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SUMMARY

VisualZoneR is an R-based technique used to analyze spatial transcriptomics data
generated by employing Visium or Visium HD technology. Here, we present a
protocol to identify compartmental zones from single-cell spatial transcriptomics
using VisualZoneR. We describe steps for identifying distinct zones ranging from
healthy liver tissue to inner metastatic areas and measuring transcriptomic
changes. We then detail procedures for integrating distinct samples and
grouping transcriptomic spots into compartmental zones according to their rela-
tive distance from the tumor/liver parenchyma boundary.

BEFORE YOU BEGIN

Overview

In depth understanding of the tumor microenvironment (TME) is of pivotal importance for the devel-

opment of new cancer therapies.1 Of note, the interface between the tumor and the healthy tissue is

recognized as the most immune active area, while the center of the tumor exhibits immunosuppres-

sive features.2,3 It has been shown that the spatial organization of diverse immune cells can predict

clinical outcome, thereby influencing the selection of treatment strategies. Therefore, spatially

resolved transcriptomic analysis, such as Visium technology from 10X Genomics, offers a powerful

tool for a more in-depth characterization of the TME and was rightfully awarded the Method of

the Year in 2020.4 Nevertheless, the biggest challenges for the analysis of spatial transcriptomics

remain the unbiased integration of biological replicates and the interpretation of the data.

VisualZoneR is a computational approach developed in R for the integration and analysis of spatial

transcriptomics data generated using Visium technology. In the case study presented here, we

applied VisualZoneR to mouse liver sections containing liver metastases, with a focus on analyzing

transcriptomic changes occurring in the transition from healthy tissue to inner metastatic areas.

VisualZoneR enables grouping of transcriptomic spots into distinct compartmental zones according

to their relative distance from the metastasis/liver parenchyma boundary. Moreover, VisualZoneR

enables the unbiased integration of biological replicates and comparison between different cohorts

as described by our group in a previous study.5 VisualZoneR can be used for analyzing various types

of tumors and other studies where spatial transcriptomics is employed to examine transitions be-

tween different tissues. In addition to that, VisualZoneR can also be employed to analyze datasets

generated using VisiumHD technology (from 10XGenomics), a high-resolution spatial transcriptom-

ics technology enabling spatial gene expression analysis at single cell scale.
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Description of spatial transcriptome dataset

We generated the spatial transcriptomic dataset by using Visium technology from 10X Genomics, a

spatial transcriptomics technology with 6.53 6.5 mm capture areas covered with about 5,000 spots

of distinct oligonucleotides. The distance between gene expression spots are about 100 mm. Visium

technology was applied according to manufacturer’s instruction using the manuals ‘‘Methanol Fixa-

tion, H&E Staining & Imaging for Visium Spatial Protocols (10x Genomics / CG000160 Rev D)’’

(https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/

steps/tissue-staining) using an Aperio ePathology digital scanner (Leica Biosystems) for image

acquisition, and ‘‘Spatial Gene Expression Reagent Kits (10X Genomics / CG000239 Rev F)’’

(https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/

steps/library-construction/visium-spatial-gene-expression-reagent-kits-user-guide) as described by

our group in a previous study.5 The optimal permeabilization timemay vary for different tissue types,

and thus, we initially investigated this factor using 7, 14, 21 or 28 min. For this study, a permeabili-

zation time of 14 min was used. Sequencing was performed using the Illumina NovaSeq 6000 plat-

form according to themanual. The demultiplexing, barcoded processing, gene counting and aggre-

gation were performed by using the Space Ranger software v1.2.2 (https://support.10xgenomics.

com/spatial-gene-expression/software/pipelines/latest/what-is-space-ranger) and employing the

mouse reference genome assembly mm10. The dataset can be downloaded at: https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE221359.

Download R, RStudio, and required R packages

Timing: �2 h depending on the computational power

1. The open-source software R provides a platform commonly used for statistical analysis and

graphical data representation. To download R, refer to https://www.r-project.org/. We executed

VisualZoneR using R version 4.0.3.

2. Download RStudio, an integrated development environment, from the following link: https://

www.rstudio.com/products/rstudio/. We run VisualZoneR on RStudio version 1.3.1093.

Note: R packages are collections of functions and compiled code that extend R functionality.

To run VisualZoneR, the following packages are necessary: Seurat, ggplot2, patchwork, dplyr,

install.packages("remotes")

remotes::install_version("Seurat", "4.1.1", repos = c("https://satijalab.r-universe.

dev", getOption("repos")))

install.packages("ggplot2")

devtools::install_github("thomasp85/patchwork")

install.packages("dplyr")

install.packages("cowplot")

BiocManager::install("OLIN")

BiocManager::install("fgsea")

install.packages(’gplots’)

install.packages("openxlsx")

install.packages("stringr")

install.packages("reshape2")
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cowplot, OLIN, fgsea, gplots, openxlsx, stringr and reshape2. The versions of the packages

that we employed are indicated in the key resources table.

CRITICAL: Other versions of the packages might result in unforeseen error messages.

Note that this can be avoided employing the indicated version of R and packages. This

code is mostly based on Seurat; therefore, other versions of Seurat could compromise

the functionality code. The Matrix package version should be 1.6–4 or lower.

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Download the dataset, perform quality control, and integrate samples

Timing: few minutes per sample, depending on the computational power

In the first step of VisualZoneR, the dataset is downloaded (in case the exemplary dataset described

here is used) and provided in the correct format and data location. Furthermore, the quality of the

individual transcriptomic spots is assessed in terms of number of RNAs detected (’nCount_Spatial’),

number of genes detected (’nFeature_Spatial’), percentage of mitochondrial genes (’percent_mito’)

and percentage of hemoglobin genes (’percent_hb’). Subsequently, the dataset is filtered by setting

the threshold for the number of detected genes (’nFeature_RNA’) to equal or higher than 500 and

the percentage of mitochondrial genes (’percent_mito’) to equal or lower than 20%. Furthermore,

this step describes the preparation of a single object in which the spatial transcriptomic spots of

all samples are integrated and normalized.

1. Download the dataset and prepare the input data.

a. Download data from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE221359

and extract the files.

b. Prepare the files as follows:

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Spatial transcriptomic data from
murine liver metastasis

DOI: https://doi.org/10.1016/j.
ccell.2023.09.014

GEO: GSE221359

R scripts and supplementary files DOI: https://doi.org/10.1016/j.
ccell.2023.09.014

http://www.bioinfotiget.it/gitlab/custom/
squadrito_livertumor2022/
squadrito_livertumor2022_spatial

Software and algorithms

R 4.0.3 http://www.R-project.org/ N/A

Seurat package (v4.1.1) https://satijalab.org/seurat/ N/A

ggplot2 package (v3.4.4) https://ggplot2.tidyverse.org/ N/A

patchwork package (v1.2.0) https://patchwork.data-imaginist.com/ N/A

dplyr package (v1.1.4) https://dplyr.tidyverse.org/ N/A

cowplot package (v1.1.2) https://wilkelab.org/cowplot/ N/A

OLIN package (v1.80.0) https://www.bioconductor.org/packages/
release/bioc/html/OLIN.html

N/A

fgsea package (v1.28.0) https://bioconductor.org/packages/release/
bioc/html/fgsea.html

N/A

gplots package (v3.1.3) https://github.com/talgalili/gplots N/A

openxlsx package (v4.2.5.2) https://ycphs.github.io/openxlsx/index.html N/A

stringr package (v1.5.1) https://stringr.tidyverse.org/ N/A

reshape2 package (v1.4.4) https://cran.r-project.org/web/packages/
reshape2/index.html

N/A
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i. The folders containing the images of each sample retrieved from the ’<sample>_spatial.

tar.gz’ file are placed in the data input folder (hereon ’geo_dir’) and named by concate-

nating the sample name and the suffix (e.g., Sample3_spatial).

ii. The ’.h50 files, for each sample, are placed in the ’geo_dir’ folder and named by

concatenating the sample name and the suffix ’_filtered_feature_bc_matrix.h5’ (e.g.,

Sample3_filtered_feature_bc_matrix.h5).

Note: This step applies only if the exemplary dataset is used. Alternatively, the dataset of in-

terest which should be analyzed using VisualZoneR is provided as input data.

2. Load required R packages, setting of directories and define the quality control parameters.

a. Load the required R packages.

b. Set input and output directories.

