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Abstract: Density prediction is of great significance for molecular design of energetic materials,
since detonation velocity linearly with density and detonation pressure increases with the density
squared. However, the accuracy and generalization of former reported prediction models need further
improvement, because most of them are derived from small data sets and few molecular descriptors.
As shown in this paper, for molecules presenting brick-like shape or containing more hydrogen-bond
donors the predicted densities have large negative deviations from experimental values. Thus, a
molecular morphology descriptor η and a hydrogen-bond descriptor Hb are introduced as correction
items to build 3 new QSPR models. Besides, 3694 nitro compounds are adopted as data set by this
work. The accuracies are obviously improved, and the generalizations are verified by an independent
test set. At the level of B3PW91/6-31G(d,p), the effective ratios (ERs) of the 3 Equations, for ∆ρ < 5%,
are 92.7%, 91.8%, and 93.3%; for ∆ρ < 2%, the values are 53.5%, 51.3%, and 54.7%. At the level of
B3LYP/6-31G**, for ∆ρ < 5%, the values are 92.3%, 91.4% and 92.9%; for ∆ρ < 2%, the values are 53.7%,
51.4% and 53.2%.

Keywords: DFT; density prediction; QSPR

1. Introduction

Crystal density is an intrinsic characteristic for solids, which is used as an index to reveal material
properties including mechanistic, thermodynamic, etc. [1–12]. As computational chemistry and
computational physics are becoming increasingly indispensable in the field of material design, accurate
density prediction is of great significance for materials with density-sensitive properties. For instance,
to predict a proper detonation performance of an energetic material, it would be necessary to have a
reliable estimation of density while considering that the velocity of detonation linearly with density
and the detonation pressure increases with the density squared [13].

Since reliable density prediction is the utmost important for estimation of detonation performances,
various approaches have been developed to predict densities of energetic compounds over the
decades [14–24]. In general, methods for density prediction of organic crystals can be summarized as
(i) to obtain the density of single crystal via crystal structure prediction (CSP), (ii) directly calculate
via empirical formula based on “group addition” methods (GAM), (iii) combined methods of density
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functional theory (DFT) and quantitative structure-property relationship (QSPR). In the third category,
DFT calculations are applied to obtain chemical descriptors for QSPR.

In all of the above methods, CSP is the most reliable one to calculate crystal density. CSP aims
at predicting an unknown crystal structure based on a given molecular structure. The procedures of
CSP include random sampling, structure optimization, and energy ranking [25] in which the accuracy
of energy calculation is the decisive factor [26]. CSP has been proved to be effective in predicting
the structure of inorganic or metallic crystals, but it is not good at dealing with crystals composed
of organic molecules [13,27–29]. For one thing, conformations and orientations of molecular crystals
involving more structural freedom than inorganic or metallic crystals, even powerful supercomputers
struggle to provide enough computing resources to achieve effective predictions. For another, the
calculation of the weak interaction energy between molecules is a most formidable task, whether
through first principle or molecular mechanics, unfortunately The packing patterns of molecules are
greatly influenced by these intermolecular interactions [30]. Using CSP to predict the density of organic
molecules remains a difficult task, since predicting crystal structures of these materials remains a
challenging work [31].

The easiest method to perform density prediction is GAM, which requires only a set of group
volumes that can be summed to estimate an effective molecular volume through empirical and simple
theoretical function [14,15,24,32–36]. GAM can obtain the effective volume and density of molecules
in a relatively short time, its inherent disadvantage is but the low accuracy. In most of the GAM
expressions, the descriptors, such as molecular configuration, conformation, and non-bond interaction
that have decisive influences on packing pattern of molecules, are missing, and the density prediction
errors affected by them are difficult to be corrected through simple empirical formulas. Besides, GAM
requires the manual identification of substructures due to the detailed classification of chemical groups
and substructures, thus it is not capable of automatic machine predicting when large quantities of
compounds need to be marked. [25] In other words, the intelligent algorithms for molecular disassembly
must be available before GAM being applied to computer programs, but to achieve these algorithms
has been proved to be a challengeable work [31,37–42].

