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Autoimmune diseases share a general mechanism of auto-antigens harming

tissues. Still. they are phenotypically diverse, with genetic as well as

environmental factors contributing to their etiology at varying degrees.

Associated genomic loci and variants have been identified in numerous

genome-wide association studies (GWAS), whose results are increasingly

used for polygenic scores (PGS) that are used to predict disease risk. At the

same time, a technological shift from genotyping arrays to next generation

sequencing (NGS) is ongoing. NGS allows the identification of virtually all -

including rare - genetic variants, which in combination with methodological

developments promises to improve the prediction of disease risk and elucidate

molecular mechanisms underlying disease. Here we review current, publicly

available autoimmune disease GWAS and PGS data based on information from

the GWAS and PGS catalog, respectively. We summarize autoimmune diseases

investigated, respective studies conducted and their results. Further, we review

genetic data and autoimmune disease patients in the UK Biobank (UKB), the

largest resource for genetic and phenotypic data available for academic

research. We find that only comparably prevalent autoimmune diseases are

covered by the UKB and at the same time assessed by both GWAS and PGS

catalogs. These are systemic (systemic lupus erythematosus) as well as organ-

specific, affecting the gastrointestinal tract (inflammatory bowel disease as well

as specifically Crohn’s disease and ulcerative colitis), joints (juvenile ideopathic

arthritis, psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis), glands

(Sjögren syndrome), the nervous system (multiple sclerosis), and the

skin (vitiligo).
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Introduction

Autoimmune diseases are a range of diseases in which the

immune response to self-antigens results in damage or

dysfunction of tissues. It can be systemic or can affect

specific organs or body systems. Autoimmune diseases are

characterized by a multifactorial etiology, in which genetic

factors interplay with environmental factors. Estimates of

heritability, that is, variability in occurrence of autoimmune

disease explained by genetic factors, vary considerably and

have been reported to be between 42 and 91% for pediatric

age-of-onset and lower for adult onset cases (1). Variation in

the human major histocompatibility complex (MHC) regions

harboring the human leukocyte antigen (HLA) genes is most

strongly linked to autoimmune disease (2). Beside HLA, other

genetic loci are shared between autoimmune diseases, with

first investigations finding 47/107 (44%) immune-mediated

disease risk variants associated with multiple, but not all such

diseases (3), and later work identifying 244 shared disease loci

(4). Accordingly, efforts are ongoing to unravel shared disease

mechanisms based on shared genetic profiles (5, 6). Such

genetics-driven systems approaches to autoimmune disease

can largely benefit from public resources of genome and

phenotype data as well as derived information. Here we

perform a survey of autoimmune disease-related content in

three such resources: (i) The NHGRI-EBI GWAS catalog (7)

reporting on genome-wide association studies (GWAS), (ii)

the newly established PGS catalog (8) having information on

polygenic scores (PGS) and (iii) the UK Biobank (UKB)

holding genetic and phenotypic data of ~500,000 people

from the UK (9) (for details on data processing, see https://

github.com/iwohlers/2022_autoimmune_review). While

GWAS aim to identify associations of a large number of

genetic variants with phenotypes or traits (10), the main goal

of PGS studies is to estimate the risk of developing a disease

or of the presence of a specific trait depending on the genetic

profiles (11).
Autoimmune diseases and their
relationships within biomedical
ontologies

An ontology is a controlled vocabulary, formalizing

domain knowledge into terms and their relationships. The

Experimental Factor Ontology (EFO) is a biomedical

ontology curated by the European Bioinformatics Institute

(EBI) and used by the GWAS and PGS catalog for the purpose

of disease classification (12). The part of EFO relating to

autoimmune disease is shown in Suppl. Table S1 (EFO

version 3.42.0; https://bioportal.bioontology.org/ontologies/
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EFO). It contains “is a” relationships between “parent” and

“child” terms, e.g., rheumatoid arthritis (child term) is an

autoimmune disease (parent term). The ontology branch of

child terms for autoimmune disease contains 120 terms

organized in up to five levels (Suppl. Table S1). For the

disease-related part of EFO, some terms have been taken

from other ontologies (denoted by IDs not starting with

“EFO”). Within the autoimmune disease sub-branch, 13

terms are taken from the Mondo disease ontology that is

also curated by EBI [https://bioportal.bioontology.org/

ontologies/MONDO; (13)]. Further, three terms are taken

from Orphanet, an online database of rare diseases and

orphan drugs (Copyright, INSERM 1997. available at http://

www.orpha.net) and one term from the disease ontology

[www.disease-ontology.org; (14)], cf. Suppl. Table S2.
Genomics data, genetic variation
and notable reference resources