Note: Replace ’geo_dir’ with the path of the folder where the input data are stored. Addition-

ally, set the output path ’wdir’ as needed.

c. Define the quality control parameters. Mitochondrial genes contain the prefix ’^mt-’

Note: thresholds can be defined by the user according to quality requirements and may differ

dependent on the sample or experiment.

#2a:

library(Seurat)

library(ggplot2)

library(patchwork)

library(dplyr)

library(cowplot)

library(OLIN)

library(fgsea)

library(gplots)

library(stringr)

library(openxlsx)

#2b:

wdir <- "�/squadrito_livertumor2022_spatial" #replace by required working directory

geo_dir <- "�/GEO_data" #use path where you placed data files

data_dir <- paste(wdir, "data", sep = "/")

out_dir <- paste(wdir, "results", sep = "/")

dir.create(path = data_dir, showWarnings = F)

dir.create(path = out_dir, showWarnings = F)
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3. In this section of VisualZoneR, a loop is employed to load all samples as individual objects, filter

the transcriptomic spots by the previously set quality control parameters, visualize all assessed

quality parameters, annotate each sample according to its treatment cohort as Responder

(‘‘parRes’’), Resistant (‘‘nonRes’’) and Control (‘‘Ctrl’’), prepare the objects for integration, and

generate a list containing all objects.

a. Load individual images.

Note: The folder containing the images of each sample retrieved from the ’<sample>_spatial.

tar.gz’ file has to be placed in the ’geo_dir’ directory and named by fusing the sample name

and the suffix ’_spatial’ (e.g. Sample3_spatial). Similarly, the ’.h50 file for each sample has to be

placed in the ’geo_dir’ folder and named by fusing the GSM number, sample name and the

suffix ’_filtered_feature_bc_matrix.h5’ (e.g. GSM6859066_Sample3_filtered_feature_bc_ma-

trix.h5). If a dataset other than the exemplary dataset described here should be analyzed,

the input information such as file names and cohort description (’treatmentGroups’, provided

in the order of samples loaded) should be adjusted accordingly.

b. Annotate the quality control features and filter out spatial transcriptomic spots that do not

meet the required parameters.

c. Perform SCTransformation and normalization on each individual sample.

d. Add sample information and prepare for integration by normalizing and finding variable fea-

tures and generate a list containing all objects.

#2c:

analysis_params <- list(

min.feature = 500, # min nFeature_RNA

max.pc.mito = 20, # max percent.mt

mito.prefix = "^mt-" # mito prefix

)

#3a:

samples <- c("Sample3", "Sample4", "Sample7", "Sample10", "Sample11", "Sample14", "Sam-

ple19", "Sample22")

GSM_Numb <- c("GSM6859066_", "GSM6859067_", "GSM6859068_", "GSM6859069_", "GSM6859070_",

"GSM6859071_", "GSM6859072_", "GSM6859073_")

treatmentGroups <- c("Ctrl", "nonRes", "Ctrl", "parRes", "parRes", "nonRes", "Ctrl",

"parRes")

reference.list <- c()

for (i in 1:length(samples)) {

sample <- samples[i]

GSM <- GSM_Numb[i]

obj_img <- Read10X_Image(image.dir = paste(geo_dir, paste0(sample, "_spatial"),

sep = "/"))

obj <- Load10X_Spatial(data.dir = geo_dir, filename = paste0(GSM,sample, "_filtered_featur-

e_bc_matrix.h5"), image = obj_img, slice = paste0(sample, "img"))
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4. Integrate all samples into a single object and process it.

a. Integrate samples into one object.

Note: The number of dimensions to use depends on the specific dataset.

b. Assess quality control parameters for the integrated object (Figure 1).

Note: Important parameters are ‘‘nFeature_Spatial’’, which represents the number of genes

detected in each cell, and ‘‘nCount_Spatial’’, which is the total number of molecules detected

in a cell. In a similar way ‘‘nFeature_SCT’’ and ‘‘nCount_SCT’’ represent genes and molecules

respectively but after the SCTransformation. Moreover, ‘‘percent_mito’’ corresponds to the

percentage of mitochondrial genes in each cell. An important aspect, when dealing with mul-

tiple samples together, is to verify that all the samples behave in the same way, to obtain a

good integration.

#3b:

obj <- PercentageFeatureSet(obj, analysis_params$mito.prefix, col.name = "percent_mito")

obj <- PercentageFeatureSet(obj, "^Hb.*-", col.name = "percent_hb")

obj <- obj[, obj$nFeature_Spatial > analysis_params$min.feature & obj$percent_mito <

analysis_params$max.pc.mito]

#3c:

obj <- SCTransform(object = obj, assay = "Spatial", return.only.var.genes = FALSE, verbose =

FALSE)

obj <- NormalizeData(obj, verbose = FALSE, assay = "Spatial")

obj <- GroupCorrelation(object = obj, group.assay = "Spatial", assay = "Spatial", slot =

"data", do.plot = FALSE)

obj <- GroupCorrelation(object = obj, group.assay = "Spatial", assay = "SCT", slot = "sca-

le.data", do.plot = FALSE)

#3d:

obj@meta.data$orig.ident <- sample

obj@meta.data$TreatGroups <- treatmentGroups[i]

DefaultAssay(obj) <- "SCT"

obj <- NormalizeData(obj, verbose = FALSE)

obj <- FindVariableFeatures(obj, selection.method = "vst", nfeatures = 500, verbose =

FALSE)

reference.list <- c(reference.list, obj)

}

#4a:

crc.anchors <- FindIntegrationAnchors(object.list = reference.list, dims = 1:30)

crc.integrated <- IntegrateData(anchorset = crc.anchors, dims = 1:30)
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c. Process the integrated object by computing PCA, UMAP embeddings, and clusters.

Note: The number of PCs computed, the number of those used in the UMAP and the clus-

tering resolutions strictly depends on the dataset. One possibility to determine the number

of PCs used in the ’RunUMAP’ function is based on the elbow plot in which principal compo-

nents are ranked based on the percentage of variance explained by each one. By selecting a

number of PCs in correspondence to the ’elbow’, it is suggested that the majority of the true

signal is captured. The parameter for resolution in the ’FindClusters’ function determines the

granularity of the clustering. The parameter should be adjusted to retrieve a meaningful clus-

tering. As in this case where two tissues should be distinguished, a low level of granularity is

sufficient. Further indications on how to choose these parameters can be found at the

following webpage:

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html.

d. Merge cluster that are redundant or poorly represented and save the Seurat object.

Note: Using different versions of R or R packages may cause differences in the clustering and

alter the requirements for merging clusters.

#4b:

DefaultAssay(crc.integrated) <- "integrated"

plot1 <- FeatureScatter(crc.integrated, feature1 = "nCount_SCT", feature2 = "nCount_Spa-

tial", group.by = "orig.ident", plot.cor = F)

plot2 <- FeatureScatter(crc.integrated, feature1 = "nFeature_SCT", feature2 = "nCount_Spa-

tial", group.by = "orig.ident", plot.cor = F)

plot3 <- FeatureScatter(crc.integrated, feature1 = "percent_mito", feature2 = "nFeature_

Spatial", group.by = "orig.ident", plot.cor = F)

png(filename = paste(out_dir, "IntegratedObj_QC.png", sep = "/"), width = 1200, height = 1000,

res = 100)

print(plot1 + plot2 + plot3)

dev.off()

#4c:

crc.integrated <- ScaleData(crc.integrated, verbose = FALSE)

crc.integrated <- RunPCA(crc.integrated, npcs = 70, verbose = FALSE)

ElbowPlot(crc.integrated, ndims = 70)

DefaultAssay(crc.integrated) <- "integrated"

# UMAP and Clustering

crc.integrated <- RunUMAP(crc.integrated, dims = 1:25, seed.use = 123)

crc.integrated <- FindNeighbors(crc.integrated, reduction = "umap", dims = 1:2, force.recalc = T)

crc.integrated <- FindClusters(crc.integrated, resolution = 0.1)

Idents(crc.integrated) <- "integrated_snn_res.0.1"

crc.integrated <- SCTransform(crc.integrated, assay = "Spatial", new.assay.name = "SCTintegrated")
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Here, we provide an example of visualization of the computed clusters in the integrated object

(Figure 2).

