].

Meta-analysis of the prognostic effect of subclusters in 6
HGSTOC cohorts
SSZ scores and xCell scores were evaluated in 6 cohorts
of publicly available, annotated bulk expression datasets,
covering 1467 high-grade (grade 2 or 3) serous tubo-
ovarian carcinoma patients (TCGA [4], Bonome et al.
[57], Tothill et al. [19], Bentink et al. [56], Ferriss et al.
[58] and Konecny et al. [20]), see Table 2. Other hist-
ology, including grade 1 serous, clear cell or endome-
trioid carcinoma, was excluded.
Expression data and clinical annotation were retrieved

from the curatedOvarianData package in R [60] (Biocon-
ductor, doi: 10.18129/B9.bioc.curatedOvarianData); fur-
thermore, the cohort by Konecny et al. [20] was
extended as described by Way et al. [61] (Zenodo.org,
https://doi.org/10.5281/zenodo.32906), and the clinical
data of the TCGA cohort were updated based on Liu
et al. [62]. HGSTOC samples with incomplete clinical
information on histopathology, grade, residual disease
and FIGO stage at diagnosis were excluded.
For each of the cohorts and each of the subclusters, a

Cox proportional hazards regression model of overall
survival was implemented with the subcluster score (ei-
ther SSZ score or xCell), FIGO stage, debulking status
(residual disease) and age as independent variables. The
coefficient for subcluster score and its standard error
were used as input for meta-analysis with the rma func-
tion of the metafor package in R with parameter method
set to REML. The subcluster-specific OS hazard ratios
(HR) and p values were calculated and corrected for
multiple testing by the Benjamini & Hochberg (BH)
method. To visualise this effect of subcluster scores on
overall survival, we also plotted 3 Kaplan-Meier curves
for the pooled cohorts of patients, stratified by the ter-
tiles of SSZ scores of a subcluster. Both the median sur-
vival difference in days and log-rank test between the
third and first tertile are given as an illustration.
Finally, to exclude the detection of random effects, we

performed an iterative analysis by repeating this meta-
analysis of the 6 Cox proportional hazard regression

analyses including the SSZ scores of the 500 random
gene sets of similar sizes for each subcluster (42 × 500
gene sets). Age, FIGO stage and residual disease were
covariates. Only in 2.4% of iterations, the same or larger
number of significant subclusters was obtained after
Benjamini-Hochberg correction.

Assignment and scoring of molecular subtypes
We used the ConsensusOV package (Bioconductor, doi:
10.18129/B9.bioc.consensusOV) as described by Chen
et al. [22] to obtain molecular subtype labels for the
1467 bulk samples from the publicly available cohorts
and confirm the prognostic effect of the different mo-
lecular subtypes in our study cohort. Next, we applied
the ConsensusOV algorithm to our single-cell expres-
sion matrix and used boxplots to explore the distribu-
tion of the 4 molecular subtype scores across all cells
from each subcluster. The 4 scores were then used to es-
timate the relative enrichment or depletion of that sub-
cluster across each molecular subtype signature and to
better understand the tumour microenvironment of the
four different molecular subtypes.

Receptor-ligand analysis with CellPhoneDB
For the CellPhoneDB algorithm, we pseudorandomly se-
lected, for individual patients, 2000 cells per subcluster,
or the full set if less than 2000 cells were available. For
each patient, we ran CellPhoneDB v2.1.1 using its statis-
tical method and 1000 iterations. Cells were labelled
with their major cell type annotation for a first analysis,
and then with their cell subcluster annotation for subse-
quent analyses. To additionally make a comparison be-
tween molecular subtypes, we also selected samples of
patients P1, P2, P5 and P6, because bulk RNA-seq sam-
ples of these patients were annotated as respectively pro-
liferative, differentiated, immunoreactive and
mesenchymal by the ConsensusOV algorithm; other pa-
tients were excluded from this sub-analysis because their
molecular subtype annotation was more ambiguous.
After running CellPhoneDB, we counted the number of
significant interactions (in both directions) between cell
types or subclusters.

Results
Multi-site sequencing identified tissue-specific stromal
cell subtypes
We applied scRNA-seq to 12 biopsies from either ovar-
ian (n = 3), peritoneal (n = 7) or omental tissue (n = 2),
collected from 7 treatment-naive patients with HGSTOC
and obtained 18,403 cells with high-quality transcrip-
tomic data (Table 1, Fig. 1A). After normalisation, prin-
cipal component analysis (PCA) was performed using
2766 variably expressed genes to assign all cells to differ-
ent clusters. After defining the optimal number of
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principal components (PC = 20, Additional file 3: Figure
S2A) and resolution (R = 0.35; see “Methods”), cells
were divided in 21 clusters representing 8 major cell
types based on canonical marker gene expression across
these clusters (Fig. 1B), including epithelial cancer cells,
myeloid cells, dendritic cells (DCs), T cells (TCs), B cells
(BCs), fibroblasts (FBs), endothelial cells (ECs) and ovar-
ian stromal cells (OSCs). The gene list used for cell type
annotation was added to Additional file 4: Table S3.
Interestingly, natural killer (NK) cells and mast cells

were scarce and were only identified after subclustering
of the T cells and myeloid cells respectively (Additional
file 3: Figure S2B). Although we also profiled omental
tissue, mature adipocytes were not identified presumably
due to their large size, high buoyancy and the fact that
they can easily rupture during droplet formation [63].
We confirmed the robustness of our clustering settings
by calculating an average Normalised Mutual Informa-
tion (NMI) of 0.99 while varying the number of PCs, K
value and resolution (Additional file 3: Figure S2C).
NMI values in function of these parameters are listed in
Additional file 5: Table S4.
Next, we reclustered the cells of each major cell type

into subclusters using the same strategy, performing 8
individual PCAs (1 for each major cell type), while using
for each PCA a different number of variable genes (ran-
ging from 2594 to 8170 genes) and optimal number of
informative PCs (ranging from 8 to 29). Optimal resolu-
tions were determined based on marker gene expression
of previous studies [27, 64] and ranged from 0.01 for
ovarian stromal cells to 3.0 for myeloid cells and T cells.
The robustness of subclustering each major cell type
was confirmed by calculating the average NMI (ranging
from 0.88 to 1.00) at varying numbers of PCs and reso-
lutions (Additional file 5: Table S4; Additional file 3: Fig-
ure S2D). We also detected 12 doublet subclusters
within the myeloid cells (n = 4 subclusters), endothelial
cells (n = 1), fibroblasts (n = 2), cancer cells (n = 2) and
T cells (n = 3) harbouring 748 cells in total. These were
excluded from further downstream analysis. The marker
gene expression used to identify these doublet subclus-
ters among the abovementioned cell types is illustrated
in Additional file 3: Figure S3.
Most T, B, dendritic, myeloid and endothelial cell sub-

clusters contained cells derived from multiple patients
and from different anatomic sites (Fig. 1C). However,
two subclusters of either dendritic or myeloid cells were
predominantly composed of cells from omental tissue
(Fig. 1D, Additional file 3: Figure S4A). Based on differ-
ential gene expression analysis, these cells were identi-
fied as Langerhans-like dendritic cells (DC_CD207) and
lipid-associated M2 macrophages (M_MMP9), respect-
ively, two cell types known to be enriched in the omen-
tum [65, 66] (Additional file 3: Figure S4B). Metabolic