Differences between genomic sequences are called genetic

variations. They are classified into single nucleotide variants

(SNVs), for which the base at a single position differs, indels,

which are insertions or deletions of size up to 50 bases, and

structural variants (SVs), which are genomic alterations of a

size larger than 50 bases. SNVs commonly found in a

population are also called single nucleotide polymorphisms

(SNPs). Genotyping arrays assess predefined, common

variants, i.e., SNPs. Genetic variations are specified with

respect to a specific reference genome. For humans, this is

GRCh38, the genome of the Genome Reference Consortium,

with its latest version 38.

Human SNVs have been well characterized. The first

milestone was the whole genome sequencing performed as part

of the 1000 Genomes Project, which resulted in “a global

reference of human genetic variation” based on the genomic

data of 2,504 individuals from 26 populations (15). The 1000G-

based genetic variation with respect to the reference genome was

overall 84.7 million SNVs, 3.6 million indels and ~60,000

structural variants; each individual carried 4.1 million to 5.0

million sites that differed from the reference genome. This first

comprehensive catalog of genetic variation was later extended by

whole genome sequencing of the Human Genome Diversity

Project (n=929) (16). Of the many, often national, genome

sequencing initiatives, gnomAD [n=71,702 whole genome

sequenced; (17)], Topmed [n=53,831 whole genome sequenced;

(18)] and the UK Biobank [UKB, n=150,119 whole genomes

sequenced; (19)] stand out in terms of sample size. Within the

UKB cohort, 585.0 million SNVs, representing 7.0% of all

possible human SNVs, 58.7 million indels and ~900,000 SVs

have been identified (19). Many of the SNVs, 46%, are carried by
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only one sequenced individual (called “singletons”) and only

3.4% (~20 million) have a frequency of more than 0.1% (19).
Autoimmune disease genome-wide
association studies (GWAS)

The main goal of GWAS is to identify associations of genetic

variants with a phenotype or trait without prior knowledge about

their genomic location. Although GWAS could in principle use

different kinds of genetic variants, to date almost always SNPs are

utilized (11). GWAS then consist of testing for associations of

SNPs with the phenotype or trait of interest. Since the first GWAS

about twenty years ago (20), more than 5,700 analyses have been

conducted, yielding more than 3,300 traits established to be

statistically associated with genetic variants (10).

Testing for associations between a phenotype or a trait and

genetic variants is based on a statistical model, and the type of

the model used depends on whether the phenotype or trait is

continuous (e.g. Body Mass Index (BMI)) or dichotomous (e.g.

presence or absence of an autoimmune disease). In the case of a

continuous phenotype or trait, a linear regression model is most

commonly used, whereas logistic regression is mostly applied for

dichotomous ones. Typically, the models are estimated for each

single variant separately. The typical GWAS output comprises,

for each variant, a report giving the ID of the variant according

to dbSNP (21), the effect allele, the statistical effect and the

corresponding p-value. Since GWAS test a large number of

genetic variants at the same time, the statistical significance

threshold has to be corrected to avoid false positive results. The

widely used approach for this aim is the so-called Bonferroni

correction (10, 22), consisting of dividing the overall statistical

significance threshold by the total number of independent tests,

in this case, the tested independent variants. As a consequence, a

threshold of 5*10-8 is commonly used in practice, since the

human genome contains approximately one million common,

independent variants (10).

The GWAS catalog is a publicly available, manually curated

resource, which contains published GWAS and association results

and is developed by the NHGRI and EMBL-EBI (7). Catalog data

is provided for the latest reference genome version (GRCh38.p13)

and variant database version (dbSNPBuild 154). GWAS catalog

source files of studies and associations have been used in our

survey (files gwas-catalog-studies_ontology-annotated.tsv and

gwas-catalog-associations_ontology-annotated.tsv from http://

ftp.ebi.ac.uk/pub/databases/gwas/releases/2022/05/23/), and

entries with “MAPPED_TRAIT_URI” an autoimmune EFO IDs

(Suppl. Table S2) were extracted. Overall, the GWAS catalog

studies contain 442 autoimmune disease GWAS (“STUDY

ACCESSION”) published between 2006 and 2022 in 58 different

journals with 221 unique PubMed IDs (Suppl. Table S3); these

studies have been conducted on 377 different datasets (according
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A subset of studies (n=179 (47%)) reported no genome-wide

significant variants.