Grouping of spatial spots into compartmental zones according to their relative distance from

the metastasis/liver parenchyma boundary

Timing: few minutes

In this step of VisualZoneR, we evaluate the relative distance of each spot from the metastasis/liver

parenchyma boundary using a moving average function. Subsequently, we categorize the spatial

spots into 8 distinct compartmental zones, extending from the center of the tumor to the tumor-

distant liver parenchyma.

Note: Transcriptomic spots from clusters 1 and 6 were identified as metastatic areas while all

the other clusters represent hepatic parenchyma. However, for other datasets or other types

or analyses the user may select other clusters to define the tissue/zone of interest.

5. Classification of spatial spots as metastatic or liver parenchyma based on the previously

computed clustering and by assessing the expression of common colorectal cancer-related

genes (Epcam, Cdh1, Cldn7, Actb, S100a6, Tmsb10, Timp1, Bgn, Col3a1, Saa3, Spp1) and

liver-related genes (Alb, Fabp1, Apob, Car3) in each cluster (Figure 3).

Note: The list of genes used for classification of the sports can be selected according to the

users’ preferences and experimental goal. Indeed, other genes could be selected to enable

precise cell distinction for other tissues or tumor models.

#4d:

crc.integrated@meta.data$integrated_FinalClusters <- crc.integrated@meta.data$integrated_

snn_res.0.1

crc.integrated@meta.data$integrated_FinalClusters[crc.integrated@meta.data$integra-

ted_FinalClusters == 8] <- 2

png(filename = paste(out_dir, "DimPlot_integrated_refined.png", sep = "/"), width = 1200,

height = 1000, res = 100)

print(DimPlot(crc.integrated, reduction = "umap", group.by = "integrated_FinalClusters",

label = T, pt.size = 1.5))

dev.off()

saveRDS(crc.integrated, file = paste(out_dir, "crc.integrated.rds", sep = "/"))

# Figure 2: Integrated Final Clusters

df <- FetchData(object = crc.integrated, c("UMAP_1", "UMAP_2", "integrated_FinalClusters"))

p <- ggplot(data = df, mapping = aes(x = UMAP_1, y = UMAP_2, color = integrated_

FinalClusters)) + theme_void() + theme(legend.position = "none") + ggtitle("Integrated

Final Clusters") + geom_point(size = .25) + scale_color_hue()

p <- LabelClusters(plot = p, id = "integrated_FinalClusters", size = 5, color = "black")

ggsave(filename = paste(out_dir, "DimPlot_integrated_refined.png", sep = "/"), plot = p,

width = 8, height = 6, units = "cm", dpi = 300)
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6. Loop in which VisualZoneR groups the spatial spots for each sample individually into compart-

mental zones according to their relative distance from the metastasis/liver parenchyma boundary

and annotates them accordingly.

a. Create a subset object for each sample and extract the coordinates for each spatial spot.

b. Annotate spatial spots belonging to clusters classified as metastatic.

Note: If clusters identified as metastatic (here cluster 1 and 6) differ due to changes in the

clustering, spots of clusters annotated as 1 in the Coord$ift slot (identified by ’Coord$inte-

grated_FinalClusters == 1 | Coord$integrated_FinalClusters == 60) must be adjusted. For

other applications beyond the analysis of liver metastasis, clusters summarizing spots

covering the tissue category of interest must be annotated as 1 accordingly.

We provide an example of visualization of the ‘‘ift’’ values, which stands for ‘‘if tumor’’ and

identifies spots as liver parenchyma (‘‘ift’’ = 0) or metastasis (‘‘ift’’ = 1) in the matrix of sample

4 with the corresponding H&E image. There is precise overlap between spots identified as

metastatic area (‘‘ift’’ = 1, Figure 4, left panel) and the metastasis that can be observed in

the H&E staining (Figure 4, right panel). Of note, we observed similar results for all 8 sections

analyzed in this study. The strong overlap confirms that this method enables an automated

distinction between spots covering metastatic and non-metastatic hepatic regions, which is

key for further classification of spots into distinct zones dependent on their relative distance

to the liver-metastasis boundary.

c. Create a binary matrix, ’msub1’ in which all coordinates of spots covering a metastatic area are

annotated as 1, while spots covering a liver parenchyma area are annotated as 0 (Figure 5).

d. Accordingly, create a binary matrix, ’msub1liv’ in which all coordinates of spots covering a liver

parenchyma area are annotated as 1 and spots covering a metastatic area are annotated as 0.

# Figure 3: Expression of Selected Genes

p <- DotPlot(crc.integrated, features = c("Epcam", "Cdh100, "Cldn700, "Actb", "S100a6",

"Tmsb10", "Timp1", "Bgn", "Col3a1", "Spp1", "Alb", "Fabp1", "Apob", "Car3"), group.by = "in-

tegrated_FinalClusters", dot.scale = 4) + theme_classic(base_size = 10) + theme(axis.

text.x = element_text(angle = 45, hjust = 1), legend.key.size = unit(.5, "cm")) + ggtitle("Ex-

pression of Selected Genes") + guides(color = guide_colorbar(title = "Avg. Expr."), size =

guide_legend(title = ’Perc. Expr.’)) + xlab("") + ylab("Integrated Final Clusters")

ggsave(filename = paste(out_dir, "DotPlot_Genesignature_Cluster.png", sep = "/"), plot = p,

width = 10, height = 8, units = "cm", dpi = 300)

Figure 1. Quality control plots

Scatterplots showing the relations among the number of features (nFeature_Spatial), counts (nCount_Spatial), and percentage of mitochondrial genes

(percent_mito), colored by individual samples.
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e. Create a matrix, ’nameTokeep’ in which all coordinates of spots covering tissue are annotated

with their ’barcode_ID’ and all other positions are annotated as NA. This matrix will be later

used in the integrated object.

f. Compute a moving average on the matrix ’msub1’ using the ’ma.matrix’ function.

Note: For that purpose, the moving average will consider a sliding window encompassing

two layers of spots surrounding the spot of interest as well as a moving window encompass-

ing three layers of spots surrounding the spot of interest. The size of the sliding window is

defined by the value for ’delta’ (here ’delta’ = 2 and ’delta’ = 3, respectively). Resulting ma-

trixes are multiplied by the factors 2 and 1, respectively, and summed. The value for spots

covering liver parenchyma is set to 0 (Figure 6).

g. Compute a moving average score based on the matrix ’msub1liv’ as described above.

Note: For that purpose, calculate the moving average considering two layers of spots sur-

rounding the spot of interest, weighted by the factor 2, as well as a moving average consid-

ering three layers of spots surrounding the spot of interest, weighted by the factor 0.1, and

summarize those two. The value for spots covering metastasis is set to 0.

Here we show a representative image of the moving average calculated for the individual

spots based on the ’msub1’ matrix (Figure 7, left panel) and the ’msub1liv’ matrix (Figure 7,

right panel) for sample 4.

Figure 3. Expression of selected genes

Dotplot showing the expression of metastasis-related and liver-related genes in the computed clusters, colored by

their average expression. Size represents the percentage of cells expressing the corresponding gene in the specific

cluster.

Figure 2. Clustering of the integrated object

UMAP plot showing the clusters computed on the integrated object.
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h. Assign spots to compartmental zones based on their relative distance from the metastasis/

liver parenchyma boundary using the previously calculated moving average matrices.

Note: The moving average value for each spot is the sum of two ’ma.matrix’ functions which

individually result in a value in the range of 0–1. As described previously, these values are

multiplied by a defined factor (for ’masubliv’ we used 0.1 and 2, and for ’masub10 we used

1 and 2). Therefore, the resulting value will be in the range of 0–2.1 for the ’masubliv’ matrix

and 0 to 3 for the ’masub10 matrix. Here, the score values defining the zones are chosen

manually to generate compartmental zones. The optimal choice depends on the users’

needs. In this application, the values were chosen to result in compartmental zones with a

thickness of approximately one layer of spots, leading to an absolute thickness of about

Figure 5. Example for the binary matrices of tumor (left) and liver (right) of sample 4

Figure 4. Spatial representation of the ‘‘ift’’ values of the transcriptomic spots and H&E image of sample 4

Scatter plot of a sample showing the cells of the matrix colored based on the selected cluster of interest (left) and the corresponding H&E image (right).
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100 mm per zone in datasets generated using Visium technology (10X). For other technolo-

gies such as VisiumHD the absolute thickness depends on the size of the individual transcrip-

tomic units as well as the number of layers of transcriptomic units summarized in each zone. If

more than 8 zones are required, further score values can be introduced.