DFT + QSPR is the most widely accepted method for density prediction, by which the molecular
volume Vm can be readily derived from contour of the molecular electronic density (CMED) that
obtained via DFT calculation, and then it will be extrapolated to the crystal density via a given
QSPR model. [14,15] The most common used value of electronic density in drawing CMED is
0.001 electrons/bohr3 [17–20,43–48]. Politzer et al. calculated the CMED of 36 neutral molecules at the
calculation level of B3PW91/6-31G(d,p), and they introduced positive and negative charge separation
as a correction item in their QSPR model, in which the prediction error of 78% compounds was within
0.050 g/cm3. [21] Rice et al. fitted a QSPR model using 180 neutral and 23 ionic molecules at the
calculation level of B3LYP/6-31G**, in which the root mean square (RMS) percent deviation and average
absolute error of density prediction are 2.7% and 0.035 g/cm3, respectively [23].

Although the density prediction method of DFT + QSPR has been widely used in molecule
design and performance prediction, its accuracy needs further improvement. For most of the reported
DFT + QSPR methods, the training set is less than 300 samples, with very few molecular descriptors.
These hindrances will affect the training accuracy and generalization of the QSPR models. Current
work intends to improve density prediction models of DFT + QSPR to perform better accuracy and
generalization than before, by introduces new molecular descriptors and extends training set to
thousands of samples. As is known to all, the density of organic crystals is not only determined by
molecular volume and charge, but also influenced by morphology [19,49], hydrogen bond [50], π-π
packing [51], and other factors. The effects of molecular morphology and hydrogen bond on crystal
density were not considered by the reported DFT + QSPR methods, which is likely to have an impact
on the accuracy of the density prediction.

To improve the accuracy of the model in density prediction of energetic compounds the effects of
molecular morphology and hydrogen bond were quantitatively described and introduced into the DFT
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+ QSPR models. The training set and testing set used in this study were 3694 nitro compounds extracted
from Cambridge Crystallographic Data Centre (CCDC), among which the training set and testing set
accounted for 50%, respectively. In order to quantitatively describe the molecular morphology and the
effect of hydrogen bond, a molecular morphology descriptor η and a hydrogen bond descriptor Hb
were defined. The results show that η and Hb were significantly correlated with the negative deviation
of predicted densities. For molecules presenting brick-like shape or containing more hydrogen-bond
donors, the predicted densities tend to be lower than the experimental values. Therefore, the two new
molecular descriptors, η and Hb, were introduced into the former formulas [21–23] as correction terms
(see Sections 3.2 and 3.3). 3 QSPR models were proposed by using both the descriptors separately
and together. The former reported two calculation levels B3PW91/6-31G(d,p) and B3LYP/6-31G**
were applied, both considering D3 correction. The models and the levels were mixed to 6 working
conditions. For all the working conditions fitted by this work, the computational accuracy was greatly
improved compared with all the previous reports of DFT + QSPR. The prediction accuracy of the
testing set agrees perfectly with that of the training set, to prove that the models of the work have
good generalization.

2. Results and Discussion

2.1. Corrections Ananysis on Prediction Error

To evaluate the influence of η and Hb on prediction error, the relationships between each descriptor
and the prediction error are analyzed (Figure 1), using relative error ∆ρ between the predicted density
ρcal via Equation (11) [47,48] and the experimental density ρexp.
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Figure 1. Relationships between the two descriptors and prediction errors, (a) ∆ρ versus η; and, (b) ∆ρ
versus Hb.

The negative deviation of ∆ρ increasing with the increase of η and Hb, indicating that density
values of the molecules with greater η or Hb are more underestimated. It has been reported that
planarity [21] and hydrogen-bond [50] are the most important two factors beneficial to dense packing
of crystal. Therefore, Equations, without considering these two factors will result in lower density
prediction values, especially for molecules with more ‘bricklike’ shape or more hydrogen bonds.
Adding η and Hb as correction items in the conventional QSPR Equations is expected to improve the
accuracy of density prediction, which is performed in subsequent fitting works.
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2.2. Construction of Correction Formulas

The fitting works are performed according to Equations (1)–(3).