The GWAS catalog contains 5,023 associations that cover 41

autoimmune diseases (according to EFO ID) based on 253

datasets (according to column “INITIAL SAMPLE SIZE”)

relating to 200 unique PubMed IDs (Suppl. Table S4). These

associations correspond to 3,212 unique SNPs (according to

column “SNPS”) and 1,760 unique genes or gene combinations

reported in the literature (column “REPORTED GENE(S)”;

Supplementary Table S4).
Polygenic scores (PGS) developed
for autoimmune diseases

GWAS are typically used for traits with an underlying

polygenic architecture, that is, many genetic variants just show

small effect sizes on the phenotype or trait of interest. As a result,

prediction performances of single associated variants are

generally poor. Therefore, polygenic scores, also termed “risk

scores” if applied to a disease, are used to overcome these

limitations. The main idea of predictive models based on

polygenic scores is to combine effects of single genetic variants

to expect a stronger association with the response phenotype or

trait. The standard approach used for quantifying genetic

liability in the prediction of disease risks are weighted

polygenic scores (11). Based on this, PGSs are generally

obtained as weighted sum scores of risk alleles using effect

sizes from GWAS. More recently, new statistical machine

learning approaches have emerged as a powerful approach for

the computation of PGS (23).

The PGS catalog is a database and website established

with the aim of making published PGS easily available and

allowing their systematic evaluation (8). We obtained PGS

catalog source files from https://www.pgscatalog.org/

downloads and extracted from the respective files via EFO

IDs all information related to autoimmune diseases:

polygenic scores (Suppl. Table S5), score development

samples (Suppl. Table S6), performance evaluation metrics

(Suppl. Table S7) and evaluation samples (Suppl. Table S8).

The database contains 18 autoimmune diseases for which 47

polygenic scores are published in 14 papers between 2018 and

2022 (cf. Suppl. Table S5). These have been developed with 15

different computational methods, mostly with the tools

snpnet [n=18 scores; (24)], using genome-wide significant

GWAS variants (n=7 scores), LDPred [n=6; version 1 and 2;

(25, 26)] or by applying pruning and threshold (n=4).

Corresponding to the method or tool applied for PGS

constructions, the number of variants considered in the

scores ranges from 3 to 6,907,112. Many cohorts of mainly

European and/or East Asian (largely Chinese) ancestry have
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been used for score development, mainly as source GWAS

underlying the respective score, but also for parameter

training (Suppl. Table S6). Further, a large number of PGS

have been developed using the UK Biobank. Autoimmune

PGS have been evaluated in 124 data sets (Suppl. Table S7)

yielding 225 performance assessments in 16 publications

(Suppl. Table S8). The most common performance measure

is the Area Under the Receiver-Operating Characteristic

Curve (AUROC), which shows the fraction of individuals

incorrectly classified as having the disease (false positive rate)

versus the fraction of individuals correctly classified as having

the disease (true positive rate) at different PGS score

thresholds. An AUROC value of 0.5 corresponds to a

random and a value of 1.0 to a perfect classification.

Typ i ca l l y , AUROC c la s s ifica t ion per fo rmance o f

autoimmune PGS are in the range from 0.56 to 0.99

(provided for n=124; Suppl. Table S8). Overall, according to

the PGS catalog, 16 different publications either constructed

and/or evaluated an autoimmune disease PGS (columns “PGS

Publication (PGP) ID” of Suppl. Table S5 and Suppl.

Table S8).
Genetic data and autoimmune
diseases covered by the UK Biobank

The UK Biobank (UKB) is the largest resource for human

genomic and phenotypic data available for global academic

health research, containing data from approximately 500,000

individuals from the United Kingdom (9). Its first release in 2018

contained UK Biobank Axiom Array-based genotypes

(m=825,927) imputed to m~96 million variants of these

individuals (9). In 2021, whole exome sequencing data of

454,787 of its individuals was released (with m~2 million

exonic SNVs) (27). In 2022 whole genome sequencing-based

variants for n=150,119 individuals resulted in overall m~585

million SNVs, ~59 million indels, 2.5 million microsatellites and

900k structural variants (19), representing a nearly complete

variant profile for these individuals.

