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Copy number variation (CNV), an important source of genomic structural

variation, can disturb genetic structure, dosage, regulation and expression,

and is associated with phenotypic diversity and adaptation to local

environments in mammals. In the present study, 24 resequencing datasets

were used to characterize CNVs in three ecotypic populations of Tibetan sheep

and assess CNVs related to domestication and adaptation in Qinghai-Tibetan

Plateau. A total of 87,832 CNV events accounting for 0.3% of the sheep genome

were detected. After merging the overlapping CNVs, 2777 CNV regions (CNVRs)

were obtained, among which 1098 CNVRs were shared by the three

populations. The average length of these CNVRs was more than 3 kb, and

duplication events were more frequent than deletions. Functional analysis

showed that the shared CNVRs were significantly enriched in 56 GO terms

and 18 KEGG pathways that were mainly concerned with ABC transporters,

olfactory transduction and oxygen transport. Moreover, 188 CNVRs overlapped

with 97 quantitative trait loci (QTLs), such as growth and carcass QTLs,

immunoglobulin QTLs, milk yield QTLs and fecal egg counts QTLs. PCDH15,

APP and GRID2 overlapped with body weight QTLs. Furthermore, Vst analysis

showed that RUNX1, LOC101104348, LOC105604082 and PAG11 were highly

divergent between Highland-type Tibetan Sheep (HTS) and Valley-type Tibetan

sheep (VTS), and RUNX1 and LOC101111988 were significantly differentiated

between VTS and Oura-type Tibetan sheep (OTS). The duplication of RUNX1

may facilitate the hypoxia adaptation of OTS and HTS in Qinghai-Tibetan

Plateau, which deserves further research in detail. In conclusion, for the first

time, we represented the genome-wide distribution characteristics of CNVs in

Tibetan sheep by resequencing, and provided a valuable genetic variation

resource, which will facilitate the elucidation of the genetic basis underlying

the distinct phenotypic traits and local adaptation of Tibetan sheep.
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1 Introduction

Copy number variations (CNVs) and single nucleotide

polymorphisms (SNPs), as significant genetic variations, play

important roles in domestication and adaptation of animals

and plants (Lye and Purugganan, 2019; Merot et al., 2020).

Unlike SNPs, which refer to the substitution, deletion or

insertion of just a single nucleotide for another, CNVs

involve fragmental variation even larger than 1000 bp in

size (Iafrate et al., 2004; Feuk et al., 2006). Therefore, it has

been widely recognized that CNVs have the potential to

markedly affect phenotypic traits of domestic animals

(Salehian-Dehkordi et al., 2021).

In the past twenty years, a large number of CNVs have been

revealed and identified by using array comparative genome

hybridization (aCGH) chips and high-density SNP chips in

domestic animals, such as cattle, sheep, goat, pig, horse, dog,

chicken, turkey and duck (Bickhart and Liu, 2014; Strillacci et al.,

2021). Meanwhile, numerous CNV-overlapping genes have been

shown to be associated with coat color (Norris and Whan, 2008),

growth, fertility and production (Zhou et al., 2016a; de Lemos

et al., 2018a), immune response (Sasaki et al., 2016; Zhang et al.,

2016; Chen J. et al., 2017; Chen L. et al., 2017; Xu et al., 2017),

olfactory transduction (Zhou et al., 2016b; Upadhyay et al., 2017;

de Lemos et al., 2018b; Mielczarek et al., 2018), molecular

function (Letaief et al., 2017; Pierce et al., 2018), lipid

metabolism (Gao et al., 2017; Xu et al., 2017; de Lemos et al.,

2018b; Goyache et al., 2021) and environmental adaptability

(Wang et al., 2016). Compared with aCGH and SNP chips,

the sensitivity of which is mainly limited by the density of

the probes, whole genome resequencing can be used to detect

new and rare CNVs (Jenkins et al., 2016). Therefore, an

increasing number of CNVs have been detected by using high-

throughput sequencing. In terms of sheep, in addition to whole

genome detection of new CNVs, the primary focus was uncovering

the CNVs associated with economic traits. Yuan et al. found that

1855CNVRswere associatedwith 166 quantitative trait loci (QTLs),

including milk QTLs, carcass QTLs, and health-related QTLs in

fine-wool sheep (Yuan et al., 2021). CNVR overlapping genes, such

as SHE, PIGY, and BAG4, were reported to be correlated with body

size in sheep (Jiang et al., 2019; Feng et al., 2020; Yang et al., 2021).