Figure 6. Schematics showing an example of how the matrix is computed when parameters are defined as ’delta’ = 1 and ’delta’ = 2

The higher the ’delta’ is defined, the sharper the definition of the compartmental spot.

Figure 7. Example of tumor (left) and liver (right) matrices after applying themoving average approach with ’delta’ 2 and 3 for sample 4 https://cran.

r-project.org/web/packages/reshape2/index.html (H&E staining for the corresponding sample shown in Figure 4)

Color represents the value obtained for each position of the matrix.
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i. Merge the matrices for the metastatic tissue and liver parenchyma tissue and rename the

compartmental zones from ’Zone_A’ describing the inside of the metastasis to ’Zone_H’,

the compartmental zone for spots covering distant liver parenchyma, and generate a table

containing information about the spot identity (SeuratID) as well as the name of the assigned

compartmental zone for each spot.

Note: The name of the individual zones can be adjusted to the user’s needs.

j. Merge the zone name of each spot into the Seurat object (integrated) and close the loop.

#6a:

for (sample in samples) {

crc.integrated <- SetIdent(object = crc.integrated, value = "orig.ident")

sub1 <- subset(crc.integrated, idents = sample)

sub1 <- SetIdent(object = sub1, value = "integrated_FinalClusters")

Coord <- merge(crc.integrated@images[[paste0(sample,"img")]]@coordinates, crc.inte-

grated@meta.data[crc.integrated@meta.data$orig.ident == sample, "integrated_FinalClus-

ters", drop = F], by = 0)

rownames(Coord) <- Coord$Row.names

Coord$Row.names <- NULL

#6b:

Coord$ift <- ifelse(Coord$integrated_FinalClusters == 1 | Coord$integrated_FinalClus-

ters == 6, 1, 0)

# Figure 4

p <- ggplot(data = Coord, aes(x = row, y = col, label = ift, color = as.factor(ift))) + the-

me_bw(base_size = 9) + theme(legend.key.size = unit(.2, "cm"), legend.position = c(.85,

.15), legend.background = element_rect(color = "black")) + geom_point(size = .8) + scale_x_

continuous(n.breaks = 10, expand = c(0, 1)) + scale_y_continuous(n.breaks = 10, expand =

c(0, 1)) + scale_color_brewer(palette = "Set1", name = "Ift)

ggsave(filename = paste(out_dir, paste("UMAP_", sample,"_IFT.png", sep = ""), sep = "/"),

plot = p, width = 8, height = 7, units = "cm", dpi = 300)

#6c:

maxrow <- max(Coord$row)

maxcol <- max(Coord$col)

msub1 <- matrix(rep(NA, maxrow * maxcol), ncol = maxcol)

msub1 <- as.data.frame(msub1)

for (i in c(1:length(Coord$ift))) {

msub1[Coord$row[i], Coord$col[i]] <- Coord$ift[i]

}
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#6d:

msub1liv <- matrix(rep(NA, maxrow * maxcol), ncol = maxcol)

msub1liv <- as.data.frame(msub1liv)

for (i in c(1:length(Coord$ift))){

msub1liv[Coord$row[i], Coord$col[i]] <- (-Coord$ift[i]+1)

}

# Figure 5 (left): Tumor Matrix.

mma <- as.matrix(msub1)

rownames(mma) <- seq(1, nrow(mma))

colnames(mma) <- seq(1, ncol(mma))

mma <- reshape2::melt(mma)

p <- ggplot(data = mma, aes(x = Var1, y = Var2, label = value)) + theme_bw(base_size = 10) + the-

me(legend.position = "none", panel.grid.major = element_line(linewidth = .2)) + geom_text

(size = 1, family = "mono") + xlab("row") + ylab("row") + ggtitle("Tumor Matrix") + scale_x_

continuous(n.breaks = 10, expand = c(0, 1), minor_breaks = seq(1, max(mma$Var1))) + scale_y_

continuous(n.breaks = 10, expand = c(0, 1), minor_breaks = seq(1, max(mma$Var2)))

ggsave(filename = paste(out_dir, paste("Matrix_", sample, "_Tumor.png", sep = ""),

sep = "/"),

plot = p, width = 8, height = 7, units = "cm", dpi = 300)

# Figure 5 (right): Liver Matrix

mmaliv <- as.matrix(msub1liv)

rownames(mmaliv) <- seq(1, nrow(mmaliv))

colnames(mmaliv) <- seq(1, ncol(mmaliv))

mmaliv <- reshape2::melt(mmaliv)

p <- ggplot(data = mmaliv, aes(x = Var1, y = Var2, label = value)) + theme_bw(base_size = 10) +

theme(legend.position = "none", panel.grid.major = element_line(linewidth = .2)) + geo-

m_text(size = 1, family = "mono") + xlab("row") + ylab("row") + ggtitle("Liver Matrix") + sca-

le_x_continuous(n.breaks = 10, expand = c(0, 1), minor_breaks = seq(1, max(mma$Var1))) + sca-

le_y_continuous(n.breaks = 10, expand = c(0, 1), minor_breaks = seq(1, max(mma$Var2)))

ggsave(filename = paste(out_dir, paste("Matrix_", sample, "_Liver.png", sep = ""),

sep = "/"),

plot = p, width = 8, height = 7, units = "cm", dpi = 300)

#6e:

namesTokeep <- matrix(rep(NA, maxrow * maxcol), ncol = maxcol)

namesTokeep <- as.data.frame(namesTokeep)

for (i in c(1:length(Coord$ift))){

namesTokeep[Coord$row[i], Coord$col[i]] <- rownames(Coord)[i]

}
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#6g:

masub1liv <- ma.matrix(as.matrix(msub1liv), av = "mean", delta = 2, edgeNA = FALSE)

masub1liv <- ma.matrix(as.matrix(msub1liv), av = "mean", delta = 3, edgeNA = FALSE) * 0.1 +

(masub1liv * 2)

indexes1 <- msub1

masub1liv <- masub1liv * (-1*(indexes1-1))

# Figure 7 (left): Tumor MA Matrix

mma <- as.matrix(masub1)

rownames(mma) <- seq(1, nrow(mma))

colnames(mma) <- seq(1, ncol(mma))

mma <- reshape2::melt(mma)

p <- ggplot(data = mma, aes(x = Var1, y = Var2, color = value)) + theme_bw(base_size = 9) + the-

me(legend.position = c(.15, .75), legend.background = element_rect(color = "black"),

legend.key.size = unit(3, "mm")) + geom_point(size = .75) + xlab("row") + ylab("row") + ggti-

tle("Tumor Matrix After Moving Avg.") + scale_x_continuous(n.breaks = 10, expand = c(0, 1)) +

scale_y_continuous(n.breaks = 10, expand = c(0, 1)) + scale_color_gradient2(low = "blue",

high = "darkred", mid = "orange", na.value = NA, midpoint = 2.5)

ggsave(filename = paste(out_dir, paste("Matrix_", sample, "_TumorMA.png", sep = ""), sep =

"/"), plot = p, width = 8, height = 7, units = "cm", dpi = 300)

#6f:

masub1 <- ma.matrix(as.matrix(msub1), av = "mean", delta = 2, edgeNA = FALSE )

masub1 <- ma.matrix(as.matrix(msub1), av = "mean", delta = 3, edgeNA = FALSE ) + (masub1*2)

indexes1 <- msub1

masub1 <- masub1 * indexes1

# Figure 7 (right): Liver MA Matrix

mmaliv <- as.matrix(masub1liv)

rownames(mmaliv) <- seq(1, nrow(mmaliv))

colnames(mmaliv) <- seq(1, ncol(mmaliv))

mmaliv <- reshape2::melt(mmaliv)

p <- ggplot(data = mmaliv, aes(x = Var1, y = Var2, color = value)) + theme_bw(base_size = 9) +

theme(legend.position = c(.15, .75), legend.background = element_rect(color = "black"),

legend.key.size = unit(3, "mm")) + geom_point(size = .75) + xlab("row") + ylab("row") + ggti-

tle("Liver Matrix After Moving Avg.") + scale_x_continuous(n.breaks = 10, expand = c(0, 1)) +

scale_y_continuous(n.breaks = 10, expand = c(0, 1)) + scale_color_gradient2(low = "blue",

high = "darkred", mid = "orange", na.value = NA, midpoint = 2.5)

ggsave(filename = paste(out_dir, paste("Matrix_", sample, "_LiverMA.png", sep = ""), sep =