UK Biobank provides medical diagnosis according to the

International Statistical Classification of Diseases and Related

Health Problems (ICD) of the World Health Organization

(WHO), whose current version is ICD-10. Besides ICD-10

codes gathered from medical records, UK Biobank provides

diagnoses that are self-reported by participants, referred to by

dedicated UKB-internal IDs (starting with “20002_”). To

extract autoimmune disease information from UK Biobank,

we used the mapping file internal to the ontology mapping

tool Zooma of the EMBL-EBI ontology lookup service (28)

which was generated as part of a large-scale, comprehensive

mapping of UK Biobank ICD-10 codes and self-reported

diseases to EFO terms (https://github.com/EBISPOT/EFO-
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IDs (cf. Suppl. Table S2) correspond to patients and patient

genotypes within UK Biobank (Suppl. Table S9), of which 9

have both self-reported and ICD-10 diagnosis, 6 are only self-

reported and 5 only have ICD-10-based information. The

number of respective patients ranges from 13 (reactive

arthritis with ICD-10 code M03) to 12,556 (rheumatoid

arthritis with ICD-10 code M06) (Suppl. Table S9).
Overlap between autoimmune
diseases assessed by GWAS, PGS
and UKB

We investigated for which autoimmune diseases the

GWAS catalog, the PGS catalog and UK Biobank contain

information by comparing the respective autoimmune

EFO IDs covered by each resource. Overall, there are 120

autoimmune disease EFO IDs (Suppl. Table S2) representing

different levels of diagnosis (Suppl. Table S1). Of those, the

GWAS catalog covers 41 EFO IDs (Suppl. Table S4) and the

PGS catalog 18 EFO IDs (Suppl. Table S5). As the UK

Biobank does not use EFO IDs, we used a published

mapping of EFO IDs to UKB data fields instead, as

described in the last section and provided in Suppl. Table

S9. This assigned 20 EFO IDs to traits in UKB (Suppl. Table

S9). The overlap of autoimmune diseases covered by the three

resources is shown in Figure 1. Out of 120 EFO IDs, only 48

autoimmune diseases are present in any of the three

databases, most in the GWAS catalog. The GWAS catalog is

sharing 15 autoimmune disease EFO IDs with the PGS catalog

and 15 can be mapped to UK Biobank. Further, 12 disease

EFO IDs are shared between PGS catalog and UK Biobank.

There are 11 autoimmune disease EFO IDs common to all

three databases. They relate to: ankylosing spondylitis,

appendicitis, Crohn’s disease, inflammatory bowel disease,

juvenile idiopathic arthritis, psoriatic arthritis, rheumatoid

arthritis, Sjögren syndrome, systemic lupus erythematosus,

ulcerative colitis and vitiligo. Several of the autoimmune

diseases related to EFO IDs that are not shared by all three

resources are cases that highlight limitations with respect to

the definition of terms and relationships within the EFO and

in the mapping of EFO terms to external codes and identifiers,

which may not be one-on-one and needs disease-specific

knowledge (for details see caption of Figure 1).

We have investigated more closely the 10 autoimmune

diseases with most GWAS studies according to GWAS catalog

(Table 1). They are systemic lupus erythematosus (29),

rheumatoid arthri t i s (30) , mult iple sclerosis (31) ,

inflammatory bowel disease (32) with its two subtypes

Crohn’s disease and ulcerative colitis, vitiligo (33), Sjögren

syndrome (34), Grave’s disease (35), and Behcet’s syndrome
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(36). The GWAS catalog association data of the top 10

autoimmune diseases (underlying Table 1) are provided in

Supplementary Tables S10-S19. The most GWAS-studied

autoimmune disease is systemic lupus erythematosus, for

which 37 different GWAS have been performed, the largest

one using 13,377 cases and 194,993 controls. These studies

have reported 788 unique SNPs and 439 unique genes or gene

combinations. In the PGS catalog, six studies are noted on

systemic lupus erythematosus, which report six different risk

scores. These PGS have been evaluated in 32 settings. The

largest number of cases has been analyzed for inflammatory

bowel disease (n=25,042), the lowest for Sjögren syndrome

(n=1,599). Overall, the number of independent genomic loci

associated with disease increases with the number of studies

and cases (Table 1).
Discussion

We systematically reviewed the autoimmune disease-

related content of the GWAS catalog of variant associations,

the PGS catalog of polygenic scores and the UK Biobank of

genomic and phenotypic data. These curated data sources and

the ease of obtaining and querying them have already and will

continue to unravel genetic and molecular underpinnings of
Frontiers in Immunology 05
autoimmune disease (37). An example are the currently

ongoing 61 UKB-approved projects that are related to

autoimmune disease (keyword search “autoimmune disease”,

June 13th, 2022). Our survey shows that the catalog of

autoimmune GWAS studies and associations is already very

comprehensive and generated in more than a decade. PGS for

autoimmune diseases are rather few, very novel and largely

developed within the last three years. Accordingly, in the

polygenic disease genetics field, research efforts go into two

interrelated directions: (i) unraveling specific functional

effects of variants and (ii) combining effect estimates for a

better personalized risk predict ion. Computat ional

approaches toward the first aim are the association of risk

alleles with molecular traits (38) and the identification of

functional variants via so-called fine-mapping (39).