pathway analysis confirmed this hypothesis showing an
active fatty acid metabolism and adipogenesis in both
cell subclusters (Additional file 3: Figure S4C). Ovarian
stromal cell subclusters contained almost exclusively
cells from the non-affected ovary (Fig. 1C, Additional file
3: Figure S4D), i.e. from patient 4 diagnosed with early-
stage ovarian cancer (FIGO stage IC1). Two types of
ovarian stromal cells, OSC_STAR and OSC_LEFTY2,
were identified. OSC_STAR expressed STAR and FOXL2
indicating a role in oestrogen production and the main-
tenance of granulosa cell identity through the repression
of testis-specific genes respectively [67] (Additional file
3: Figure S4E). Pathway analysis showed increased chol-
esterol metabolism as well as oestrogen and androgen
response (Additional file 3: Figure S4F). OSC_LEFTY2
showed increased expression of LEFTY2 (Additional file
3: Figure S4E), a member of the transforming growth
factor family, known to be highly expressed in decidua-
lising human endometrial stromal cells [68]. These cells
were therefore classified as a population of endometrial
cells, probably localised on the ovary in a context of
endometriosis. Indeed, OSC_LEFTY2 did also express
FOXL2, which is known to be overexpressed by endo-
metrial cells in endometriosis [69].
Most cancer cell subclusters (Tum) also clustered in a

patient-specific manner (Fig. 1C, Additional file 3: Figure
S5A) but not in a tissue-specific manner. For instance,
Tum_KRT17, and to a lesser extent Tum_KRT6A, con-
tained cells originating from both the primary as well as
the metastatic sites (omentum and peritoneum) from pa-
tient 1 (Additional file 3: Figure S5B).
Finally, we also calculated the Shannon index [48] to

evaluate patient or sample bias across the subclusters
(Additional file 3: Figure S5C). As expected, Shannon in-
dices were low (≅0) for tumour subclusters and tissue-
specific subclusters (DC_CD207, M_MMP9, OSC_
STAR, OSC_LEFTY2), indicating dominance of patient
or sampling site (omentum vs non-affected ovary) re-
spectively. The other dendritic and myeloid cell subclus-
ters, as well as T, B and endothelial cell subclusters
showed high indices (≅ 1.5), confirming the even distri-
bution of samples across these subclusters. However,
several fibroblast subclusters had a low Shannon index
(≅ 0.5) implying the need for further investigation of
possible batch effects.
First, we excluded misclassification of cancer cells in

fibroblast subclusters based on copy number alterations
(CNA). We confirmed that the CNA profile of fibroblast
subclusters differed from the CNA profile of the macro-
dissected tumour of patient P1 (Fig. 1C), and also con-
trasted the CNA profile of cancer versus stromal clusters
using inferCNV (Fig. 1E). Next, we applied canonical
correlation analysis (CCA) and pySCENIC and evaluated
batch effects in fibroblasts after this method of clustering
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(see “Methods”). This resulted in 9 CCA-aligned anno-
tated subclusters of which 2 contained doublets, while
pySCENIC identified 9 different subclusters based on
their underlying gene regulatory networks (Additional
file 3: Figure S5D). Subsequently, Shannon indices were
calculated for all three alignments, demonstrating the
highest Shannon indices and therefore the lowest patient
bias in CCA-aligned subclusters (Additional file 3: Figure
S5C). Indeed, Shannon indices of CCA-aligned subclus-
ters were around 1–1.5, which is similar to the other
non-tissue-specific PCA-aligned stromal subclusters.
Therefore, CCA-aligned fibroblasts subclusters were
used for further downstream analysis. For all other
major cell types, PCA-aligned subclusters were retained.

Functional annotation of 32 stromal cell subtypes in
HGSTOC.
We then functionally annotated all 35 identified stromal
subclusters by differential gene expression analysis for
known marker genes. Next, we used the transcriptomic
profiles of 49 stromal cell phenotypes generated on vari-
ous cancer types (including HGSTOC) by scRNA-seq
and functionally annotated by Qian et al. [64] to finetune
these 35 subclusters. Despite the large difference in
number of cells analysed (18,403 vs. 233,591, respect-
ively), 33 of the 35 subclusters showed a comparable
transcriptional profile. However, a more detailed com-
parison let us to merge 4 cell subclusters (because a
much smaller subcluster with similar expression as a lar-
ger subcluster identified by Qian et al. [64] was found).
One additional subcluster of capillary endothelial cells
(EC_CA4) was identified by increasing resolution of the
endothelial cell subclustering up to 2.0. Two subclusters
did not match with a transcriptomic profile described by
Qian et al. [64], i.e. FB_COL27A1 fibroblasts and OSC_
LEFTY2 granulosa cells, but were considered as separate
subclusters, as discussed above. Finally, compared to
Qian et al. [64], we did not identify some subclusters be-
cause they were rare in ovarian cancer or consisted of
too few cells and therefore failed to cluster separately. A
comprehensive overview of these subclusters or cellular
phenotypes relative to Qian et al. is shown in Additional
file 6: Supplementary file 1 and Additional file 7: Table
S5.
Overall, 32 cellular phenotypes were considered for

downstream analysis, including 2 BC subclusters, 4 TC
subclusters, 2 NK cell subclusters, 5 myeloid and 1 mast
cell subcluster, 4 DC subclusters, 5 EC subclusters, 7 FB
subclusters and 2 subclusters containing OSC (Fig. 2A).
All subcluster metrics (variable genes, PC/CC, reso-
lution) and top 50 genes that were differentially
expressed by each subcluster are highlighted in Add-
itional file 8: Table S6. After curation of our subclusters,

Shannon indices again confirmed absence of clustering
bias (Additional file 3: Figure S5C).
Finally, because Qian et al. profiled 4 out of 7 patients

enrolled in this study, we assessed the number of cells
with an identical annotation in both studies. Remarkably,
98.5% of cells were attributed to the same cell type (Fig.
2B). This robust overlap in major cell type annotation
was confirmed by a normalised mutual information of
0.94. At a subcluster level (see Additional file 6: Supple-
mentary file 1), we obtained an identical annotation for
85.6% of the cells (Fig. 2C) and a normalised mutual in-
formation of 0.83 (Additional file 9: Table S7). We there-
fore consider our clustering strategy to be highly robust
and functionally relevant.

Several cellular subclusters correlate with outcome of
HGSTOC
Next, we selected for each subcluster a unique set of
transcriptomic markers (TMs) (Fig. 3A). Based on differ-
ential expression, we selected a set of marker genes for
each of the subclusters with the FindMarker function in
Seurat and then filtered these candidate marker genes by
comparing their expression across all the major cell
types (see “Methods”), selecting 2476 potential transcrip-
tomic markers. After studying expression of each TMs
in the intended subcluster, in the subcluster with the
2nd highest expression of that TM and after considering
the mean number of cells expressing the TM across all
subclusters, we arbitrarily considered 3 additional cri-
teria to select TMs (Fig. 3B). First, we added the restric-
tion that a TM must be expressed in > 40% of the cells
of the respective subcluster, eliminating 584 genes. Sec-
ondly, a TM should be expressed in < 50% of the cells of
the subcluster with the 2nd highest expression of that
TM, further eliminating 794 genes. Lastly, another 289
TMs were excluded as these were detected in > 10% of
the cells expressed in the subcluster with the median ex-
pression of that TM across all subclusters (Fig. 3A, see
“Methods”). Overall, 809 TMs met all the abovemen-
tioned criteria, representative for 42 of 43 subclusters
(Fig. 3C, Additional file 3: Figure S6). For capillary endo-
thelial cells EC_CA4, we detected 2 TMs (PRSS23 and
SLC52A3) none of which survived the additional quanti-
tative filtration. The full list of TMs per subcluster is
summarised in Additional file 10: Table S8.
The final number of TMs per subcluster ranged from