ρ = α
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Vm

)
+ β
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For the case that molecular morphology alone influences density prediction, η is added as a
correction term in Equation (1). For the case that hydrogen bond alone influences density prediction,
Hb is added as a correction term in Equation (2). Considering the coupling influences from molecular
morphology and hydrogen bond, where both η and Hb are added as correction terms in Equation (3).
The correction items νσ2

tot, η and Hb have enough physical meanings, so the system correction factor α
can be shielded, and all the values of α are set to 1 in the following fitting works.

2.3. Fitting Results

According to the 3 Equations and 2 calculation levels in Section 2.2, the following 6 working
conditions can be obtained to perform fitting works (Table 1).

Table 1. Working conditions for parameters fitting.

Condition Equation DFT Level

I (1) B3PW91/6-31G(d,p)
II (2) B3PW91/6-31G(d,p)
III (3) B3PW91/6-31G(d,p)
IV (1) B3LYP/6-31G**
V (2) B3LYP/6-31G**
VI (3) B3LYP/6-31G**

The fitting works are performed using Orthogonal Distance Regression [52], and the results are
illustrated in Figure 2, by comparing the calculated density ρexp with the experimental density ρexp.
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Figure 2. Calculated densities ρcal versus experimental densities ρexp.
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As shown in Figure 2 that the density values that were obtained from QSPR, for all the 6 working
conditions, are in good agreement with that of experiments. Overall, the values of MSE are less than
(12), indicating that the averaged fitting error of ∆ρ, which can be easily evaluated from quadratic root
of the MSE, for each of the 6 conditions is less than 3%. The orders of MSI(III) < MSI(I) < MSI(II) and
MSI(VI) < MSI(IV) < MSI(V) indicate that the training accuracy of the 3 Equations are ranked as (3),
(1) and (2). Equation (3), corrected by both η and Hb, presents the best training accuracy, while the
training accuracy of Equation (1) with correction of η alone is better than that of Equation (2) with
correction of Hb alone. For each of the 3 Equations, there is no significant difference in the fitting errors
obtained by different calculation levels.

All the fitted parameters of the 6 conditions are listed in Figure 1. Besides, to evaluate the effective
boundaries of all the 6 conditions, the maximum absolute error ∆ρmax of each condition is calculated
out and listed behind the fitted parameters.

As shown in Table 2, for the calculation level of B3PW91/6-31G(d,p), ∆ρmax calculated by Equations
(1)–(3) are 0.15 g/cm3, 0.17 g/cm3 and 0.15 g/cm3, respectively, for the calculation level of B3LYP/6-31G**,
they are 0.15 g/cm3, 0.16 g/cm3 and 0.15 g/cm3, respectively. The results of ∆ρmax are in accordance
with the orders and comparisons demonstrated by Figure 2.

The results of Figure 2 and Table 2 indicate that the training accuracies caused by the ways to
adopt correction items are ordered as η + Hb, η and Hb, and the 2 calculation levels B3PW91/6-31G(d,p)
and B3LYP/6-31G** have the same accuracy in density prediction.

Table 2. Result parameters and maximum absolute error ∆ρmax.

Condition α β β1 β2 γ ∆ρmax (g/cm3)

I 1 0.0010 0.1960 - −0.2549 0.15
II 1 0.0006 - 0.0036 −0.0825 0.17
III 1 0.0005 0.1836 0.0033 −0.2342 0.15
IV 1 0.0010 0.1802 - −0.2320 0.15
V 1 0.0006 - 0.0036 −0.0721 0.16
VI 1 0.0005 0.1670 0.0033 −0.2105 0.15

2.4. Evaluation of Accuracy and Generalization

To evaluate the accuracy and generalization of each Equation in Section 2.3, the 1847 compounds
in the testing set are used to perform accuracy test. The former reported density prediction Equations
and parameters, using above mentioned 2 calculation levels separately [20,21], are introduced as
benchmarks to evaluate the accuracies of this work, as show in Figure 3.
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Figure 3. Predicted densities ρcal versus experimental densities ρexp at B3PW91/6-31G(d,p), (a) fitted by
Politzer et al. [21] using Equation (12), (b–d) fitted by this work using Equations (1)–(3), respectively.