"/"), plot = p, width = 8, height = 7, units = "cm", dpi = 300)
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#6h:

# Score of tumor

M1 = 2.96

M2 = 2.7

M3 = 2.3

masub1[masub1 > M1] <- (-4)

masub1[masub1 <= M1 & masub1 > M2] <- (-3)

masub1[masub1 <= M2 & masub1 > M3] <- (-2)

masub1[masub1 <= M3 & masub1 > 0] <- (-1)

# Score of liver

L1 = 2.095

L2 = 1.91

L3 = 1.7

masub1liv[masub1liv <= L3 & masub1liv > 0] <- 0

masub1liv[masub1liv <= L2 & masub1liv > L3] <- 1

masub1liv[masub1liv <= L1 & masub1liv > L2] <- 2

masub1liv[masub1liv > L1] <- 3

#6i:

finalScores <- masub1 + masub1liv

finalzones <- finalScores

finalzones[finalzones == (-4)] <- "Zone_A"

finalzones[finalzones == (-3)] <- "Zone_B"

finalzones[finalzones == (-2)] <- "Zone_C"

finalzones[finalzones == (-1)] <- "Zone_D"

finalzones[finalzones == 0] <- "Zone_E"

finalzones[finalzones == 1] <- "Zone_F"

finalzones[finalzones == 2] <- "Zone_G"

finalzones[finalzones == 3] <- "Zone_H"

finalzones[finalzones == "NaN"] <- NA

FinalTable <- data.frame(SeuratID = as.vector(as.matrix(namesTokeep)), datasub1 = as.vec-

tor(as.matrix(finalzones)), drow = rep(1:nrow(masub1), ncol(masub1)), dcol = rep(1:ncol(ma-

sub1), nrow(masub1))[order(rep(1:ncol(masub1), nrow(masub1)))])

FinalTable <- na.omit(FinalTable)

#6j:

SeuratPos <- names(crc.integrated@active.ident)

FinalTable <- FinalTable[order(FinalTable$SeuratID),]
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7. Export metadata and save the final object.

Here we provide exemplary images for sample 4 representing the combined moving average score

calculated for each spatial spot, as well as their annotation into the distinct spatial zones. Further-

more, we show the distribution of the spots belonging to the different zones within the UMAP

embedding (Figure 8). Interestingly, there is a trend toward a proximity of spots belonging to the

same zones confirming their transcriptomic similarity. However, this similarity is not sufficient to

enable the distinction of the zones solely based on the UMAP embedding.

if(!"Zones" %in% colnames(crc.integrated@meta.data)) {

crc.integrated@meta.data$Zones <- rep("Zone_A", length(SeuratPos))

}

crc.integrated@meta.data$Zones[crc.integrated@meta.data$orig.ident == sample] <- FinalTable$datasub1

}

full_md <- crc.integrated@meta.data

gz_out_md <- gzfile(paste(data_dir, "crc.integrated_metadata.csv.gz", sep = "/"), "w")

write.csv(x = full_md, gz_out_md)

close(gz_out_md)

saveRDS(crc.integrated, file = paste(out_dir, "crc.integrated.rds", sep = "/"))

# Figure 8 (top right): Final Matrix with Zones (after Zone assignments)

mmafinal <- as.matrix(finalzones)

rownames(mmafinal) <- seq(1, nrow(mmafinal))

colnames(mmafinal) <- seq(1, ncol(mmafinal))

mmafinal <- reshape2::melt(mmafinal) %>% filter(!is.na(value))

p <- ggplot(data = mmafinal, aes(x = Var1, y = Var2, color = value)) + theme_bw(base_size = 9) +

theme(legend.position = c(.15, .75), legend.margin = margin(1,1,1,1), legend.title = ele-

ment_text(size = 0.1), legend.text = element_text(size = 6), legend.background = elemen-

t_rect(color = "black"), legend.key.size = unit(3, "mm")) + geom_point(size = .75) +

xlab("row") + ylab("row") + ggtitle("Final Matrix with Zones") + scale_x_continuous(n.

breaks = 10, limits = c(0, max(mmafinal$Var1)), expand = c(0, 1)) + scale_y_continuous(n.

breaks = 10, expand = c(0, 1)) + scale_color_hue(na.value = NA, name = "")

ggsave(filename = paste(out_dir, "Matrix_Sample_FinalZones.png", sep = "/"), plot = p, width =

8, height = 7, units = "cm", dpi = 300)

# Figure 8 (top left): Final Matrix After Moving Avg.

mmafinal <- as.matrix(finalScores)

rownames(mmafinal) <- seq(1, nrow(mmafinal))

colnames(mmafinal) <- seq(1, ncol(mmafinal))

mmafinal <- reshape2::melt(mmafinal)

p <- ggplot(data = mmafinal, aes(x = Var1, y = Var2, color = value)) + theme_bw(base_size = 9) + the-

me(legend.position = c(.15, .75), legend.background = element_rect(color = "black"), legend.-

key.size = unit(3, "mm")) + geom_point(size = .75) + xlab("row") + ylab("row") + ggtitle("Final

ll
OPEN ACCESS

STAR Protocols 5, 103196, September 20, 2024 17

Protocol



Here, we provide some examples of the moving average score computed with different values for

’delta’ to better visualize the impact of the ’delta’ parameter in the moving average strategy used

by VisualZoneR (Figure 9). In detail, this parameter corresponds to the determination of the size

of the sliding square window, which is (2*delta+1)x(2*delta+1). Increasing ’delta’ will result in a wider

submatrix on which the average is computed. This could help in dealing with sparse dataset or cases

in which the distance between spots is higher. Furthermore, a higher ’delta’ may be required when

using a spatial transcriptomics technology with a smaller spot size leading to a higher resolution such

as Visium HD technology. On the other hand, smaller values will reduce the window area, which can

help in dealing with smaller populations to characterize.

Matrix After Moving Avg.") + scale_x_continuous(n.breaks = 10, expand = c(0, 1)) + scale_y_conti-

nuous(n.breaks = 10, expand = c(0, 1)) + scale_color_gradient2(low = "blue", high = "darkred",

mid = "orange", na.value = NA, midpoint = 2.5)

ggsave(filename = paste(out_dir, "Matrix_Sample_FinalMA.png", sep = "/"), plot = p, width = 8,

height = 7, units = "cm", dpi = 300)

# Figure 8 (bottom): UMAP with Zones (after Zone assignments)

df <- FetchData(object = crc.integrated, c("UMAP_1", "UMAP_2", "Zones"))

df$Zones <- as.factor(df$Zones)

p <- ggplot(data = df, mapping = aes(x = UMAP_1, y = UMAP_2, color = Zones)) + theme_void() + the-

me(legend.position = "right", legend.key.size = unit(1, "mm")) + ggtitle("Final Zones") +

geom_point(size = .25, alpha = .8) + scale_color_hue() + guides(color = guide_legend(overri-

de.aes = list(size = 1)))

ggsave(filename = paste(out_dir, "DimPlot_integrated_refined_zones.png", sep = "/"), plot =

p, width = 9, height = 6, units = "cm", dpi = 300)

full.mma <- data.frame()

for (dd in c(1, 2, 4, 8)) {

masub1 <- ma.matrix(as.matrix(msub1), av = "mean", delta = dd, edgeNA = FALSE )

masub1 <- ma.matrix(as.matrix(msub1), av = "mean", delta = dd+1, edgeNA = FALSE ) +

(masub1*2)

mma <- as.matrix(masub1)

rownames(mma) <- seq(1, nrow(mma))

colnames(mma) <- seq(1, ncol(mma))

mma <- reshape2::melt(mma)

mma$Delta <- paste("Delta =", dd)

full.mma <- rbind(full.mma, mma)

}

# Figure 9

p <- ggplot(data = full.mma, aes(x = Var1, y = Var2, color = value)) +

theme_bw(base_size = 9) + theme(legend.position = "right", legend.background = elemen-

t_rect(color = "black"), legend.key.size = unit(3, "mm")) + geom_point(size = .4) +

xlab("row") + ylab("row") + ggtitle("Tumor Matrix After Moving Avg.", subtitle = "Tests
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Downstream analysis of the data based on the zonation

Timing: few hours

Here, we describe examples for downstream analysis of the VisualZoneR pipeline and visualization of

the data. The methods described here are focusing on the differential expression of single genes,

module score-based analysis or gene set enrichment analysis.