The CNV-overlapping genes of BTG3, PTGS1 and PSPH were

involved in fetal muscle development, prostaglandin (PG) synthesis,

and bone color (Yang et al., 2018). Meanwhile, the correlation

between CNVR-harboring genes and growth traits or phenotypic

traits was also attractive. The agouti signaling protein (ASIP) gene

duplication has been linked to typical white coat color (Norris and

Whan, 2008). Distal-less homeobox 3 (DLX3) CNV is related to

wool curling in Tan sheep (Ma et al., 2017).

Tibetan sheep (TS) is one of the three ancient coarse-wool

sheep breeds in China and is predominantly distributed in the

Qinghai-Tibetan Plateau (QTP). Even in nowadays, Tibetan

sheep, together with yak, provide the Tibetan herders with the

main food, fuel and clothing materials. Natural adaptation and

artificial selection shaped the TS with the characteristics of

adaptation to cold, food shortage, and hypoxia. TS can be

divided into three ecotypic populations, namely, Highland-

type Tibetan sheep (HTS), Valley-type Tibetan sheep (VTS)

and Oura-type Tibetan sheep (OTS) (The photos of the three

sheep population were shown in Supplementary Table S1). HTS

is famous for its carpet wool production, with an average staple

length of up to 25 cm. The proportion of dry dead wool in the

OTS is relatively high but has remarkable meat performance. The

appearance of VTS is similar to that of HTS but with a smaller

body size and shorter staple length. Meanwhile, the VTS was

mainly distributed in valley regions with relatively low altitudes

(~2000 m), in contrast to the HTS and OTS (both distributed

above 3200 m).

It’s meaningful to elucidate the genomic distribution

characteristics and potential functions of CNVs in TS.

Nevertheless, there have been few reports on the analysis of

CNVs in TS (Huang et al., 2021; Salehian-Dehkordi et al., 2021).

Therefore, in the present study, we exploited a large number of

CNVs in 24 individuals from the three TS populations using

whole genome resequencing and identified CNVs associated with

the molecular basis of phenotype differences, domestication and

adaptation to QTPs.

2 Materials and methods

2.1 Animal sampling and genomic DNA
sequencing

Twenty-four whole blood samples of Tibetan sheep were

collected from their core distribution region in this study,

including 8 highland-type sheep (HTS, Qilian County, 4 male

and 4 female sheep, similar to the following two sheep groups),

8 valley-type sheep (VTS, Huangyuan County) and 8 outer-

type sheep (OTS, Henan County). The samples of each

population were randomly collected from more than three

different groups and the information was seeked from the

herdman to avoid the potential genetic relationship. The

collected samples were stored in EDTA antifreezing tubes

at -20°C. Genomic DNA was extracted with a QIAamp

DNA Blood Mini Kits (Qiagen, Germany), and then the

DNA integrity and concentration were checked with 1%

agarose gel electrophoresis and Qubit® 3.0 Flurometer
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(Invitrogen, United States), respectively. A sequencing library

was built with 0.2 μg genomic DNA from each sample using

the NEB Next® UltraTM DNA Library Prep Kit (NEB,

United States) following the manufacturer’s

recommendations. Briefly, genomic DNA samples were

fragmented by sonication to a size of ~350 bp, and then

DNA fragments were endpolished, A-tailed, and ligated

with the full-length adapter, followed by further PCR

amplification. The DNA libraries were sequenced using an

Illumina HiSeq X-Ten platform (Illumina, United States), and

150 bp paired-end reads were generated and stored in FASTQ

format. Paired reads with more than 10% unidentified

nucleotides in either read, with low-quality bases (Phred

quality value < 5) over 50%, and with more than 10 bp

aligned to the adapter were removed by using Fastp (0.19.7)

to obtain clean data.