As shown in Figure 3a that the predicted densities via Equation (12) using the parameters reported
by Politzer et al. [21] are deviate from the experimental densities, especially when the densities are less
than 1.6, and its EMS value is 37.8, a far greater value than that calculated by this work. As shown in
Figure 3b–d that the predicted densities via the 3 Equations proposed by this work are close to the
experimental densities, and the prediction MSEs via Equations (1)–(3) are 7.7, 8.0, and 7.2, respectively.
For all 3 Equations, the MSE values are closer to that in Figure 2I–III, indicating that the prediction
accuracy are perfectly in agreement with the training accuracy.

As shown in Figure 4a–d that the predicted densities, via Equation (12) using the parameters
reported by Rice et al. [23] and the 3 Equations proposed by this work, are close to the experimental
densities. The predicted MSEs via Equations (1)–(3) and (12) are 7.8, 8.0, 7.3 and 12.1, respectively, and
the MSE values of Equations (1)–(3) are as good as that in Figure 2IV–VI. Figure 4 indicate that, for all
the 3 Equations, the prediction accuracy is in good agreement with the training accuracy.
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Figure 4. Predicted densities ρcal versus experimental densities (ρexp) at B3LYP/6-31G**, (a) fitted by
Rice et al. [20] using Equation (12), (b–d) fitted by this work using Equations (1)–(3) respectively.

The effective boundaries of the above Equations and parameters to the testing set are evaluated
via the maximum absolute error ∆ρmax of each condition in Figures 3 and 4, and the values are listed in
Table 3.

Table 3. Maximum absolute error ∆ρmax for different calculation levels and fitting Equations.

Equation B3PW91/6-31G(d,p) B3LYP/6-31G**

(12) 0.33 0.21
(1) 0.16 0.15
(2) 0.15 0.15
(3) 0.15 0.15

Table 3 shows that, for the QSPR of density prediction, ∆ρmax obtained by the parameters fitted
based on Equations (1)–(3) are significantly smaller than that based on Equation (12) reported previously,
whether the data set is calculated at B3PW91/6-31G(d,p) or B3LYP/6-31G**. Besides, for the three
Equations proposed by this work, the values of ∆ρmax in Table 3 are very comparable with that in
Table 2.

To judge the effective ratio (ER) of all the above mentioned Equations and parameters, the CDF
profiles of ∆ρ are plotted using the testing set, as displayed in Figures 5 and 6.

As shown in Figure 5, for ∆ρ < 5%, ER of Equations (1)–(3) and (12) are 92. 5%, 92.3%, 93.6%, and
52.4%, respectively. For ∆ρ < 2%, ER of Equations (1)–(3) and (12) are 53.4%, 51.0%, 53.6%, and 20.1%,
respectively. It is clearly that all the ER values of (1)–(3) are much better than that of Equation (12) at
the level of B3PW91/6-31G(d,p).
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The same features are found in Figure 6, for ∆ρ < 5%, ER of Equations (1)–(3) and (12) are 92.3%,
91.4%, 92.9% and 85.4%, respectively. For ∆ρ < 2%, ER of Equations (1)–(3) and (12) are 53.7%, 51.4%,
53.2% and 45.4%, respectively. It is clearly that all the ER values of Equations (1)–(3) are better than
that of Equation (12) at the level of B3LYP/6-31G**.
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The results of this segment indicate that, for each of the Equations (1)–(3), the accuracy fitting
from the training set can be perfectly reproduced by the testing set, and the accuracy of them are
better than previous reported works fitted via Equation (12). It is verified that the accuracy of density
prediction can be obviously improved by add molecular morphology η and hydrogen bond Hb as
correction terms in QSPR formulas. Equation (3) considering the coupling influences from molecular
morphology and hydrogen bond is a reliable condition for density prediction of crystals. Both of the
calculation level of B3PW91/6-31G(d,p) and B3LPY/6-31G** are capable of density prediction.