1 to 86. Interestingly, 7 of the 10 subclusters with few
TMs contained T cells and myeloid cells, which are
known to be phenotypically linked to each other [43, 64]
(Additional file 10: Table S8), thereby illustrating that it
is challenging to select specific TMs for these subclus-
ters. We additionally performed xCell [59] as an alterna-
tive gene signature-based deconvolution method. In
purified cell lines, the xCell algorithm selected gene
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signatures for 64 immune and stromal cell types. As
these 64 cell types contain non-ovarian cell types, we
mimicked the xCell pipeline starting from our 43 single-
cell subclusters, resulting in 43 new gene enrichment
signatures (see “Methods”).
Next, we used both the 42 sets of TMs and the 43

xCell signatures to estimate the prevalence of each sub-
cluster in expression profiles of bulk samples and to

explore which of the subclusters were associated with
survival. After z-score transformation of bulk expression
datasets derived from 6 published cohorts entailing 1467
HGSTOC patients (Table 2), we first calculated an
enrichment score for each subcluster based on our set of
TMs and the xCell enrichment signatures (see
“Methods”). For the TMs, this score was referred to as
the Subcluster-Specific Z-score (SSZ score) and
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Fig. 2 Comparative analysis of subcluster identification between this study and the pan-cancer blueprint. A Heatmap illustrating the
expression of marker genes for cell type annotation as defined by Qian et al. [64] across all independently clustered myeloid cell, T cell,
fibroblast, endothelial cell, B cell, ovarian stroma cell and dendritic cell subclusters. B, C Subgroup analysis comparing the major cell type
(B) and cell subtype (C) annotation of 8595 cells from 4 patients included in both the pan-cancer blueprint. Line plots illustrate the
correspondence of major cell type annotation (B) and phenotype annotation (C) independently attributed by our analysis (left) and Qian
et al. [64] (right). One line represents one cell. As tumour cells were not annotated by Qian et al. [64], only the tumour cells being
misclassified to stromal compartments were visualised
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Fig. 3 (See legend on next page.)
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represented the average of all z-scores of the TMs of one
particular subcluster. Subsequently, we correlated the SSZ
scores and xCell scores with overall survival (OS) of these
1467 HGSTOC patients performing a Cox proportional
hazards regression model using FIGO stage, debulking
status (residual disease) and age as covariates. SSZ scores
and xCell enrichment scores were implemented as con-
tinuous values across the 6 individual datasets.
Meta-analyses of the 6 Cox proportional hazards re-

gression analyses (1 per dataset) based on either the SSZ
scores or xCell enrichment scores, identified respectively
9 and 14 prognostic subclusters (SSZ scores: Additional
file 11: Table S9 and xCell scores: Additional file 12:
Table S10). Of these prognostic subclusters, 6 were iden-
tified as prognostic by both analyses (Table 3) and there-
fore retained for further investigation. It concerned
mesothelial cells (FB_CALB2), myofibroblasts (FB_
MYH11), transforming growth factor ß-driven cancer-
associated fibroblasts (FB_COMP), tumour subcluster
Tum_BAMBI and lymphatic endothelial cells (EC_

PROX1), which had an adverse effect on outcome, while
plasma cells (BC_IGHG1_PRDM1high) were associated
with improved OS.
After Benjamini-Hochberg correction for multiple test-

ing, BC_IGHG1/PRDM1high and FB_CALB2 remained
significant in both meta-analyses, while this was only the
case in one of both meta-analyses for FB_MYH11, FB_
COMP and Tum_BAMBI. Interestingly, lymphatic endo-
thelial cells EC_PROX1 did not remain significant after
multiple hypothesis testing in both analyses. Subcluster-
specific hazard ratios (HR), p values and false discovery
rate-corrected p values using the Benjamini-Hochberg for
the 6 prognostic subclusters method are highlighted in
Table 3. Iterative analysis using 500 random gene sets, con-
firmed, in only 2.4% of iterations, the same or larger num-
ber of significant subclusters obtained after Benjamini-
Hochberg correction.
Only TCGA [4] and Tothill et al. [19] reported informa-

tion on the sampling site (ovary, peritoneum, omentum).
Of them, TCGA [4] included almost exclusively ovarian

(See figure on previous page.)
Fig. 3 Transcriptomic markers (TMs): filtering strategy and effect on survival. A Flowchart illustrating the process used to select 809 TMs. B
Boxplots illustrating the distribution of the detection rate of each candidate marker gene surviving the selection within and across the major cell
types using the Wilcoxon rank sum test (see “Methods”). Shown are the detection rates of each candidate TMs in the targeted subcluster, in the
subcluster with the 2nd highest expression of that TMs as well as the median detection rate across all subclusters. Cut-offs for further selection of
appropriate TMs were arbitrarily chosen based on this distribution, eliminating all TMs with less than 40% detection rate in the targeted
subcluster (yellow), more than 50% detection rate in the subcluster with the 2nd highest expression (grey) and more than 10% median
expression across all subclusters (orange). C t-SNE of all 18,403 cells visualising the cells classified into the 6 prognostic subclusters based on PCA/
CCA alignment on the blue t-SNE as well as the expression of a transcriptomic marker for each of these subclusters across all cells on the grey t-
SNE, including IGHG2 for plasma cells (BC_IGHG1_PRDM1), CCL21 for lymphatic endothelial cells (EC_PROX1), MYH11 for myofibroblasts
(FB_MYH11), ITLN1 for the mesothelial cells (FB_CALB2), SUGCT for the TGF-β-driven cancer-associated fibroblasts (FB_COMP) and BAMBI for the
cancer cell subcluster Tum_BAMBI. D Kaplan-Meier curves for each of the six prognostic cell phenotypes stratifying 1467 patients from 6 public
cohorts (TCGA [4], Bonome et al. [57], Tothill et al. [19], Bentink et al. [56], Ferriss et al. [58] and Konecny et al. [20]) in 3 artificial groups based on
the presence of a SSZ score in the highest (> 66%, T3), medium (33–66%, T2) and lowest tertile (< 33%, T1) of SSZ scores across the whole
dataset. Differences in survival time as well as the log-rank p values between group T3 and T1 are indicated. The patients still alive at the time of
analysis were censored at the time they were last followed up. In contrast to the meta-analysis used to select these 6 prognostic cell phenotypes,
the survival curves and the log-rank p values were unadjusted for covariates (age, FIGO stage, residual disease). As a consequence, lymphatic
endothelial cells (EC_PROX1) lost their statistical significance (p = 0.059)

Table 3 Prognostic subclusters common to both methods after meta-analysis of Cox proportional hazards regression model in 6
cohorts of HGSTOC patients

Subcluster SSZ score xCell enrichment score

HR [95% CI] p value BH adj. p value HR [95% CI] p value BH adj. p value

BC_ IGHG1_PRDM1 0.82 [0.74–0.92] < 0.001 0.007 0.08 [0.01–0.50] 0.007 0.049

FB_CALB2 1.47 [1.20–1.81] < 0.001 0.007 57.73 [9.34–357.00] < 0.001 < 0.001

FB_MYH11 1.25 [1.05–1.50] 0.014 0.099 106.52 [14.3–790.0] < 0.001 < 0.001

FB_COMP 1.23 [1.10–1.37] < 0.001 0.007 4.95 [1.29–19.02] 0.020 0.091

TUM_BAMBI 1.47 [1.09–1.99] 0.012 0.099 34.11 [4.89–238.10] < 0.001 0.004

EC_PROX1 1.29 [1.00–1.65] 0.049 0.229 10.35 [1.42–75.13] 0.020 0.091

Subclusters significantly affecting OS based on two different scoring methods: subcluster-specific z-score (SSZ score; using transcriptomic markers) and the xCell
enrichment score (see “Methods”). The meta-analysis hazard ratios (HR) for overall survival, p values and the Benjamini-Hochberg-corrected (BH) p values are
included. Full list of all HR and p values for all subclusters in both meta-analyses can be found in Additional file 11: Table S9 (SSZ scores) and Additional file 12:
Table S10 (xCell). However, the hazard ratio values are not combined in any way between subclusters or between scoring systems and meta-analyses were
conducted per individual subcluster and scoring system. Phenotypes highlighted in the table were chosen based on p values of their meta-analyses which are
scale independent
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tissue (500/503 samples) while Tothill et al. [19] presented
a more diverse cohort, including 161 samples from ovar-
ian tissue and 64 samples from metastatic peritoneal le-
sion. As a result, no meta-analysis could be performed to
investigate to what extent sampling site influenced the
survival analysis.
To illustrate the clinical impact of these subclus-

ters, we also performed a Kaplan-Meier analysis
illustrating the difference in survival time based on
the abundance of each prognostic subcluster using
the SSZ scores. In particular, for each prognostic
subcluster, we calculated the SSZ score and divided
all 1467 HGSTOC patients into the high (> 66%,
T3), medium (33–66%, T2) and low (< 33%, T1) SSZ
score bins. The difference in survival time is shown
in Fig. 3D.
Next, we described the characteristics of the 6 com-

monly identified prognostic cellular phenotypes.