2.2 CNV and CNVR detection and
annotation

The following steps were required before CNV detection:

1) the clean reads of each sample were aligned against the

reference genome of Ovis aries (Oar_v4.0) using BWA

(Burrows–Wheeler Aligner) (Li and Durbin, 2009) and 2)

alignment files were converted to BAM files using SAMtools

software (Li et al., 2009). 3) SAMtools was also used to remove

potential PCR duplications. If multiple read pairs have

identical external coordinates, only the pair with the

highest mapping quality is retained. CNVs were detected

using CNVcaller with default parameters (-w: 800 bp, -l:

0.2, -u: 0.7, -g: 0.5) (Abyzov et al., 2011). The individual

candidate CNV windows are defined using 2 criteria: 1) The

normalized read depth (RD) must be significantly higher or

lower than the normalized mean RD (deletions < 1–2 *

STDEV; duplications > 1 + 2 * STDEV). 2) Considering

that the normalized RD of heterozygous deletions and

duplications should be approximately 0.5 and 1.5,

respectively, an empirical standard for the normalized RD

(deletions < 0.65; duplications > 1.35) must also be achieved.

Low-frequency windows with low sequencing coverage were

removed, and windows with an allele frequency ≥0.05 or at

least 3 homozygous duplicated/deleted individuals were

selected for further validation. If Pearson’s correlation

index was significant at the p = 0.05 level by Student’s

t test, these 2 adjacent non-overlapping windows were

merged into 1 call. To avoid putative positive CNVRs, the

population-level candidate CNVRs for each of the three

populations and for TS as a whole was analyzed,

respectively. CNV region definition, the distance between

the 2 initial calls is less than 20% of their combined length,

and the Pearson’s correlation index of the 2 CNVRs is

significant at the p = 0.01 level. Furthermore, the

distribution of these regions on the Ovis aries chromosome

was analyzed by the karyoploteR package of Bioconductor

(Gel and Serra, 2017). Functional annotation of CNVs was

completed by ANNOVAR(Wang et al., 2010) and classified as

intronic, exonic or intergenic.

2.3 Comparison with recent reports

To verify the reliability of our study, we compared the CNVR

number and length of this study with three recently reports

(Yuan et al., 2021; Huang et al., 2021; Salehian-Dehkordi et al.,

2021). All these location information were annotated based on

Oar_v4.0 reference genome.

2.4 Functional enrichment analysis of
CNVR-harboring genes

CNVR-harboring genes were retrieved from the NCBI

database by BioMart software (http://www.biomart.org/), and

completely or partially (≥50%) overlapping genes were all

reserved for later analysis. GO (Ashburner et al., 2000) and

KEGG (Kanehisa and Goto, 2000) functional enrichment

analyses were performed according to Huang et al. (Huang

et al., 2009). The p value was calculated and subjected to FDR

correction. The merged CNVRs were compared with QTLs in the

animal QTL database (https://www.animalgenome.org/cgi-bin/

QTLdb/OA/index), to further assess the CNVRs that were

correlated with economic traits in three ecotypes of Tibetan

sheep.

2.5 Sweep selective analysis of the CNVR

Tibetan sheep can be divided into three different ecotypes

or populations according to their phenotypes and habitat

environment. The three ecotypes have formed their own

special characters under selection throughout long-term

domestication and adaptation in the plateau. Therefore, the

Vst (Redon et al., 2006) was calculated similar to population

differentiation index Fst using the equation: Vst = (Vtotal–

[Vpop1×Npop1+Vpop2×N pop2]/Ntotal)/Vtotal, where

Vtotal is the total variance in LRRs (log-R ratios) of SNPs

(within a defined CNVR) estimated among individuals of two

populations, Vpop is the variance for each respective

population, Npop is the sample size for each respective

population, and Ntotal is the total sample size of the two

population. Subsequently, the CNVRs with the top five Vst

values were selected as candidate CNVRs, and functional

enrichment analysis of these regions was performed.
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2.6 qPCR and high depth resequencing
validation

Quantitative real-time PCR was employed to validate the

accuracy of CNVs detected in our study. 11 CNVR-

harboring genes representing 5 deletion and 6 duplication

types were selected. 9 sheep samples from the three TS

populations were used for qPCR validation. The primers

were designed using Primer 5 software based on our

obtained genomic sequences, and DGAT1 gene was

chosen as a reference gene (all primer information were

shown in Supplementary Table S2 qPCR was performed

using the TB Green PCR reagent kit (Takara Bio). Three

replicates per sample and blank controls were required in the

PCR. The 2−ΔΔCt method was used to calculate the copy

number of the targeted genes [38–40].