Molecules 2020, 25, 161 9 of 15

3. Theory and Method

3.1. Preparation of Data Set

The fundamental data set for training and testing used in this study were nitro compounds
collected from the CCDC crystal database. The data set was built in four steps: (I) Crystal structure
searching, (II) Data cleaning, (III) Molecular structure identification and (IV) DFT calculation.

Using –NO2 as substructure, more than 60,000 crystal structures were searched out from CCDC
via step (I). Then the crystals containing elements outside the range of C, H, O and N or whose
density values been measured under non-ambient conditions were removed in step (II). Step (III)
extract individual molecules from each ‘cif’ file to identify and remove unreasonable compounds,
including ionic, co-crystals, and molecules with H atoms missing. Finally, 3694 compounds have
been kept after the first 3 steps. At step (IV), DFT calculation are performed at two calculation levels,
B3PW91/6-31G(d,p) and B3LPY/6-31G**, in accordance with the previous reports [20,21], and both
using D3BJ to preform surface analysis were applied using Multiwfn software [53,54] to get the degree
of charge separation and CMED.

The training set was built by randomly picked out 50% of compounds from the data set,
and the left 50% were used as testing set. The steps of (II), (III), and (IV) were performed on
a high-throughput computing integration platform specially used for energetic materials, called
Energetic Materials Studio1.0 (EMS 1.0) developed by Institute of Chemical Materials and Institute
of Computer Applications. With the application of EMS 1.0, all the procedures of calculations and
analysis were performed automatically.

3.2. Morphology Descriptor and Calculation Method

In a Cartesian coordinate system, any plane can be expressed as a universal Equation as

Ax + By + Cz + D = 0 (4)

The distance between an atom in a molecule and a given plane can be expressed as

ri =

∣∣∣xiA + yiB + ziC + D
∣∣∣

√
A2 + B2 + C2

(5)

where (xi, yi, zi) is the coordinates of atom i, and ri is distance between atom i and the plane. The sum
of ri

2 of all atoms in the molecule is reasonable to evaluate the degree of coincidence between the shape
of the molecule and the plane, which is expressed as

N∑
i=1

r2
i =

∑ (xiA + yiB + ziC + D)2

(A2 + B2 + C2)
(6)

Suppose there is a plane in space to get the minimize value of
∑N

i=1 r2
i , and the value min(

∑N
i=1 r2

i )

can be used to measure how well the molecule shape matches a plane. Thus, a parameter to characterize
the planarity of a molecule can be defined as

p =

√
min

∑N
i=1 r2

i

N
(7)

where p is planarity parameter, N is the total number of atoms in a molecule. It is implied by
Equation (7), that small p vale means good planarity, and p = 0 means that all the atoms of the molecule
are in the same plane. To solve the value of p, Particle Swarm Optimization algorithm [55] was applied,
and the corresponding code is shown in the Supplementary Materials.
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In fact, it is not enough to use p as a single descriptor to evaluate planarity, and molecule size
should be taken into account. As shown in Figure 7, among the molecules with similar p, large
molecules are more plane-like than small ones.Molecules 2019, 24, x FOR PEER REVIEW 10 of 14 
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Therefore, we introduced the distance between the farthest two atoms in a molecule to characterize
molecule size

rmax = max
(
ri j

)
(8)

where rij is the distance between any two atoms in a molecule, and rmax is the distance between the
farthest two atoms. Planarity and molecular size are considered simultaneously in the morphology of
a molecule, by define a morphological descriptor η as

η = e
−2p

rmax (9)

and the closer η gets to 1, the more planar the molecule is.
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3.3. Hydrogen Bond Descriptor and Its Calculation Method

To quantitatively describe the hydrogen-bond environment of a molecule, a hydrogen-bond
descriptor Hb was introduced, which is concerned with the total number of hydrogen-bond donors of a
molecule. In this study, we chose the H atoms connected with N atoms or O atoms as Hydrogen-bonded
donors, and the hydrogen-bond descriptor Hb is calculated via

Hb = 100×
(HN + HO)

N
(10)

where HN and HO are the H atoms connected to N atoms and O atoms, respectively, and N is the total
number of atoms in the molecule. The corresponding code to calculate Hb can be seen in Supplementary
Materials).