Mesothelial cells promote a pro-inflammatory
microenvironment in HGSTOC.
Fibroblasts are well known to promote tumour pro-
gression and migration. Especially, cancer-associated
fibroblasts (CAFs) facilitate epithelial-to-mesenchymal
transition (EMT) and neo-angiogenesis. Remarkably,
we observed that, in addition to CAFs (discussed
below), two other fibroblast subclusters originating
mainly from non-affected tissue (Figs. 1C and 4A–B),
i.e. mesothelial cells (FB_CALB2) and myofibroblasts
(FB_MYH11), were associated with poor outcome.
Mesothelium-derived fibroblasts (FB_CALB2) were
characterised by co-expression of CALB2, WT1, MSLN
and keratins (KRT8, KRT18) [70] (Fig. 2A). FB_CALB2
contained cells from all patients and all different ana-
tomic sites, but was enriched in adjacent normal and
malignant omental tissue (Fig. 4B). FB_CALB2s
expressed high levels of pro-inflammatory cytokines
(IL6 and IL18) and IL6-associated genes promoting fi-
brosis (COL8A1, CXCL16) and inflammation (CCL2,
CXCL1, IL6ST; Fig. 4C). IL6 is known to promote cell
growth, migration, neo-angiogenesis and chemothera-
peutic resistance in ovarian cancer [71]. Metabolic
pathway analysis showed an upregulation of pathways
involved in lipid-metabolism (adipogenesis, bile acid,
fatty acid metabolism, cholesterol haemostasis) as well
as an activated TNFα NF-κß pathway [72], responsible
for the IL6 production (Fig. 4D). Regulatory analysis
with pySCENIC confirmed activation of transcription
factor STAT3, which is known to interact with IL6
(Fig. 4E) [73] as well as an upregulation of transcrip-
tion factors involved in adipocyte differentiation
(SIX4, FOSL1) and fatty acid metabolism (NKX2-8)
(Fig. 4E).

Mature IgG-secreting plasma cells promote antitumour
activity
B cells were present in all patients, although their preva-
lence varied quite considerably: 70% of B cells were re-
trieved from patient P2, while patient P1, P4 and P7
together contributed to < 5% of B cells (Fig. 5A, B). It is
noteworthy that it has earlier been shown that the pro-
portion of B cells varies widely in HGSTOC tumours
[74]. BC_IGHG1_PRDM1high expressed high levels of
PRDM1 (alias BLIMP1) as well as plasma cell differenti-
ation markers (CD27, CD38 and SDC1) [74, 75] and im-
munoglobulins (IGHG1, IGHG2 and IGHG3) confirming
that they represented mature (post-germinal centre)
antibody-secreting plasma cells (Fig. 5C). The predomin-
ant antibody subtypes in HGSTOC were IgG1 and IgG3.
Interestingly, these cells also expressed TNFRSF17 (B
cell maturation antigen) which is essential for the sur-
vival of long-lived plasma cells [74]. TNFRSF17 expres-
sion was restricted to plasma cell high tumours
regardless of the presence of other tumour-infiltrating
lymphocytes (T cells, memory B cells) and linked to an
improved survival in ovarian cancer [74]. Transcription
factor analysis showed activation of transcription factor
XBP1 (Fig. 5D), required for plasma cell differentiation,
immunoglobulin production and plasma cell survival
[76, 77].

Myofibroblasts and TGF-β-driven cancer-associated
fibroblasts negatively affect OS
Beside mesothelial cells, 2 other subtypes of fibroblasts
containing myofibroblasts (FB_MYH11) and TGF-β-
driven cancer-associated fibroblasts (FB_COMP) were
linked to a decreased survival.
Myofibroblasts originated either from non-affected

ovarian tissue or, to a lesser extent, from peritoneal metas-
tases (Fig. 4B), and were characterised by high expression
of ACTA2 and MYH11, two established myofibroblast
markers. Among other genes related to myogenesis (PLN,
MEF2C and CNN1), these cells expressed a distinct set of
integrins (ITGA7, ITGA8, ITGA10) and focal adhesion
kinase PTK2 (Fig. 4C). Release of integrins induces auto-
phosphorylation of PTK2 and regulates cell motility by
the cyclic assembly and disassembly of focal adhesion
complexes in myofibroblasts [78]. Moreover, although all
fibroblasts express S100A4, FB_MYH11s showed the high-
est expression of S100A4. S100A4 regulates phosphoryl-
ation and filament assembly of myosin II (MYH11).
Regulatory analysis with pySCENIC demonstrated an up-
regulation of MZF1 and FOXL1 transcription factors (Fig.
4E), indicative for an active myogenesis. Indeed, gene set
enrichment analysis (GSEA) confirmed the upregulation
of myogenesis and inflammatory response (AXL, SLC7A2),
while apoptosis, hypoxia, IL6/JAK/STAT3 signalling and
interferon alpha and gamma response were suppressed
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(Fig. 4D). Although the TGF-β signalling pathway is often
described as a key modulator explaining the malignant po-
tential of myofibroblasts, FB_MYH11s originated mostly
from adjacent normal tissue and did not show upregula-
tion of this pathway.
We identified 3 types of CAFs (FB_COL27A1, FB_

SERPINE1 and FB_COMP) but only the latter negatively
affected OS. FB_COMPs were present in all patients and

in all tumour biopsies (Figs. 1C and 4B). As expected,
FB_COMP, FB_SERPINE1 and FB_COL27A1 all showed
active EMT, as illustrated by high metalloprotease
(MMP2, MMP14, MMP11) and collagen (COL10A1,
COL11A1, COL5A1, COL1A1, COL27A1) expression,
enabling these cells to degrade the extracellular matrix
and escape from the primary tumour site to metastasise
(Fig. 4C). COL1A1, COL11A and Thrombospondin-1
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(THBS1) are indeed associated with tumour invasiveness
and poor prognosis in ovarian cancer [79]. Despite similar-
ities in gene expression between CAF clusters, metabolic
pathway analysis revealed the TGF-β pathway as a key
pathway inducing EMT in FB_COMPs (Fig. 4D). This was
demonstrated by high expression of TGF-β-associated
genes, including COMP, LTBP2, SKIL, TGFBI, PDGFC and
THBS1 (Fig. 4C). Regulatory analysis demonstrated an acti-
vation of SIX1 (Fig. 4E). SIX1 induces EMT and is found to
be a crucial mediator to the switch of the TGF-β signalling
pathway from a tumour suppression to tumour promotion
[80]. Furthermore, as expected for CAFs, glycolysis, hypoxia
and apoptosis were upregulated (Fig. 4D) [81].