Note: dependent on the user’s needs other downstream analysis could be performed.

with different delta values") + scale_x_continuous(n.breaks = 10, expand = c(0, 1)) + sca-

le_y_continuous(n.breaks = 10, expand = c(0, 1)) + scale_color_gradient2(low = "blue",

high = "darkred", mid = "orange", na.value = NA, midpoint = 2.5) + facet_wrap(.�Delta)

ggsave(filename = paste(out_dir, "Matrix_Sample_TumorMA_Tests.png", sep = "/"), plot = p,

width = 15, height = 14, units = "cm", dpi = 300)

Figure 8. Results of the zonation

Results of the moving average strategy obtained by summing the two matrices (e.g., tumor and liver) after applying the moving window average

strategy (top left), and the corresponding zones defined on it for sample 4 (top right, H&E staining for the corresponding sample shown in Figure 4), and

in the UMAP embeddings of the zones for all samples (bottom).
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8. Calculate the differential expression of all genes for each compartmental zone of each treatment

cohort.

Note: This code returns differential expression of all genes for all zones. If a more targeted

approach is required, the ’FindMarkers’ function can be modified according to the user’s

needs.

Figure 9. Example of tumor matrices after applying the moving average approach with different ’delta’ values (without filtering for the original cells

of the matrix)

Color represents the value obtained for each position of the matrix.

crc.integrated@meta.data$Zones_unique <- paste(crc.integrated@meta.data$TreatGroups, crc.integrated@meta.

data$Zones, sep = "_")

nClus <- unique(crc.integrated@meta.data$Zones_unique)
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9. Expression of selected genes in the different compartmental zones and treatment cohorts

(Figure 10).

Note: The list of genes can be modified according to the user’s needs.

DefaultAssay(crc.integrated) <- "SCTintegrated"

crc.integrated <- SetIdent(object = crc.integrated, value = "Zones_unique")

cluster0degAll <- NULL

for (i in nClus) {

cluster0genes <- FindMarkers(crc.integrated, ident.1 = i, min.pct = 0, only.pos = FALSE,

min.cells.group = 1, test.use = "wilcox", return.thresh = 1, logfc.threshold = 1e-11)

cluster0genes$GeneID <- rownames(cluster0genes)

cluster0deg <- cluster0genes

cluster0deg$Cluster <- i

cluster0degAll <- rbind(cluster0degAll, cluster0deg)

}

write.table(x = cluster0degAll, file = paste(data_dir, "Zones_unique.integrated.txt", sep =

"/"), quote = FALSE, row.names = TRUE, sep = "\t")

genesOI <- c("Epcam", "Cdh1", "Vil1", "Alb", "Apoa2", "Cyp27a1", "Socs1", "Stat1", "Nlrc5", "Fgl1", "Tgfb1", "Ccl24",

"Cd86", "H2-Oa", "Tap1", "Cd3g", "Cd8a", "Trac", "Eomes", "Pdcd1", "Gzmk")

full_df_genesOI <- data.frame()

for (geneOI in genesOI) {

df <- cluster0degAll[cluster0degAll$GeneID==geneOI,]

full_df_genesOI <- rbind(full_df_genesOI, df)

}

full_df_genesOI$FC <- 2^full_df_genesOI$avg_log2FC

full_df_cor_group_genes <- full_df_genesOI %>% group_by(GeneID, Cluster, FC) %>% summarise(MedianMS = median(FC))

min_gene <- full_df_cor_group_genes %>% group_by(GeneID) %>% summarise(geneMin = min(MedianMS))

full_df_cor_group_genes <- merge(full_df_cor_group_genes, min_gene, by = "GeneID")

full_df_cor_group_genes$Zones <-str_split_fixed(full_df_cor_group_genes$Cluster, "_", 2)[,2]

full_df_cor_group_genes$RNA_Group <-str_split_fixed(full_df_cor_group_genes$Cluster, "_", 2)[,1]

write.xlsx(x = list("MedianGene" = full_df_cor_group_genes[,-5]), file = paste(out_dir, "Full_GenesFC.xlsx",

sep = "/"))

# Figure 10.

p <- ggplot(full_df_cor_group_genes, aes(x = Zones, y = MedianMS, color = RNA_Group,fill = RNA_Group, group = RNA_Group,

ymin = geneMin, ymax = MedianMS)) + theme_bw() + theme(legend.position = "right", legend.background = element_rect

(color = "black"), axis.text.x = element_text(angle = 45, hjust = 1)) + geom_point() + geom_ribbon(position = ’identity’,

alpha = .1,) + xlab("") + ylab("Median MScore") + facet_wrap(.�GeneID, ncol = 3, scales = "free")

ggsave(filename = paste(out_dir, "Full_GenesFC.pdf", sep = "/"),

plot = p, width = 10, height = 25)
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10. Data representation by plotting module score of selected gene signatures (Figure 11).

Note:To runVisualZoneRweusedspecificgenesignatures. Single-celldatacanbeaccessedunder:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE221357. However, other gene sets

may be used according to the user’s needs.

a. Load an object containing all gene sets to be assessed. The file used here can be down-

loaded from http://www.bioinfotiget.it/gitlab/custom/squadrito_livertumor2022/squadrito_

livertumor2022_spatial/-/blob/main/data/miDB_sig3.rds. The file ’miDB_sig3.rds’is placed

into the ’data_dir’ folder.

Note: We used a file containing all gene sets provided at https://www.gsea-msigdb.org/

gsea/msigdb/mouse/ as well as some manually added gene sets extracted from Cilenti

et al. (https://doi.org/10.1016/j.immuni.2021.05.016) such as the IL-10 macrophage signa-

ture. If required, further gene sets can be added to this file.

b. Calculate and plot of the module score of selected gene signatures.

Figure 10. Zonation of selected genes

Visualization of expression of the selected genes in the computed zones, colored by group (treatment).

#10a:

miDB_sig2 <- readRDS(paste(data_dir, "miDB_sig3.rds", sep = "/"))

#10b:

ifn_sig <- miDB_sig2[["GOBP_RESPONSE_TO_TYPE_I_INTERFERON"]]

ifn_sig_filt <- ifn_sig[ifn_sig %in% rownames(crc.integrated)]
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11. Data representation using gene set enrichment analysis visualized in form of a heatmap

(Figure 12).

a. Perform gene set enrichment analysis for each compartmental zone and treatment group us-

ing the previously calculated list of differentially expressed genes.

Note: The table can be downloaded from the following link:

http://www.bioinfotiget.it/gitlab/custom/squadrito_livertumor2022/squadrito_livertumor2022_

spatial/-/blob/main/data/GSEA_Zones_unique_integrated.res01.txt.

signatures <- list("KC_long" = c("Vsig4","Clec4f","Marco","Fcna","Cd5l","C1qa", "C1qb","C1qc","Slc40a1","Clec1b",

"Cd38","Ptgs1", "Nr1h3"),

"TAMs" = c("Lyz2", "Ahnak", "Itgam", "Chil3", "S100a6", "Anxa2","Lyz1", "Mmp7", "Spp1", "Mmp12", "Timp1"),

"IFNa_TAMs" = c("Ccl2","Chil3","Ly6c2","Arg1", "Cxcl10","Slfn4","F10","Lyz2","Msrb1","Hp","Slfn1", "Cebpb",

"Fcgr1","Ifi204","Plac8","Gm21188","Mafb", "Tgm2","Ms4a4c","Ifi27l2a"),

"Cancer_cells" =

c("Phlda1","Krt18","Krt8","Lars2","Krt19","Epcam", "Jun","Cldn7","Lgals4","Cldn4","Cldn3","Krt7", "Tcim","Egr1",

"Sox4","2200002D01Rik","Axin2","Gpx2", "Taf1d","Plk2"),

"Hepatocytes" = c("Fabp1","Apoc1","Apoa2","Mt1", "Alb","Serpina1e","Ttr","Gsta3","Serpina1c", "Akr1c6","Gstm1",

