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Abstract: Knowledge on evolving physical fields is of paramount importance in science, technol-
ogy, and economics. Dynamical field inference (DFI) addresses the problem of reconstructing a
stochastically-driven, dynamically-evolving field from finite data. It relies on information field theory
(IFT), the information theory for fields. Here, the relations of DFI, IFT, and the recently developed
supersymmetric theory of stochastics (STS) are established in a pedagogical discussion. In IFT, field
expectation values can be calculated from the partition function of the full space-time inference prob-
lem. The partition function of the inference problem invokes a functional Dirac function to guarantee
the dynamics, as well as a field-dependent functional determinant, to establish proper normalization,
both impeding the necessary evaluation of the path integral over all field configurations. STS replaces
these problematic expressions via the introduction of fermionic ghost and bosonic Lagrange fields,
respectively. The action of these fields has a supersymmetry, which means there exists an exchange
operation between bosons and fermions that leaves the system invariant. In contrast to this, measure-
ments of the dynamical fields do not adhere to this supersymmetry. The supersymmetry can also be
broken spontaneously, in which case the system evolves chaotically. This affects the predictability of
the system and thereby makes DFI more challenging. We investigate the interplay of measurement
constraints with the non-linear chaotic dynamics of a simplified, illustrative system with the help
of Feynman diagrams and show that the Fermionic corrections are essential to obtain the correct
posterior statistics over system trajectories.

Keywords: information field theory; field inference; supersymmetric theory of stochastics;
stochastic differential equations; chaos theory

1. Introduction

Stochastic differential equations (SDEs) appear in many disciplines like astrophysics [1],
biology [2], chemistry [3], and economics [4,5]. In contrast to traditional differential equa-
tions the dynamics of the system, which follows the SDE, are influenced by initial and
boundary conditions but not entirely determined by them. The uncertainty in the dynamics
can be an intrinsic stochastic behavior [6] or simply due to imperfections in the model [7],
which describes the dynamical system (DS).

In addition to the uncertainty introduced by the stochastic process driving the evolu-
tion of the system, any observation of it is noise afflicted and incomplete. This complicates
the inference of the system’s state further. In previous studies, linear SDEs [8], especially
the Langevin SDE [9], were already investigated extensively. Besides this, many numerical
methods to solve partial differential equations were interpreted and the propagation of the
uncertainty for these problems has been studied [10,11]. Here, we consider arbitrary SDEs
and introduce dynamical field inference (DFI) as a Bayesian framework to estimate the
state and evolution of a field following a SDE from finite, incomplete, and noise-afflicted
data. DFI rests on information field theory (IFT), which is information theory for fields.
IFT [12,13] was developed in order to be able to reconstruct an infinite dimensional sig-
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nal from some finite dimensional data, as the signal from physical reality is usually not
limited to the discrete space. Rather a physical signal is described by a continuous signal
field. In contrast, the data taken from a measurement can never be continuous. IFT can
then be applied for signal inference in all areas, where limitations on the exactness of
the measurement are given. DFI [14–16] utilizes methods from IFT for the inference of
signals in a DS. The reconstruction of the signal is advanced by the knowledge on the signal
properties, which are specified by the prior covariance of the signal. Non-linearities in the
SDE result in a complicated and signal-dependent structure of the covariance. The central
mathematical object of our investigation will be the partition function of the inference
problem, from which any relevant quantity of interest can be obtained. The importance of
the partition function for the calculation of dynamical critical properties was also outlined
in [17]. This partition function is represented by a path integral involving a functional
delta function, to enforce the system dynamics, and a functional determinant, to ensure
proper normalization of the involved probability densities. To handle the delta function
and determinant, bosonic Lagrange and fermionic ghost fields are respectively introduced.

The approach of supersymmetric theory of stochastics (STS) focuses on the theoretical
analysis of the DS as a supersymmetric system [18–21]. One of the central messages
of stochastics (STS) is the correspondence between the spontaneous breakdown of this
supersymmetry (SUSY) and the emergence of chaotic dynamics. Here, we argue that
the emergence of chaos impacts the ability to infere dynamical fields. The dynamical
growth rates of the fermionic ghost fields, which are the Lyapuov coefficients measuring
the strength of chaos, impact the uncertainty of any field inference. Thereby, we illuminate
the relevance of central elements of STS for DFI.