A clear cell adenocarcinoma-like phenotype associated
with poor outcome
All subclusters consisting of malignant cells were mostly
patient-specific (Figs. 1C and 6A,B). From the 11 cancer
cell subclusters identified in these 7 patients, only one
phenotype (Tum_BAMBI) was linked to worse survival.
Tum_BAMBI contained the largest number of cells ori-
ginating from patient P3, who had a mixed high-grade
serous tumour with clear cell elements. Based on the ab-
sence of WT1 expression (Fig. 6C), this cluster most
likely contained cells from the clear cell component of
the tumour [82], which is another histopathological type
of epithelial ovarian cancer characterised by a worse

Fig. 5 Subclustering of B cells. A, B t-SNE plots showing the annotated B cell subclusters generated by PCA-aligned methods (A), as well as the
fraction of B cells originating from each patient, from the different sampling sites (ovary, omentum, peritoneum) and the different types of tissue
(normal vs tumour) (B). C Violin plots illustrating the expression of maturity markers (CD38, SDC1, CD27, PRDM1), immunoglobulins (IGHG1, IGHG2,
IGHG3, IGHA1) and inflammatory chemokines and receptors (TNFRSF17, CXCR3, CXCL13). D Percentage of cells demonstrating transcription factor
activity (regulons) across B cell subclusters (pySCENIC)
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prognosis compared to HGSTOCs [83]. Molecular path-
way analysis confirmed EMT and IL2/STAT5 signalling
in particular to be enriched in Tum_BAMBI (Fig. 6D).
This was accompanied by elevated expression of matrix
metalloproteases (MMP2, MMP14), collagens (COL1A1,
COL1A2, COL3A1) and classical EMT markers (TWIS
T1, ZEB1, WNT5A and SNAI2), while epithelial markers
were downregulated (absence of EPCAM) (Fig. 6E).

Importantly, in the current study, bulk RNA cohorts
were composed of HGSTOCs only and pure clear cell
adenocarcinomas were excluded. Nevertheless, some
HGSTOC samples expressed high levels of the TMs
expressed by Tum_BAMBI and were correlated with
poor outcome. Interestingly, expression of the marker
gene BAMBI, a TGF-β pseudoreceptor involved in EMT
and constitutive IL2/STAT5 signalling, has previously
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Fig. 6 Identification of distinct sets of cancer cells. A, B t-SNE plots showing the annotated cancer cell subclusters generated by unaligned PCA
methods (A) as well as the distribution of cancer cell subclusters across patients and different sampling sites (ovary, omentum, peritoneum) (B).
C t-SNE visualisation of 6 tumour subclusters originating from patient 3 with mixed HGSTOC-clear cell histopathology. Tum_BAMBI, Tum_ARNT2,
Tum_DNAH5 and Tum_PTPRZ1 lacked expression of WT1 suggesting a clear cell origin of these subclusters, while Tum_KRT6A represents the
HGSTOC component. D Heatmap showing metabolic activity of the tumour subclusters. E t-SNEs with marker gene expression indicating an
active EMT pathway
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been correlated with tumour growth, tumour invasion
and carboplatin resistance in HGSTOC [84, 85]. Overall,
this suggests that some HGSTOC tumours can harbour
a clear cell-like phenotype [86].

Lymphatic endothelial cells promote lymph node
metastasis in HGSTOC
The subcluster EC_PROX1 contained cells from all pa-
tients and all localisations, both from non-tumour and
tumour tissue (Fig. 7A,B). Based on the expression of
prospero homeobox protein (PROX1), Podoplanin
(PDPN) and lymphatic vessel endothelial hyaluronan re-
ceptor (LYVE-1), these cells are considered to be lymph-
atic endothelial cells. They also expressed FLT4 (alias
VEGFR3) known to promote proliferation, differenti-
ation and migration of lymphatic endothelial cells [87,
88] (Fig. 7C). Furthermore, EC_PROX1 highly expressed
CCL21, a ligand of CCR7, important for lymphocyte and
dendritic cell trafficking [89] (Fig. 7C). Recently, the
interaction between CCR7-CCL21 was identified as a key
paracrine mediator promoting migration of tumour cells
towards lymphatic endothelial cells in breast cancer
cells, and hence favouring tumour lymph node metasta-
sis [88, 89]. Furthermore, pathway analysis confirmed an
upregulation of the TNFα NFκβ pathway which induces
enhanced proliferation and migration of lymphatic endo-
thelial cells and can modulate lymphatic metastasis
through this particular CCR7-CCL21 axis [90] (Fig. 7D).
Besides a high expression of transcription factor PROX1,
gene regulatory network analysis (pySCENIC) showed an
increased activity of TBX1 (Fig. 7E) which enhances
VEGFR3 expression by binding to an enhancer element
in the VEGFR3 gene and is required for lymphatic vessel
development [91].

Cell phenotypes contributing to the HGSTOC molecular
subtypes
Subsequently, we used our scRNA-seq data to explore
the cellular heterogeneity of the four molecular subtypes
underlying HGSTOC. We first assigned a molecular sub-
type based on bulk RNA-seq data from each of the 7 tu-
mours using 4 previously published molecular subtyping
algorithms [20–22, 92]. Only for 2 patients (P1 and P2),
the 4 algorithms assigned the same molecular subtype
(Fig. 8A), illustrating the lack of agreement between
these 4 approaches to subtyping. We chose the Consen-
susOV algorithm [22] to determine the molecular sub-
types of our study cohort because this algorithm
determines a consensus subtype label uniting the 3 ori-
ginal subtyping methods [20, 21, 92]. Interestingly, using
ConsensusOV, we could also confirm the previously re-
ported prognostic effect of the molecular subtypes [3, 4,
18, 20] in the 6 published cohorts entailing 1467
HGSTOC patients (Fig. 8B; p < 0.001).

Next, we scored all 18,403 single cells individually for
each of the 4 molecular subtype signatures using the
ConsensusOV algorithm and illustrated for each of the
molecular subtypes the distribution of these scores
within each subcluster (Fig. 8C). Subsequently, we com-
pared the distribution of these scores for each subcluster
in each subtype, enabling us to interpret relative trends
in the enrichment or depletion of a cell subcluster in the
four different molecular subtypes. Immune cells scored
very low for the mesenchymal and proliferative gene sig-
natures, but, as expected, high for the immunoreactive
and differentiated signatures. DCs and monocytes in
particular expressed genes linked to the immunoreactive
subtype, while B cells and T cells showed a similar scor-
ing for immunoreactive and differentiated subtypes (Fig.
8C). Interestingly, only the fibroblasts subclusters (with
the exception of FB_MYH11 myofibroblasts and FB_
CALB2 mesothelial cells) showed high scores for the
mesenchymal subtype, suggesting an important contri-
bution of genes expressed by fibroblasts to identify the
mesenchymal subtype in HGSTOC. Myofibroblasts (FB_
MYH11) and mesothelial cells (FB_CALB2) on the other
hand, as well as endothelial cells showed the highest
scores for the differentiated subtype (Fig. 8C).
Interestingly, tumour cells exhibited high scores for

either the differentiated or the proliferative molecular
subtypes of HGSTOC. Noteworthy, tumour subclus-
ters with high scores for the proliferative subtype
(Tum_BAMBI, Tum_KRT17, Tum_DNAH5, TUM_
ARNT2 and TUM_PTPRZ1) had relatively low scores
for the differentiated subtype, while inversely those
ranking high in the differentiated subtype (Tum_
MAGEC2, Tum_TNNT2, Tum_GJA5, Tum_ST6GAL-
NAC1, Tum_KRT6A and Tum_CRISP3) were mostly
negative for the proliferative subtype. GSEA con-
firmed the distinct gene expression between both
groups of tumour cell phenotypes. Tumour subclus-
ters expressing proliferative genes were enriched for
EMT, hypoxia and hedgehog signalling, all contribut-
ing to the more aggressive behaviour of proliferative
HGSTOC. On the other hand, tumour subclusters
with high scores for the differentiated subtype showed
an active interferon gamma and interferon alpha re-
sponse, suggesting, together with high scores in im-
mune cells, an active role of the immune system in
differentiated HGSTOC (Fig. 6E). Moreover, by study-
ing the results of our CNA analysis across both
groups (Fig. 1C), tumour subclusters scoring high for
the proliferative molecular subtypes showed a higher
degree of CNV instability while the tumour subclus-
ters more related to the differentiated molecular sub-
type showed less CNV instability. Identical analyses
using the three other methods were added in Add-
itional file 3: Figure S7.
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Cell-cell interactions differing between the HGSTOC
molecular subtypes
To further investigate how the different cellular pheno-
types in HGSTOC interact and how this differs across the