"Serpina1a","Serpina1b","Gnmt", "Apoc3","Cdo1","Bhmt","Rgn","Ass1","Ttc36"),

"RespTypeIifn" = ifn_sig_filt)

for (sig in names(signatures)) {

crc.integrated <- AddModuleScore(object = crc.integrated, features = list(signatures[[sig]]), name = sig)

}

full_df_sig <- data.frame()

for (sig in names(signatures)) {

df <- crc.integrated@meta.data[, c(paste0(sig, "1"), "Zones", "TreatGroups", "orig.ident")]

colnames(df) <- c("Sig", "Zones", "RNA_Group", "Sample")

df$SigName <- sig

full_df_sig <- rbind(full_df_sig, df)

}

full_df_cor_group <- full_df_sig %>% group_by(SigName, Zones, RNA_Group) %>% summarise(MedianMS = median(Sig))

min_sig <- full_df_cor_group %>% group_by(SigName) %>% summarise(SigMin = min(MedianMS))

full_df_cor_group <- merge(full_df_cor_group, min_sig, by = "SigName")

write.xlsx(x = list("MedianSig" = full_df_cor_group[,-5]), file = paste(out_dir, "Full_

SignaturesMedianModScore.xlsx", sep = "/"))

# Figure 11.

p <- ggplot(full_df_cor_group, aes(x = Zones, y = MedianMS, color = RNA_Group, fill = RNA_Group, group = RNA_Group,

ymin = SigMin, ymax = MedianMS)) + theme_bw() + theme(legend.position = "right", legend.background = element_rect

(color = "black"), axis.text.x = element_text(angle = 45, hjust = 1)) + geom_point() + geom_ribbon

(position = ’identity’, alpha = .1,) + xlab("") + ylab("Median MScore") + facet_wrap(.�SigName,

ncol = 3, scales = "free")

ggsave(filename = paste(out_dir, "Full_SignaturesMedianModScore.pdf", sep = "/"), plot = p, width = 10, height = 7)
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b. Create a table for each treatment cohort containing the normalized enrichment score (NES)

for all analyzed gene sets, sorted from the inside of the tumor towards the tumor-distant pa-

renchyma. The NES value is set to 0 if the adjusted p-value is above 0.05.

c. Choose manually selected pathways, create a table in which the NES for those pathways for

all zones and treatment groups is listed and plot this as a heatmap.

Note: The selection of pathways to be displayed can be adjusted according to the user’s

preferences.

Figure 11. Zonation of selected signatures

Visualization of expression of the selected genes signatures in the computed zones, colored by group (treatment).

#11a:

Clusters <- unique(cluster0degAll[,7])

TopResultAllCluster <- NULL

for (i in Clusters) {

df2 <- cluster0degAll[cluster0degAll[,7] == i, 2]

names(df2) <- cluster0degAll[cluster0degAll[,7] == i, 6]

df2 <- df2[order(df2)]

test1 <- fgsea(pathways = miDB_sig2, stats = df2, minSize = 7, maxSize = 500)

test1 <- test1[rev(order(NES))]

TopResult <- as.data.frame(test1[,])[, c(1,2,3,4,5,6,7)]

TopResult$Cluster <- i

TopResultAllCluster <- rbind(TopResultAllCluster, TopResult)

}

write.table(x = TopResultAllCluster, file = paste(data_dir, "GSEA_Zones_unique_integrate-

d.res01.txt", sep = "/"), quote = FALSE, row.names = TRUE, sep = "\t")
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#11b:

TopResultAllCluster$Group <- stringr::str_split_fixed(TopResultAllCluster$Cluster, "_", 2)[,1]

TopResultAllCluster$Zones <- stringr::str_split_fixed(TopResultAllCluster$Cluster, "_", 2)[,2]

orderC <- unique(TopResultAllCluster$Zones)[order(unique(TopResultAllCluster$Zones))]

SideColors <- rep(c(rep("darkred",3), rep("red",1), rep("darkgreen",3), rep("green",1)), 3)

newName <- function(dfCNES,i) {

rownames(dfCNES) <- dfCNES[, i]

dfCNES <- dfCNES[, -(i)]

return(dfCNES)

}

for (ix in unique(TopResultAllCluster$Group)) {

test <- TopResultAllCluster[TopResultAllCluster$Group == ix,]

test <- test[!is.na(test$padj),]

test <- test[test$padj < 0.05,]

AllCluster <- unique(test$Zones)

orgerGO <- unique(test$pathway)

dfCNES <- data.frame(pathway = orgerGO[order(orgerGO)])

for (i in 1:length(AllCluster)){

dfC1 <- test[test$Zones == AllCluster[i],]

dfC1 <- data.frame(dfC1[order(dfC1$pathway), c(1, 6)])

colnames(dfC1) <- c("pathway", AllCluster[i])

dfCNES <- merge(dfCNES, dfC1, by = 1, all = T)

}

dfCNES <- newName(dfCNES, 1)

dfCNES <- dfCNES[rowSums(is.na(dfCNES)+0) < 8,]

dfCNES[is.na(dfCNES)] <- 0

finaldf2 <- as.matrix(dfCNES)

finaldf2 <- finaldf2[, orderC]

nameF <- paste(ix, "uniquezones.txt", sep = ".")

assign(nameF, finaldf2)

write.table(x = finaldf2, file = paste(out_dir, nameF, sep = "/"), quote = FALSE, row.names = T, sep = "\t")

}

#11c:

Selected.Terms <- c("GOBP_RESPONSE_TO_TYPE_I_INTERFERON","GOBP_RESPONSE_TO_INTERFERON_GAMMA","GOBP_RESPONSE_TO_

VIRUS","GOBP_POSITIVE_REGULATION_OF_CYTOKINE_PRODUCTION","GOBP_T_CELL_ACTIVATION","GOBP_ADAPTIVE_IMMUNE_

RESPONSE","GOBP_REGULATION_OF_IMMUNE_EFFECTOR_PROCESS","IL10_RO","HALLMARK_ANGIOGENESIS","HALLMARK_P53_

PATHWAY","HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION","HALLMARK_ADIPOGENESIS","HALLMARK_PEROXISOME",

"GOBP_SHORT_CHAIN_FATTY_ACID_METABOLIC_PROCESS","GOBP_LIPID_OXIDATION","HALLMARK_BILE_ACID_METABOLISM")
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EXPECTED OUTCOMES

The analysis of spatial transcriptomics data and the incorporation of biological replicates and statistical

comparison between distinct treatment cohorts remain challenging. VisualZoneR, themethodpresented

here for the analysis of spatial transcriptomic data from liver metastasis, enables integration of biological

replicates and unbiased comparisonbetweendifferent cohorts aswell as an assessment of transcriptomic

changes between different tumoral and peritumoral areas. The main output of the script is an unbiased

classification of spatial spots into distinct compartmental zones within the tumor area and healthy paren-

chyma dependent on the relative distance from the tumor/parenchyma boundary (Figure 8). However,

this script can also be applied to other non-cancer related applications that analyze the transition be-

tween two different tissue types. The classification into distinct zones enables several types of down-

stream analysis including statistical comparison between different treatment cohorts considering biolog-

ical replicates. Here we describe three potential downstream applications based on (I) the assessment of

differential expression of single genes (Figure 10), (II) evaluation of the accumulation of cell types or gene

signatures in the different compartmental zones and treatment cohorts based on amodule score analysis

(Figure 11), and (III) a gene set enrichment analysis addressing treatment related and unrelated upregu-

lation of distinct pathways in different zones (Figure 12). The main expected observations from

VisualZoneR applied to the dataset presented in this study are: (I) an enhanced IFNa signaling in IFNa

LV treated cohorts, especially within the metastatic and perimetastatic area accompanied with an overall

immune activation in these areas; (II) Immune activation in the zones surrounding the metastasis/liver pa-

renchyma boundary especially evident in the Responder cohort while an increased IL10 signaling is

dfNames <- paste0(unique(TopResultAllCluster$Group),".uniquezones.txt")

ix3 <- matrix(nrow = length(Selected.Terms), ncol = 0)

row.names(ix3) <- Selected.Terms

for (i in dfNames) {

ix <- read.table(paste(out_dir, i, sep = "/"), header = T, sep = "\t")

ix <- ix[rownames(ix) %in% Selected.Terms,]

diffG <- setdiff(Selected.Terms,rownames(ix))

diffM <- matrix(rep(0, 8*length(diffG)), ncol = 8)

rownames(diffM) <- diffG

colnames(diffM) <- colnames(ix)

ix2 <- rbind(ix, diffM)

ix2 <- ix2[Selected.Terms,]

colnames(ix2) <- paste(sub(".uniquezones.txt", "", i), colnames(ix2), sep = ".")