3.4. Functional Forms

The traditional formula [20,47] for predicting crystal density is

ρ =
M
Vm

(11)

The accuracy of density prediction is corrected and improved remarkably by introducing charge
separation of positive and negative [21]

ρ = α

( M
Vm

)
+ β

(
νσ2

tot

)
+ γ (12)

where M is the molecular mass, Vm is the van der Waals volume of a molecule, σ2
tot is the variance

of the total electrostatic potential on the molecular surface, ν is the charge balance degree. All the 3
descriptors are analyzed via Multiwfn software, where νσ2

tot is treated as one descriptor, and Vm is
acquire by calculate contour surface of electronic density with 0.001 electrons/bohr3 using an improved
Marching Tetrahedron algorithm.

By evaluate the correlation between each descriptor and prediction errors, we introduce η and
Hb as new descriptors to correct function (12), and the new universal functional form for density
prediction can be expressed as

ρ = f
( M

Vm
,γσ2

tot, η, Hb

)
(13)

3.5. Accuracy Evaluatiom

Mean square error (MSE) analysis method is used for accuracy evaluation, and the relative percent
error ∆ρ (%) between calculated density ρcal and experimental density ρexp is defined as

∆ρ = 100×

(
ρcal − ρexp

)
ρexp

(14)

MSE =

∑N
i=1 ∆ρ2

i
N

(15)

To evaluate the generalization of all the QSPR functions, the cumulative distribution function
(CDF) is applied by calculate the integral of the probability density function of ∆ρ via

P(∆ρ) =
∫ ∆ρ

0

Nt

N
× 100dt (16)
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where, P(∆ρ) is the CDF of ∆ρ, N is the total number of molecules of the whole testing set, Nt is the
number of molecules at a given error t.

4. Conclusions

The influence of the two descriptors η and Hb on prediction error indicated that Equations without
considering these two factors will result in lower density prediction values, especially for molecules
with more ‘bricklike’ shape or more hydrogen bonds. Adding η and Hb as correction items in the
conventional QSPR is expected to improve the accuracy of density prediction.

There are 6 working conditions were built considering the 3 QSPR models proposed by this work,
and two calculation levels of B3PW91/6-31G(d,p) and B3LYP/6-31G**. The fitting result indicated that
all the 3 Equations result in good accuracy with MSE < 9, and the calculation level of B3PW91/6-31G(d,p)
is as good as B3LYP/6-31G**.

The accuracy and generalization of each Equation was verified by the 1847 compounds in the
testing set. The accuracy of the 3 Equations fitting from the training set were perfectly reproduced by
the testing set, and the accuracy and generalization of them are better than previous reported works
fitted via Equation (12). At the level of B3PW91/6-31G(d,p), the ERs of the 3 Equations, for ∆ρ < 5%,
are 92.5%, 92.3%, and 93.6%; for ∆ρ < 2%, the values are 53.4%, 51.0%, and 53.6%. At the level of
B3LYP/6-31G**, for ∆ρ < 5%, the values are 92.3%, 91.4%, and 92.9%; for ∆ρ < 2%, the values are 53.7%,
51.4%, and 53.2%.

The accuracy of density prediction can be obviously improved by add molecular morphology η and
hydrogen bond Hb as correction terms in QSPR formulas. Considering both of η and Hb, Equation (3)
is a reliable condition for density prediction, and both B3PW91/6-31G(d,p) and B3LYP/6-31G** are
applicable in density prediction.
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