4 molecular subtypes, we applied CellphoneDB vs2.0 [93],
a pipeline which calculates the interactions between
groups of single cells (i.e. the subclusters; see “Methods”).
Assessment of all cells retrieved from our 7 patients

Fig. 7 Subclustering of endothelial cells. A, B t-SNE plots showing colour-coded the annotated endothelial cell subclusters (A) as well as the
distribution of the endothelial cells across patients, the different sampling sites (ovary, omentum, peritoneum) and type of tissue (tumour vs non-
tumour) (B). C t-SNE plots illustrating the gene expression of lymphatic endothelial cells (PROX1, LYVE1, CCL21, VEGFR3). D, E Heatmap of active
metabolic pathways (D) and transcription factor activity (E) in endothelial cell subclusters
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Fig. 8 Analysis of the single-cell composition of the four molecular subtypes of HGSTOC. A Venn diagram illustration the molecular subtype
classification of the 7 patients included in this study, by four different subtyping algorithms using conventional bulk RNA sequencing data.
Coloured dots indicate an individual label given to a particular patient. Dots positioned in the four-way intersection, indicate a unique label
agreed upon by all subtyping algorithms (patients 1 and 2). Patients 4, 5, 6 and 7 received two different labels, patient 3 three different labels.
Subtyping algorithms used were as follows: Helland et al. (Plos One 2011), Verhaak et al. (JCI 2013), Konecny et al. (JNCI 2014), ConsensusOV Chen
et al. (CCR 2018). B Kaplan-Meier curves indicating the difference in survival time across the 1467 HGSTOC patients included in our reference
cohort based on the ConsensusOV algorithm. Results of the log-rank test confirmed the prognostic value of the molecular subtypes (p < 0.001).
Patients still alive at the time of analysis were censored at the time they were last followed up. Survival curves are unadjusted for covariates and
the analysis includes all randomly assigned patients. C Molecular subtype scores of our 18,403 single cells calculated by the ConsensusOV
package. For all 18,403 single cells the differential gene expression data were used to individually score each cell for the 4 molecular subtype
signatures. Global scoring for all cells in one subcluster is visualised by boxplot presentation. Prognostic cell phenotypes were marked in bold.
D Violin plots showing the enrichment scores of the four molecular ConsensusOV subtypes in each cell of the 6 prognostic subclusters
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retained 81,893 significant interactions between the differ-
ent clusters (Additional file 13: Table S11). Most interac-
tions were detected between fibroblasts, tumour cells and
endothelial cells (Fig. 9A), and, in particular, the CAF FB_
COL27A1, FB_SERPINE1 and FB_COMP were involved
in most interactions (Fig. 9B).
Then, we stratified these interactions for each of the

molecular subtypes. Specifically, we applied Cellpho-
neDB to 4 tumours, each representing one molecular
subtype defined by bulk RNA sequencing (patient P1,
P2, P5 and P6, respectively labelled by ConsensusOV as
proliferative, differentiated, immunoreactive and mesen-
chymal types of HGSTOC) (Fig. 8A). We identified 39,
979 significant reactions in the proliferative tumour (P1),
36,254 in the differentiated tumour (P2), 48,982 in the
immunoreactive (P5) and 17,462 in the mesenchymal
tumour (P6) (Additional file 14: Table S12). Subse-
quently, we assessed which major cell types were charac-
terised by the highest number of interactions (Fig. 9C).
Although fibroblasts contributed to half of the interac-
tions found across the molecular subtypes, > 2 out of 3
interactions in the mesenchymal subtype involved one
or more fibroblast subclusters. Moreover, for every cell
type, the fraction of interactions involving fibroblasts
was remarkably higher in the mesenchymal subtype,
confirming the dominant role of fibroblasts in the mes-
enchymal HGSTOC.
Next, we investigated the specific interactions between

cellular phenotypes across the molecular subtypes. We
noticed for the proliferative subtype strong interactions
between CAFs (FB_COMP, FB_COL27A1 and FB_SER-
PINE1) and tumour subcluster Tum_KRT17 (Fig. 9D),
characterised by canonical Wnt (Wnt5A-FZD2/FZD3/
FZD5), fibroblast growth factor (FGF7-FGFR2/FGFR3,
FGFR1-FGF9/NCAM1) and transforming growth factor
β (TGFB3-TGFBR2/TGFBR3) signalling, all promoting
tumour growth. Beside the high prevalence of interac-
tions involving fibroblasts and endothelial cells, the im-
munoreactive tumour was, in contrast to the other 3
molecular subtypes, characterised by a high number of
interactions involving CD8+ effector memory cells (TC_
GZMK), early M1 macrophages (M_CCR2) and tumour-
associated macrophages (M_CCL18). For instance,
CXCL13, a chemokine C-X-C motif ligand, known to or-
chestrate cell-cell interactions that regulate lymphocyte
infiltration within the tumour microenvironment, was
exclusively expressed by all the abovementioned immune
cells in the immunoreactive patient and interacted with
ACKR4 expressed by CAFs (FB_COMP and FB_
COL27A1) and the tumour-associated macrophages (M_
MMP9). In the mesenchymal subtype, interactions were
dominated by fibroblasts and endothelial cells. Especially
pericytes (FB_RGS5), tip ECs (EC_ESM1) and capillary
endothelial cells (EC_CA4) interacted more frequently

compared with other molecular subtypes, demonstrating
the dynamic relationship between these two cell types in
promoting vessel sprouting via NOTCH signalling
(NOTCH1-DLL4, NOTCH4-DDL4). Moreover, the capil-
lary endothelial cells showed reciprocal interactions in-
volving the vascular endothelial growth factor pathway
(VEGFA-KDR/FLT1, NRP1/NRP2-VEGFA/VEGFB). Fi-
nally, in the differentiated HGSTOC patient, adipogenic
fibroblasts (FB_CFD) exhibited the most interactions
with ECs, especially the tip cells (EC_ESM1) and the
high endothelial venules (EC_ACKR1). These cells
showed a lot of interactions involving members of the
tumour necrosis factor receptor superfamily (LTBR-LTB,
LTA-TNFRSF1A/ TNFRSF1B, TNFRSF1A-GRN) regulat-
ing lymphoid organogenesis and supporting an efficient
immune response and apoptosis through activation of
the TNFα-κβ pathway [94] (Fig. 9D). Full list of interac-
tions can be found in Additional file 14: Table S12.
Finally, since each molecular subtype was enriched for

a specific tumour microenvironment consisting of spe-
cific cellular phenotypes, we explored to what extent the
molecular subtypes represented an independent prog-
nostic factor after correction for these 6 stromal pheno-
types. To this extent, we correlated the molecular
subtypes (ConsensusOV) with OS and repeated the cox
regression model using FIGO stage, debulking status (re-
sidual disease), age and the 6 cellular phenotypes (by
adding their respective SSZ scores to the model) as co-
variates. None of the molecular subtypes remained prog-
nostic (all p values > 0.05, Additional file 15: Table S13),
confirming that our stromal phenotypes explain, at least,
part of the association of the molecular subtypes with
outcome. Interestingly, when repeating the cox regres-
sion model, investigating the effect of the 6 prognostic
phenotypes while adding the ConsensusOV molecular
subtype labels as a covariate, only the mesothelial cells
(FB_CALB2) remained significant (p value 0.04), albeit
not surviving correction for multiple testing (BH-ad-
justed p value 0.26, Additional file 16: Table S14).