3 Results

3.1 The landscape of copy number
variation in Tibetan sheep

The total number of raw reads obtained for a single sheep

varied between 20,759,076,000 (a highland-type sheep) and

24,338,034,900 (a valley-type sheep), and the high-quality data

reached 516.242 GB, with an average of 21,510,086,113 bp per

individual. The average depth was 7.10× ± 0.30×, and the

coverage rate was 83.72% ± 1.63% at least 4× (Supplementary

Table S1).

The CNVs were detected using CNVcaller as described

by Wang et al. with default parameters (Wang et al., 2017). A

total of 87,832 CNVs were detected in 24 samples (Figure 1).

The number of duplication and deletion events was

21,830 and 7479 for HTS, 21,588 and 7079 for OTS, and

21,816 and 8040 for VTS, respectively. The average lengths

were 1.96, 1.95 and 1.99 kb (Table 1, Supplementary Table

S3). The frequency of duplication events was approximately

3 times higher in all three populations than that of deletions.

Moreover, as shown in Figure 1A, more than 86.9% of CNVs

were distributed within 0–2 kb, 11.3% were within 2–4 kb,

and less than 2% were greater than 4 kb in size.

A total of 2777 CNV regions (CNVRs) were obtained by

merging overlapping CNVs in the three populations, and

the numbers of duplication types in HTS, OTS and VTS

were 1575, 1457 and 1484, respectively. Meanwhile, the

numbers of deletion types were 521, 548 and 519. The

duplication to deletion ratio of CNVRs is consistent with

that of the CNVs. The average size of these CNVRs in

the three populations was more than 3 kb, accounting

for 0.3% of the sheep genome (Oar_v4.0, Table 1).

The size distribution of all the CNVRs showed an

L-shaped pattern, with 58.2% of the CNVRs located

within 1–2 kb, 28.7% within 2–4 kb, 6.5% within 6–8 kb,

and others greater than 8 kb in size (Figure 1B). Moreover,

as shown by the Venn diagram, 1002 CNVRs were shared by

all three populations: approximately 203 CNVRs were

distributed uniquely in HTS, 201 CNVRs were distributed

in VTS, and 183 CNVRs were distributed in OTS (Figure 2,

Supplementary Table S4). The results indicated that

these CNVRs were nonuniformly distributed across each

chromosome (Figure 3A), and the number of CNVRs had a

significant positive linear relationship with the

corresponding chromosome size (R2 = 0.66, Figure 3B).

More CNVRs were distributed on OARX (1180), OAR1

(162), OAR 3 and OAR 10 (138), and the fewest

CNVRs were distributed on OAR 24 (11), as shown

in Supplementary Figure S1 and Supplementary Table

S5. Functional classification showed that 1839 CNVRs

were located in intergenic regions, 812 were contained

FIGURE 1
Size distribution of CNVs (A) and CNVRs (B) in Tibetan sheep.
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within introns, and the other 85 were located in exonic

regions.

3.2 Comparison with recent reports on
CNVs in sheep

The results of our study were compared with three recently

reported studies on sheep CNVRs. As shown in Table 2, the

CNVR count detected in sheep varied notably from 1217 to

24534. Accordingly, the CNVR count overlapping with this

study varied from 145 to 421. The average CNVR length was

several kb using resequencing platform, but increased to

hundreds kb based on BeadChip platform.