Although there is progress in the field, it is still a long way

from variant associations to molecular disease mechanisms as

well as treatments (37). Toward the second aim, polygenic

scores are still being improved, for example by considering

rare variants (40) or inclusion of functional information (41).

Optimizing prediction performance is non-trivial, since

machine learning models need to be calibrated to generalize

to unseen data, i.e. overfitting of training data prevented (42).

The AUROC of current autoimmune disease PGS varies

widely (range 0.56-0.99; typical ly 0.6-0.8). Further
FIGURE 1

A Venn diagram representing the number of autoimmune diseases in the experimental factor ontology (EFO) overlapping with GWAS catalog
and PGS catalog covered EFO IDs as well as UK Biobank data field matched according to Suppl. Table S9. EFO IDs of diseases in more than two
resources are listed together with their name according to EFO and their UKB ICD-10 code according to Suppl. Table S9. Diseases shaded gray
are affected by issues with disease definition and classification compromising the mapping. These issues are: (i) Appendicitis is classified as an
autoimmune disease in EFO because it is a child term of inflammatory bowel disease, however, it is not considered an autoimmune disease. (ii)
Grave’s disease EFO child terms are in PGS, not the EFO ID of Grave’s disease itself though. (iii) ACPA-positive and ACPA-negative rheumatoid
arthritis is not mappable to UKB. UKB, however, contains seropositive and other rheumatoid arthritis, a distinction not covered by EFO. (iv) UKB
has information on multiple sclerosis, yet since the recent EFO version was updated to using the MONDO ID for multiple sclerosis, the mapping
to UKB data fields failed. “NA” denotes that mapping to UKB is not available for the respective EFO ID.
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TABLE 1 The ten autoimmune diseases (defined by EFO term) which have the highest number of GWAS studies registered at the GWAS catalog. Displayed is the summary of information obtained from
GWAS catalog, PGS catalog and UK Biobank. With respect to GWAS catalog, this is the number of unique studies (according to column “STUDY ACCESSION” of Suppl. Table S3), the highest number of
cases with corresponding number of controls, the number of unique variants reported (according to column “SNP_ID_CURRENT” of Suppl. Table S4), the number of independent, associated genomic

ations reported in the respective publications (according to column “REPORTED GENE(S)” of Suppl. Table S4). With respect
lumn “PGS Publication (PGP) ID” of Suppl. Table S5 and Suppl. Table S8), unique scores developed (according to column
in the scores for the respective disease and the number of performance evaluations in independent samples (according to
the UK Biobank, the UKB data field, ICD-10 code (if available in UKB) and patient number according to Suppl. Table S9 is
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Trait EFO IDs GWA

#
Studies

#
Cases

#
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Systemic lupus
erythematosus

EFO_0002690 37 13,377 194,

Rheumatoid arthritis EFO_0000685 37 22,628 288,

Multiple sclerosis MONDO_0005301 27 14,802 26,7

Crohn’s disease EFO_0000384 27 12,924 21,4

Ulcerative colitis EFO_0000729 25 12,366 33,6

Inflammatory bowel disease EFO_0003767 12 25,042 34,9

Vitiligo EFO_0004208 10 2,853 37,4

Sjogren syndrome EFO_0000699 10 1,599 658,

Grave’s disease EFO_0004237 8 4,487 629,

Behcet’s syndrome EFO_0003780 8 3,197 5,7

1 (29); 2 (30); 3 (31); 4 (32); 5 (33); 6 (34); 7(35); 8 (36); *Excludes seropositive rheumatoid art
o
d

t

9

6

3

5

8
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evaluation of polygenic scores in more cohorts and systematic

comparisons, facilitated by the PGS catalog, will help gaining

further insights into PGS predictive performance for

individual autoimmune diseases. Perspectively, PGS can be

amended with other biomedical, clinical and behavioral data.

Such rich, combined data sources together with recent

developments in artificial intelligence promise to improve

prediction of disease and personalized treatment options

(43). Finally, polygenic scores can be used to investigate

interactions of genetic and environmental factors, which is

particularly relevant for autoimmune diseases, in which

environmental factors play a key role (44).
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