Discussion
Our scRNA-seq study showed the phenotypic hetero-
geneity of HGSTOC by identifying 11 cancer cell and 32
stromal cell subtypes originating from both the primary
ovarian tumour and its metastatic peritoneal or omental
lesions. The cancer cell subtypes showed a large degree
of patient specificity which is in line with recent work
published by Izar et al. [29], who investigated the expres-
sion of 6 types of EPCAM+ tumour cells from ascites of
HGSTOC patients, as well as with multiple single-cell
analyses on other epithelial cancer cells [95, 96]. This
patient-based clustering of tumour cells can be attrib-
uted to the unique genetic aberrations that accumulate
in each individual tumour. Nevertheless, several of our
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Fig. 9 Results of the CellPhoneDB analysis on our scRNA-seq dataset. A 81,893 significant interactions were retained based on predicted p values
for a ligand–receptor complex across two cell clusters, calculated using permutations in which cells are randomly re-assigned to a cluster. The
strongest interactions, based on the number of interactions found, were shown between fibroblasts, tumour cells and endothelial cells. B Graph
network representation of the interactions between subclusters. Only subcluster pairs with more than 170 interactions (i.e. 70% of pairs) are
displayed. Edges are weighted by number of interactions. On a subcluster level the strongest interactions are found between FB_COL27A1,
FB_SERPINE1 and FB_COMP. C Table illustrating the fraction of the interactions involving the different cell major cell types across the molecular
subtypes. Dendritic cells showed scarce interactions in mesenchymal HGSTOC (3% compared to 16–24% in the other molecular subtypes) but as
only 1 DC was detected in patient 6 the results for DCs in mesenchymal HGSTOC are not reliable. D Heatmaps visualising the distribution of the
significant interactions between the different cell phenotypes across the different molecular subtypes: patient P1 proliferative HGSTOC, patient P2
differentiated HGSTOC, patient P5 immunoreactive HGSTOC and patient P6 mesenchymal HGSTOC. Zoom-in on the molecular subtype-specific
interactions. Intensity of the interactions is measured is scaled by with the number of interactions between those two subclusters
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cancer cell subclusters also exhibited similarity to the
tumour cell subclusters identified by Izar et al. [29], sug-
gesting that at least some common oncogenic pathways
responsible for development and maintenance of
HGSTOC cancer cells exist. For example, by Izar et al.
identified subclusters with high expression of either
KRT17, KRT6A and MMP7 which is comparable with
our subclusters TUM_KRT17, TUM_KRT6A and Tum_
GJA5 respectively. Furthermore, the fallopian tube
secretory epithelial cell is gaining interest, as it repre-
sents the most important cell of origin in HGSTOC.
Lawrenson et al. [97] recently investigated the transcrip-
tomic profiles of ovarian surface epithelial cells and fal-
lopian tube secretory epithelial cells and compared them
to bulk RNA profiles of HGSTOC, confirming that most
of the HGSTOC derived from the latter. Furthermore,
Dinh et al. [98] performed single-cell RNA sequencing
on fallopian tube specimens of 8 healthy patients and
found a population of early secretory cells of which tran-
scriptomic profile was maintained in advanced HGSTOC
tumours. Interestingly, a lot of the proposed genes de-
scribing this early secretory cell subcluster (e.g. SOX17,
PAX8, CRISP3, THY1, EPCAM, NR2F2) were enriched
in our tumour subclusters Tum_MAGEC2, Tum_
KRT17, Tum_KRT6A, Tum_GJAH5, Tum_TNNT2 and
Tum_CRISP3, suggesting the fallopian tube to be the
cell of origin for these subclusters of tumour cells.
Remarkably, cells from Tum_KRT17 were derived

from both the primary and metastatic localisation. Al-
though intratumour heterogeneity has been extensively
described in ovarian cancer [7, 8, 99], the latter findings
suggest that cancer cells at different disease sites show
similar transcriptomic profiles and that intratumour het-
erogeneity, at least partially and in a treatment-naive set-
ting, is caused by differences in stromal cells. Indeed,
several stromal components (DC_CD207, M_MMP9)
showed an enrichment in a particular tissue. However,
we did not analyse ovarian and omental tissue from
every patient, thereby making it difficult to draw strong
conclusions and underscoring the need for further ana-
lysis to confirm this hypothesis.
The current sequencing experiment from different

tumour sampling sites enabled the detection of tissue-
specific cells, such as Langerhans-like dendritic cells
(DC_CD207) and lipid-associated macrophages (M_
MMP9) enriched in the omentum. Langerin (CD207) ex-
pressing dendritic cells are indeed residing in healthy
omental tissue [65] and the gut [100] where they play a
role in phagocytosis. Jaitin et al. [66] performed scRNA-
seq on human omental adipose tissue and also identified
lipid-associated macrophages as the most strongly ex-
panded immune cell subset in adipose tissue. Here, M_
MMP9 macrophages expressed several of these adipose
tissue-specific genes (e.g. CD36, FABP4, FABP5) as well

as TREM2, which is involved in phagocytosis, lipid ca-
tabolism and secretion of pro-inflammatory mediators
[66]. Interestingly, Olalekan et al. [30] recently charac-
terised 9885 omental cells from 6 ovarian cancer pa-
tients and correlated the abundance of several myeloid
populations (monocytes and macrophages) to high
omental disease burden.
Although we only sequenced cells from 7 HGSTOC

patients, we are confident that our study provides a
comprehensive overview of the HGSTOC microenviron-
ment, identifying most of the common stromal pheno-
types underlying HGSTOC. Indeed, we observed a large
overlap with the stromal phenotypes described by the
pan-cancer blueprint of Qian et al. [64]. Only for T cells
and myeloid cells, our study lacked power to identify all
the subclusters. Nevertheless, this detection ratio was in
line with Izar et al. [29] and Olalekan et al. [30], who
also analysed ~ 15,000 cells, identifying respectively 1
and 4 T cell subclusters and both 4 macrophage subclus-
ters. This further stresses the need to perform more in-
depth analyses on a larger number of immune cells.
Although several cell types have been suggested to in-

fluence survival in ovarian cancer [12, 101–103], we are
among the first to link transcriptomic profiles of individ-
ual cell phenotypes obtained from high-resolution
single-cell studies with overall survival. Based on the
xCell [59] deconvolution approach and another innova-
tive method to score presence of cell types using TM
genes, we discovered 6 cellular phenotypes of prognostic
relevance by retrospectively analysing bulk expression
data from 1467 HGSTOC patients. Firstly, mesothelial
cells FB_CALB2 were identified as a prognostic subclus-
ter. These cells showed active EMT as well as increased
expression of IL6 and its transcriptional downstream ac-
tivator STAT3. IL6 has recently been identified to modu-
late EMT in human peritoneal mesothelial cells of
patients undergoing long-term peritoneal dialysis
through activation of the STAT3 signalling pathway [73]
as well as in pancreatic ductal carcinoma, where it pro-
motes tumour growth and drug resistance [104]. Inter-
estingly, Izar et al. [29] also proposed the activation of
IL6 and JAK/STAT in a subgroup of fibroblasts and
HGSTOC cancer cells, suggesting it is involved in the
pathogenesis of malignant ascites and drug resistance.
MYH11/S100A4-expressing myofibroblasts FB_MYH11