3.3 Functional annotation of CNVRs

Functional enrichment analysis was performed for all

2777 detected CNVRs. Among the CNVRs shared by the

three populations of Tibetan sheep, 56 GO terms (p < 0.01)

were enriched, including 23 biological processes, 8 cellular

components and 25 molecular functions (Supplementary

Table S6). These GO terms involved ion transport (GO:

0006811, GO:0006812), sensory perception system (GO:

0007600, GO:0050906, and GO:0050907), gas transport

(GO:0015669), and pigmentation (GO:0032400, GO:

0051875). KEGG pathway analysis showed that the shared

CNVR-harboring genes were enriched in 18 pathways (p <
0.05, Supplementary Table S7), including disease defense

(ko04612, ko05332, ko05330, ko05320 and ko04672),

nutrition metabolism (ko02010, ko00020, and ko00910),

hematopoietic cell lineage (ko04640), and ABC transporters

(ko02010), among others. In particular, the CNVR-harboring

genes specifically distributed in HTS mainly participated in

pigmentation (GO:0043473, GO:0033059, GO0048753, GO:

0051875, and GO:0032400) processes.

3.4 QTLs overlapping with identified
CNVRs

To further reveal the CNVRs associated with sheep

economic traits and confirm their hereditary effects, the

detected CNVRs were compared with QTLs in the sheep

QTL database. We found 188 CNVRs overlapping with

97 quantitative trait loci (QTLs), including milk

production and quality (61 CNVRs), fecal egg counts

(56 CNVRs), tail fat deposition (21 CNVRs),

immunoglobulin A level (20 CNVRs), bone development

TABLE 1 Summary of CNVs and CNVRs identified in three Tibetan sheep populations.

Sheep Sample Count Duplication Deletion Length
(Mb)

Average
(kb)

Percentagea

(%)

Type Number

CNVs HTS 8 29309 21830 7479 57.40 1.96 –

OTS 8 28667 21588 7079 55.98 1.95 –

VTS 8 29856 21816 8040 59.27 1.99 –

CNVRs HTS 8 2096 1575 521 7.79 3.72 0.3

OTS 8 2005 1457 548 7.65 3.82 0.3

VTS 8 2003 1484 519 7.58 3.78 0.29

aPercentage of chromosome by CNVRs (%).

FIGURE 2
Venn diagram of CNVR numbers identified in three Tibetan
sheep populations.
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FIGURE 3
Genomic landscape of CNVRs in Tibetan sheep.

TABLE 2 Comparison of our study with three recent sheep CNV reports.

Study Platform Breed Sample CNVR
count

Average
CNVR
length
(Kb)

Total
CNVR
length
(Mb)

Overlapping
CNVR
count
with
present
study

Overlapping

Percentage

Huang et al. (2021) Resequencing 66 412 24534 3.58 87.92 421 1.72%

Yuan et al. (2021) Illumina HiSeq
4000

4 32 7228 7.56 56.06 305 4.22%

Salehian-Dehkordi et al.
(2021)

BeadChip 600K 67 2059 1217 201.31 245 145 11.91%

This Study HiSeq X-Ten 3 24 2777 3.77
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(14 CNVRs), growth and carcass traits (36 CNVRs)

(Supplementary Table S8). Some CNVR-harboring genes

related to slaughter performance were uncovered, such as

PCDH15 (protocadherin related 15) gene located in body

weight (slaughter) QTL (95871), carcass bone percentage

QTL (95870), hot carcass weight QTL 95872) and

muscle weight in carcass QTL (95853); APP (Amyloid

precursor protein) gene located in muscle weight in

carcass QTL 95851) and total muscle area QTL (95852).

Meanwhile, the ASIP, LOC101111988 and

LOC105606907 genes located in the tail fat deposition

QTL (127012) were also detected.