ix3 <- cbind(ix3, ix2)

}

ix3 <- as.matrix(ix3)

pdf(paste(out_dir, "Heatmap.uniquezones.pdf", sep = "/"), heigh = 6, width = 8)

heatmap.2(ix3, margins = c(8, 22), col = viridisLite::viridis(10), cexCol = 1, cexRow = .8, keysize = 1.1,

dendrogram = "none", colsep = c(8,16), main = i, scale = "none", Rowv = F, Colv = F, ColSideColors = SideColors)

legend("topright", legend = c("Inner tumor", "Border tumor", "Peritumor", "Liver"), col = unique(SideColors),

lty = 1, lwd = 5, cex = .7)

dev.off()
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observed in the Resistant cohort; (III) accumulation of IFNa-TAMs in the metastatic area as well as of KCs

especially in the metastatic and perimetastatic area in IFNa LV treated cohorts.

Extension to visium HD data

As a proof of concept to fully assess the potential of VisualZoneR, the method has been applied to a

dataset generated using Visium HD, a spatial gene expression technology at single cell scale devel-

oped by 10X Genomics. In detail, each slide contains two 6.5 3 6.5 mm capture areas with a contin-

uous lawn of oligonucleotides arrayed in �11 million 2 3 2 mm barcoded squares without gaps. The

data output is provided considering each individual square (bin size of 2 3 2 mm), as well as at mul-

tiple bin sizes combining several transcriptomic squares, such as 8 3 8 mm or 16 3 16 mm bins. The

dataset employed in the test is the Visium HD Spatial Gene Expression Library, Human Colorectal

Cancer (FFPE) from 10X Genomics (available under https://www.10xgenomics.com/datasets?

query=&page=1&configure%5BhitsPerPage%5D=50&configure%5BmaxValuesPerFacet%5D=1000&

refinementList%5Bproduct.name%5D%5B0%5D=HD%20Spatial%20Gene%20Expression). Analyses

were performed using the output at 16 mm resolution (although it was successfully tested at 8 mm

resolution as well). Considering that this dataset consists of only one slide, the steps of integrating

the data from different slides into one object (steps 4a and b) have been skipped. Based on the struc-

ture of the data, we foresee that adjustments of the code for these steps would not be necessary for

Visium HD datasets.

The only required adjustment to the previously described procedure involves removing the "empty"

spaces in the initial matrices (’msub10 and ’msub1liv’; steps 6b–6d), thereby avoiding the presence of

NA values. To do this, it is possible to take advantage of the cell names coming from the Space

Ranger software, which contain the row and column positions of the matrix. For that purpose, the

following code could be added between the steps 6b and 6c.

Figure 12. Heatmap showing GSEA analysis on distinct compartmental zones and treatment cohorts
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To work with a finer resolution of the Visium HD datasets, such as 8 or 2 mm, it is necessary to adjust the

cell id prefix in the above instructions from ‘‘s_016_um_’’ to ‘‘s_008_um_’’ or ‘‘s_002_um_’’, respectively,

to correctly extract row and column coordinates. The final zones produced byVisualZoneR on theHuman

Colorectal Cancer (FFPE) dataset at 16 mm resolution are shown in Figure 13.

This adaptation of VisualZoneR for application to Visium HD datasets enables a broader and a very

promising usage of VisualZoneR, especially considering that, at the moment of preparation of this

work, Visium HD is a recently developed technology and a very powerful method in the field of

spatial transcriptomics. Application of VisualZoneR to datasets generated using other spatial tran-

scriptomics technologies need to be individually adapted and implemented.

LIMITATIONS

In general, this pipeline can be applied to a wide range of spatial transcriptomic analyses where the

transition between two tissue types such as metastasis and liver parenchyma is investigated. How-

ever, the initial step of the analysis involves the unbiased differentiation of spots covering the two

tissue types. This requires that the two analyzed tissue types are clearly distinguishable. Thus, spots

covering the different tissues should ideally be either represented in separate clusters in the UMAP

representation (Step 5) or express transcriptional features that enable their unbiased identification.

TROUBLESHOOTING

Problem 1

When data are downloaded from the GEO server, the location and the names of the files may be

modified and therefore not fit directions noted in this script.

Potential solution

� Make sure that the names of the input data match the file names generated in the import directory

as described in step 3 of the script and the files are stored at the location defined as ’geo_dir’.

Problem 2

The gene expression pattern observed in the different clusters in step 5 may not enable a perfect

annotation of each cluster as belonging to the metastatic or the liver parenchyma compartment.

Potential solution

� If the clustering does not distinguish spots covering metastatic or liver parenchyma area (or the

tissue types of interest to the user in the dataset), the resolution of the FindClusters command

in step 4c can be adjusted.

# Coord data frame from step 6b

Coord$row_orig <- Coord$row # save orginal row value

Coord$row <- as.numeric(str_split_fixed(gsub("s_016um_", "", gsub("-1", "", rownames

(Coord))), "_", 2)[,2])

Coord$col_orig <- Coord$col # save original col value

Coord$col <- as.numeric(str_split_fixed(gsub("s_016um_", "", gsub("-1", "", rownames

(Coord))), "_", 2)[,1])

# continue with step 6c
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� If the markers used in step 5 do not allow a clear annotation as metastatic or liver parenchyma for

each cluster, additional markers could be included. As mentioned in the manuscript, the list of

genes can be modified according to the user’s need to enable distinction of the two tissue types

of interest.

Problem 3

Dependent on the application the user may require a less detailed or more detailed distribution into

different zones.

Figure 13. Results of the zonation on Visium HD

Result of the VisualZoneR procedure on the Visium HD Human Colorectal Cancer (FFPE) dataset with the corresponding zones defined on it.
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Potential solution

� The moving average function described in steps 6f (metastatic area) and 6g (liver parenchyma

area) is the core of the zonation. If the influence of more distant spots is necessary, the user could

increase ’delta’ or its multiplication factor. Figure 9 describes the influence of different ’delta’

values.

� Furthermore, score values by which spots are clustered into individual zones (6h) can be adjusted

to the user’s needs. Of note, the score values chosen here lead to a width of each zone of about

100 mm, which is equal to the distance between spatial transcriptomic spots in datasets generated

using Visium technology. Therefore, a more detailed zonation is not feasible here. Other spatial

transcriptomic technologies such as Visium HD enable a higher resolution and more detailed

zonation. Implementation of more zones e.g., further separating the zones A (inner metastasis)

and zone H (tumor distant liver parenchyma) is possible if needed.

Problem 4

Handling large datasets and images may result in a high consumption of system memory, which

might result in an out-of-memory error, thus crashing the task in execution or the entire session in R.

Potential solution

� Close any other processes or programs, which are running in the system that are not necessary to

run code.

� Remove from the R environment objects that are currently non-required using the function

’rm(object_name)’.

Problem 5

Distinct R versions or R packages may result in minor changes in the results, or even errors that pre-

vent the code from working. Using a different working environment may also influence the clustering

observed in step 4c.

Potential solution

� We don’t believe this might be a real problem. The operator could perform other steps, for

example the resolution used for the FindClusters command in step 4c andmanual merging of clus-

ters in 4d may be manually adjusted.

� In case the code originates an error message, it might be necessary to use the indicated version of

either some of the packages or R.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Mario Leonardo Squadrito (squadrito.mario@hsr.it).

Technical contact

Questions about the technical specifics of performing the protocol should be directed to the tech-

nical contact, Stefano Beretta (beretta.stefano1@hsr.it).

Materials availability

This study did not generate new unique reagents.
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Data and code availability

� Data have been deposited and can be downloaded under https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE221359.

� The R script generated in this study is available under http://www.bioinfotiget.it/gitlab/custom/

squadrito_livertumor2022/squadrito_livertumor2022_spatial/-/blob/main/scripts/VisualZoneR_

analysis.R.
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