are expected to promote cell motility, thereby promoting
metastasis and reduced survival. A correlation between
MYH11 and metastasis has indeed already been demon-
strated for lung and renal cell carcinoma [105, 106]. Al-
though the unfavourable properties of myofibroblasts have
frequently been demonstrated [105–107], it is usually con-
sidered that epithelial-to-mesenchymal transition (EMT)
induced by hypoxia or an active TGF-β pathway is the
mechanism underlying worse prognosis [108]. However,
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our data did not show elevated EMT nor hypoxia in the
myofibroblasts, involving other mechanisms to promote
disease progression. Transforming growth factor β-driven
cancer-associated fibroblasts FB_COMP also correlated
with reduced survival. TGF-β pathway is involved in EMT
[70, 109], tumour growth and metastasis [80] and resistance
to platin-based chemotherapy [110] in ovarian cancer. The
TGF-β pathway has also been shown to induce expression
of CCL21 in lymphatic endothelial cells EC_PROX1 pro-
moting the migration of tumour cells towards the lymph-
atic endothelial cells in breast cancer [89]. Also in ovarian
cancer, EC_PROX1 has been linked to lymphatic metastasis
and tumour cell invasion by inducing EMT [111]. Interest-
ingly, the last cell type reducing survival represented a
BAMBI-expressing tumour cluster with a clear cell-like
phenotype. Clear cell ovarian tumours represent a separate
subtype of ovarian tumours that is known to exhibit a
highly unfavourable prognosis. Overexpression of BAMBI
in ovarian cancer cells was previously associated with en-
hanced cellular proliferation, migration and reduced apop-
tosis, but a significant effect on OS has not yet been
reported in HGSTOC [110, 112]. Marchini et al. [110],
however, identified overexpression of BAMBI in recurrent
versus primary HGSTOC, suggesting that BAMBI could in-
duce therapeutic resistance to platinum. In this respect,
HGSTOC tumours overexpressing BAMBI could share fea-
tures with clear cell ovarian tumours [86].
The only phenotype favouring prognosis was plasma cells

BC_IGHG1_PRDM1. Although plasma cells have been as-
sociated with improved survival in lung [113], colorectal
[114] and breast cancer [115], their role in ovarian cancer
remains controversial [74, 116, 117]. However, Kroeger
et al. [74] recently demonstrated that IgG producing plasma
cells were strongly associated with presence of CD8+

tumour infiltrating T cells and that the latter only improved
survival in the presence of memory B cells, CD4 helper cells
and plasma cells. This suggests that these lymphocyte sub-
types promote an antitumour microenvironment.
An obvious question is whether these prognostic ef-

fects are independent of the arrayed site (i.e. the ana-
tomic localisation of the biopsy). This obviously is a
relevant question as peritoneum, omentum and ovary
tissue are characterised by different microenvironments.
Indeed, if a certain cell phenotype is enriched in periton-
eal or omental lesions compared to ovarian tissue, our
SSZ score or xCell scores could preferentially screen for
peritoneal and omental tissue which are in general
linked to more advanced disease (i.e. higher FIGO stage)
and poor outcome [118]. We can there hypothesise that
sampling site was, at least partially, corrected for by add-
ing FIGO stage as a covariate of the meta-analysis.
Lastly, we evaluated the distribution of both the

tumour and stromal cell compartment across the 4 mo-
lecular subtypes in HGSTOC and explored the presence

of molecular subtype-specific interactions using CellPho-
neDB. Although their impact on prognosis has often
been studied, Schwede et al. [25] recently demonstrated
that they lose their prognostic value after correction for
stromal cell proportion [25], hence illustrating the im-
portance of the stromal cell biology in HGSTOC. As
suggested by Schwede et al. [25], we demonstrated a
strong dominance of genes expressed by CAFs in the
mesenchymal subtype signature, while several tumour
cell phenotypes were mostly attributed to the prolifera-
tive and differentiated molecular subtype signatures.
Moreover, we demonstrated enrichment of cell pheno-
types correlating with poor outcome in the molecular
subtypes associated with poor outcome. Inversely, several
genes from immune cell phenotypes (especially macro-
phages) were enriched in the immunoreactive subtype,
which was linked to improved prognosis. These findings
confirm previous observations that bulk RNA profiles
from the microdissected stromal or cancer component
of mesenchymal HGSTOC tissue corresponded better to
respectively the mesenchymal or the differentiated mo-
lecular subtype of HGSTOC [25, 119] as well as to the
observations in recent single-cell studies from Izar et al.
[29] and Geistlinger et al. [120].
There are several implications related to this molecular

subtype analysis. Firstly, given the sparsity of scRNA se-
quencing data (average gene detection rate around 15–
25% in a single cell), not all markers routinely used to
describe a specific molecular subtype can be used to as-
sign a subtype. Instead, we estimated the enrichment of
each single-cell subcluster in all 4 molecular subtypes
and evaluated the relative contribution of each subclus-
ter in a given molecular subtype. Secondly, acknowledg-
ing the fact that the assignment of a tumour to the
immunoreactive and mesenchymal subtype is largely
guided by the most abundant cell type, being either im-
mune cells and fibroblasts respectively, in their biopsy,
these tumours are providing less information about the
actual cancer cell subclusters they contain. Indeed, our 6
cellular phenotypes were no longer prognostic when cor-
rected for molecular subtype, indicating that prevalence
of the cellular phenotypes codetermines the molecular
subtypes. Additionally, although we believe that the de-
tection of stromal cell phenotypes can be beneficial to
predict response to targeted treatment, one could won-
der about the contribution of the epithelial cell compart-
ment and whether the latter investigation is not needed
to more accurately classify HGSTOC based on the path-
way activity in cancer cells.
In line with Geistlinger et al. [120], we could divide

the tumour cell subclusters in two groups, one harbour-
ing a “differentiated” profile with an active immune re-
sponse (Tum_MAGEC2, Tum_TNNT2, Tum_GJA5,
Tum_ST6GALNAC1, Tum_KRT6A and Tum_CRISP3)
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and a second, exhibiting a proliferative signature with in-
creased EMT, hypoxia and hedgehog signalling, all con-
tributing to the more aggressive behaviour of proliferative
HGSTOC. Moreover, Geistlinger et al. [120] described
more amplifications, higher ploidy and more subclonal
copy number alternations in tumours with a proliferative
signature as compared to tumours with a differentiated
profile. They suggested that both groups represent a con-
tinuum starting with a more differentiated profile, while
progressing to a more proliferative signature at the end of
the timeline. Indeed, our proliferative subclusters also
showed an increased number of CNVs in comparison to
more differentiated tumour subclusters.
Finally, by applying CellPhoneDB, we could unravel

significant interactions between cell types within a
tumour biopsy and observe that the majority of the in-
teractions involved fibroblasts and endothelial cells. Ac-
knowledging the fact that data from 4 patients with
different molecular subtypes are too scarce to stipulate
strong conclusions, distinct interactions were found
across the 4 molecular subtypes. This could potentially
be interesting to develop novel therapeutic agents to
specifically target a particular molecular subtype.
Although this study already profiled a considerably large

number of single cells, future studies profiling a larger num-
ber of cells from additional patients, as well as more samples
from different anatomic localisations, are needed to confirm
our findings. Particularly, such studies could not only
strengthen our correlations with survival, but they could ad-
dress whether the site of the biopsy influences the observed
prognostic effects or whether other new stromal cell or can-
cer cell phenotypes are also contributing to overall survival.
Furthermore, besides refining the cellular phenotypes and
their prognostic value, additional studies should reveal
whether presence of these cellular phenotypes could also
have predictive value during HGSTOC treatment. Indeed,
recently targeted agents, such as antiangiogenesis, immune
checkpoint inhibitors and PARP inhibitors have been added
to first-line treatment with carboplatin and paclitaxel [121–
123]. We anticipate that scRNA-seq can assist in identifying
specific cellular phenotypes that contribute to predicting
and monitoring response to these treatments.

Conclusions
In conclusion, our single-cell analysis provides a high-
resolution overview of the tumour microenvironment of
HGSTOC, providing 43 new potential targets for therapy
and identifying 6 cellular phenotypes of prognostic rele-
vance. Furthermore, evaluation of molecular subtype signa-
tures in scRNA-seq data provides insights in the stromal
admixture of the established molecular subtypes in ovarian
cancer. We hypothesise that similar strategies will enable
discovery of predictive biomarkers, facilitating a more per-
sonalised and effective treatment of HGSTOC.
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