FIGURE 4
Genome wide Vst value plots for CNVRs in three population pairs.
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3.5 CNVRs diverging among populations

The Vst statistic was used to analyze the population

differentiation of CNVRs among HTS, VTS and OTS. This

method is similar to Fst in estimating the population-specific

selective pressure at the gene level but uses the protein-coding

genes annotated by CNVR. The average values of Vst across all of

the detected responding CNVRs were 0.1061 for ‘HTS vs. OTS’,

0.099 for ‘HTS vs. VTS’, and 0.096 for ‘VTS vs. OTS’

(Supplementary Table S9). As shown in Figure 4 and

Supplementarty Table S9, the divergent CNVRs were

distributed unevenly on the chromosome. Eighteen CNVR

overlapping genes or loci, including RUNX family

transcription factor 1 (RUNX1), glutamate receptor 4

(GRIA4), LOC101104348, LOC105604082, pregnancy-

associated glycoproteins 11 (PAG11) and LOC106990378,

were the top 1% of genes that showed significant divergence

between HTS and VTS (Figure 4A). There were 15 overlapping

genes or loci, including RAPGEF1, MED27, LOC105615522,

RUNX1, LOC101113153, LOC105607734 and LOC101111988

(located upstream of ASIP), among others, which were the top

1% genes highly differentiated between the VTS and OTS

(Figure 4C; Table 3). Among them, only RUNX1,

LOC101104348, LOC105604082, PAG11 and

LOC101111988 were located in exonic or intronic regions.

Unfortunately, few significantly divergent genes located in

exonic or intronic regions were detected between HTS and

OTS. Notably, RUNX1 was detected in both the ‘HTS vs. VTS’

pairs and ‘VTS vs. OTS’ pairs. The CNV within RUNX1 was

duplication type with the length of 2400 bp and located in the

intronic region (Table 3). It is worth noting that ASIP, playing

a vital role in coat color, also showed significant variation

between ‘VTS vs. OTS’ pairs and ‘HTS vs. OTS’ pairs.

3.6 CNV validation by qPCR

qPCR was used to verify the accuracy of CNVR

predictions. 11 CNVRs including 5 deletions and

6 duplications were selected according to their Vst value

(Supplementary Table S9). qPCR results showed that the five

deletions (LOC101111526, PLCB1, GUCY1A2, GRIA4, and

TMEM144) and six duplications (LOC105602432, RUNX1,

PAG11, LOC101113153, and ASIP) were all consistent with

the results based on whole genome sequencing prediction

(Supplementary Figure S2).

4 Discussion

To date, there are many reports regarding the detection

CNVs of sheep using aCGH, SNP array and genome

resequencing (Fontanesi et al., 2011a; Jenkins et al., 2016; Di

Gerlando et al., 2022). In the present study, we obtained

2777 CNVRs, including 1965 duplications and 812 deletions.

The detected CNVR counts is higher than 619 reported by Yang

et al. (Yang et al., 2018), comparable to 2394, 3488, and

4301 reported by Guo et al. (Guo et al., 2018), and Cheng

et al. (Cheng et al., 2020), but far less than 24,534 claimed by

Huang et al. (Huang et al., 2021). The CNVRs accounted for

~0.3% of the sheep reference genome in our research. This

coverage ratio is comparable with previous reports (Ma et al.,

2015; Cheng et al., 2020) but lower than the 10% reported by

Salehian-Dehkordi et al. (Salehian-Dehkordi et al., 2021).

Consistent with the other reports, the number of CNVRs had

a significant positive linear relationship with the corresponding

chromosome size (Yuan et al., 2021). Meanwhile, the counts of

overlapping CNVRs ranged from 145 to 421, which was

comparable with Yuan et al. (Yuan et al., 2021). aCGH arrays

and SNP chips were all constructed based on limited known

probes. The limited probe resolution restricts the top ceiling of

the CNV number that can be identified. Besides, they can’t be

used to identify new CNVs especially for less studied native breed

(Jenkins et al., 2016). Due to the difference in CNV detection

platforms, the detected CNVs vary widely in different studies. In

terms of the CNVs captured by aCGH and SNP chips, the

number usually ranges from dozens to hundreds, and the

average length is approximately 100–300 kb (Liu et al., 2013;

Ma et al., 2015; Wu et al., 2015; Jenkins et al., 2016; Zhu et al.,

2016). In addition to the detection platform and algorithm, the

TABLE 3 CNVR-harboring genes showing high divergence in two population pair s.

Chr Start end Type Gene
type

Vst Symbol Description

HTS vs. VTS 1 264846001 264848400 DUP intron 0.739 RUNX1 runt-related transcription factor 1

18 66356001 66358800 DUP exon 0.4679 LOC101104348 uncharacterized LOC101104348

21 37542001 37545600 DUP exon 0.5726 LOC105604082 uncharacterized LOC105604082

21 37542001 37545600 DUP exon 0.5726 PAG11 pregnancy-associated
glycoprotein 11

OTS vs. VTS 1 264846001 264848400 DUP intron 0.468 RUNX1 runt-related transcription factor 1

13 62932801 62934800 DUP exon 0.4892 LOC101111988 agouti-signaling protein
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tested breed and individual size used were other considerable

factors that results in the CNVRs counts obtained (Sudmant

et al., 2015; Yuan et al., 2021; Huang et al., 2021; Prunier et al.,

2022). In addition, more deletion evens than duplication were

detected in this research, which is similar to Huang, et al. (Huang

et al., 2021). But this result is contrary to Yuan et al. (Yuan et al.,

2021), that’s may due to CNVcaller were more sensitive in

identifying duplication (Wang et al., 2017). Moreover, it may

be the characteristic of Tibetan sheep.

The GO enrichment analysis showed that the detected

CNVRs harboring genes shared by the three populations were

significantly enriched in ion transport, sensory perception

system, gas transport and pigmentation. Among them, sensory

perception was also significantly enriched in yaks (Qiu et al.,

2012; Hui et al., 2019) and other sheep breeds (Ma et al., 2015;

Yuan et al., 2021). And this was even observed in Rangifer

tarandus caribou, a wild boreal ruminant (Prunier et al.,

2022). The three TS populations live in alpine grasslands

where the weather conditions are much harsher. As yak, TS

faced the similar living conditions especially the lack of herbage

in cold season. The well-developed sensory perception system

was important to improve their ability to acquire food and avoid

noxious weeds (Qiu et al., 2012). In the KEGG pathway analysis,

it is noteworthy that the CNVR-harboring genes shared by the

three populations were significantly enriched in nutrition

metabolism, ABC transporters, disease defense and

hematopoietic cell lineage. The enrichment of nutrient

metabolism terms, including nitrogen metabolism, citrate

cycle, and bile secretion, was important for the digestion of

nutrients in TS, especially in the cold season. Similar results

showing the enrichment of CNVR-harboring genes in ABC

transporters were also reported in humans (Sun et al., 2014;

Dron et al., 2018), cattle (Liu et al., 2011; Lee et al., 2013;

Upadhyay et al., 2017) and goats (Guan et al., 2020). In

mammals, ABC transporters can carry a broad array of

endogenous metabolites, such as amino acids, peptides, and

sugars, across lipid membranes, which facilitate the absorption

and utilization of these nutrients. Overall, the number of

enriched CNVR overlapping genes associated with forage

intake and consumption may be helpful for their adaptation

to the local environment (Allen et al., 2009).

Notably, the olfactory transduction pathway was significantly

enriched specifically in OTSs. Enrichment of the olfactory

transduction pathway has been reported in cattle Zhang et al.,

2015; Gao et al., 2017; Lemos et al., 2018; Mielczarek et al.,

2018), yaks (Guang-Xin et al., 2020), sheep (Jiasen et al., 2013;

Liu et al., 2013; Yuan et al., 2021) and goats (Guan et al., 2020). It has

been revealed to influence food consumption (Ma, 2008) and as a

factor to assess feed efficiency and performance in crossbred beef

cattle (Abo-Ismail et al., 2014) and residual feed intake in pigs (Do

et al., 2014).Meanwhile, more CNVRharboring genes were enriched

in amino acid and VFAmetabolism pathways in the OTS. In regards

to the much better meat performance of OTS than HTS and VTS

(Zhao, 2010). More CNVR harboring genes enriched in the olfactory

transduction pathway, together with protein and energy metabolism

pathways, may explain the better production performance in OTS.

QTLs, which contain genetic variants affecting the

economic traits of domestic animals, can be used to select

candidate CNV-overlapping genes that affect phenotypes in sheep

(Hu et al., 2022). After integrating CNVs into QTLs, we found

188 CNVRs overlapping with 97 sheep QTL regions in this study.

Many CNVs overlapping genes, such as PCDH15, APP andGRID2,

are located in growth and carcass QTL regions. The PCDH15 gene

was identified to be associated with the concentration of the

neurotransmitter glutamate (Glu) in cattle (Chen et al., 2020).

Zheng et al. indicated that homozygous APP deficiency leads to

a 15%–20% reduction in body weight (Hui et al., 1995). An et al.

reported that adipocyte-specific and mitochondria-targeted APP-

overexpressing mice display increased body mass (An et al., 2019).

GRID2 was also identified as being associated with body weight in

rats (Keele et al., 2018). So, these identified CNV harboring genes

provide candidate molecular associated markers for future sheep

breeding.

Selective sweeping can reveal putative regions that undergo

environmental and artificial selection during local adaptation

and domestication. To screen the critical CNVR significantly

divergent between different populations, the pairwise Vst value

was estimated (Chen et al., 2020; Salehian-Dehkordi H, 2021;

Yuan et al., 2021). Here, the five CNVR harboring genes

RUNX1, LOC101104348, LOC105604082, PAG11 and

LOC101111988 showed significant pairwise differentiation

among HTS, OTS and VTS. RUNX1 has been reported

overlapping with a CNV in Chaka sheep (Cheng et al.,

2020). It is well known that RUNX1 plays a crucial role in

hematopoiesis, leukemogenesis and neural development. Lin

et al. reported that GWAS hit SNPs associated with colostrum

albumin concentration were enriched in RUNX1 in Chinese

Holsteins, and these mutations might initiate the

hyperactivation of inflammatory and innate immunity (Lin

et al., 2020). In pigs, the GWAS hit SNP within RUNX1 is

associated with the mean corpuscular volume level (Lee et al.,

2016). Moreover, HIF-1α facilitates RUNX1 transcriptional

activity under hypoxic conditions and triggers hematopoietic

stem cell differentiation, which ultimately improves oxygen

transport to peripheral tissues (Lee et al., 2017). As we

know, Chaka sheep is a cultivated breed mainly with Tibetan

sheep as crossbreeding ewes and adapted to a low oxygen

environment for a long time (Zhao, 2010). Hence, we

speculated that CNVR-harboring RUNX1 has undergone

strict selection pressure in Tibetan and Chaka sheep,

possibly helpful for their adaptation to a low oxygen

environment at high altitudes. PAG11 is a pregnancy-

associated glycoprotein that is expressed in the trophoblast

of the ruminant placenta and influences embryo growth and

survival (Shorten et al., 2018). In contrast to VTS, HTS always

faces shortage of forage and cold environments in their late
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pregnancy stage. We thought the divergence of CNVR-

harboring PAG11 between HTS and VTS may be related to

their different habitat conditions, especially in the pregnancy

stage. Notably, CNVR-harboring LOC101111988, located

upstream of ASIP, was divergent between VTS vs. OTS

(Vst = 0.489) and HTS vs. OTS (Vst = 0.284). The ASIP

gene has been widely studied in mammals for its effect on

animal coat color. Individuals with normal or duplication

alleles of the ASIP gene are generally white or gray coat

color, but individuals with normal or single deletion alleles

in ASIP almost entirely have solid-black coat color in sheep

(Norris and Whan, 2008; Fontanesi et al., 2011b; Han et al.,

2015). In our study, the duplication of the LOC101111988 in

VTS and HTS might account for their mainly white coat color.

Meanwhile, the deletion in LOC101111988 might be the basis

for the primary brown covering color, especially in the neck

in OTS.

5 Conclusion

In this study, the whole genome characteristics were described

in three ecotypic populations of Tibetan sheep. A total of

87,832 CNV events and 2777 CNVRs covering 0.3% of the

sheep genome were captured. A few CNVR-harboring genes,

such as PCDH15, APP, RUNX1, PAG11, and ASIP, were

uncovered and may be associated with body weight,

environmental adaptation, fertility, and coat color. Above all, our

results provide a valuable genome-wide variation resource in

Tibetan sheep for the elucidation of the genetic basis underlying

the distinct phenotypic traits and local adaptation of Tibetan sheep.
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