The paper tries to give a pedagogical introduction into IFT and STS by presenting
the elementary calculation steps in all derivations. The paper is structured as follows: In
Section 2, a brief introduction to IFT is given, from which, the perspective DFI is developed
in Section 3. Bosonic Lagrange and fermionic ghost fields are introduced in Section 4.
These permit for a reformulation of the partition function such that a symmetry between
all bosonic and fermionic degrees of freedom becomes apparent. Section 5.1 investigates
the relation between SUSY and DFI by showing that system measurements have no SUSY
and how spontaneously broken SUSY , which was already investigated in [22], aka chaos
impacts field reconstructions from measurement data. In Sections 5.2 and 5.3, we analyze
the impact of the chaos on the predictability for linear and non-linear dynamic. With
having connected the DFI and STS formalisms, and shown their mutual relevances, we
conclude in Section 6 and give an outlook on future research directions.

2. Information Field Theory

In many areas of science, technology, and economics, the difficult task of interpreting
incomplete and noisy data sets and computing the uncertainty of the results arises [23,24].
If the quantity of interest is a field, for example, a spatially extended component of our
Galaxy [25,26], or of the atmosphere [27,28], which are mostly continous functions over
a physical space, the problem becomes virtually infinte dimensional, as any point in
space-time carries one or several degrees of freedom. For such problems, which are called
field inference problems, IFT was developed. IFT can be considered as a combination of
information theory for distributed quantities and statistical field theory.

2.1. Notation

Usually, only certain aspects describing our system ψ are relevant. These aspects are
called the signal, ϕ. Physical degrees of freedom, which are contained in ψ and not in ϕ,
but which still influence the data, are called noise n. If ϕ is a physical field ϕ : Ω→ R, it
is a function that assigns a value to each point in time and u-dimensional position space.
Let us denote a space-time location by x = (~x, t) ∈ Ω = Ru ×R+

0 , u ∈ N, where space and
time will be handled in the same manner initially as in [29,30]. We let the time axis start at
t0 = 0 for definiteness.
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The field ϕ = ϕ(x) has an infinite number of degrees of freedom and integrations
over the phase space of the field are represented by path integrals over the integration
measure Dϕ = ∏x∈Ω dϕx [31], with ϕx = ϕ(x) being a more compact notation. In the
following, these space-time coordinate dependent fields are denoted as abstract vectors in
Hilbert space. The scalar product between two fields ϕ(x) and γ(x) can be written in short
notation as:

γ† ϕ :=
∫

dx γ∗(x)ϕ(x), (1)

where γ∗ is the complex conjugate of γ, which here will play no role, as we deal only with
real valued fields.

2.2. Bayesian Updating

In order to get to know a field ϕ, one has to measure it. Bayes theorem states how
to update any existing knowledge given a finite number of constraints by measurements
that resulted in the data vector d. Apparently, it is not possible to reconstruct the infinite
dimensional field configuration of ϕ perfectly from a finite number of measurements. This
is where the probabilistic description used in IFT comes into play. In probabilistic logic,
knowledge states are described by probability distributions.

After the measurement of data d, the knowledge according to Bayes theorem [13] is
given by the posterior probability distribution:

P(ϕ|d) = P(d|ϕ)P(ϕ)

P(d) . (2)

This posterior is proportional to the likelihood P(d|ϕ) of the measured data given the
signal field multiplied by the prior probability distribution P(ϕ). The normalization of the
posterior is given by the so-called evidence:

P(d) =
∫
DϕP(d|ϕ)P(ϕ). (3)

Bayes theorem describes the update of knowledge states. The prior P(ϕ) turns into
the posterior P(ϕ|d) given some data d. To construct the posterior, we need to have the
prior and the likelihood. The evidence and posterior incorporate those.

2.3. Prior Knowledge

The prior probability of ϕ, P(ϕ), specifies the knowledge on the signal before any
measurement was performed. Formally, the prior on ϕ can be written in terms of the
system prior [12]:

P(ϕ) =
∫
Dψ δ(ϕ− ϕ(ψ)) P(ψ), (4)

where ϕ(ψ) is the function that specifies the field ϕ given the system state ψ. Due to the
integration over ψ, the underlying system becomes partly invisible in the probability densi-
ties and only the field of interest, the signal field ϕ, remains. Nevertheless, the properties of
the original systems will still be present in the field prior P(ϕ). For example, let us consider
a situation close to what will be relevant later on. We consider a system comprised of two
interacting fields constituting the system ψ = (ϕ, η), which are related via the invertible
functional G[ϕ] = η. This implies the conditional probability P(η|ϕ) = δ(η−G[ϕ]), which
can be considered as a first-class constraint in Dirac’s sense [32]. Then we have, assuming
that there exists a unique solution ϕ to the equation G[ϕ] = η,
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P(η|ϕ) = δ(η − G[ϕ]) and (5)

P(ϕ|η) = δ(ϕ− G−1[η])

=
δ(η − G[ϕ])

||δG−1[η]/δη||

=

∥∥∥∥ δG[ϕ]

δϕ

∥∥∥∥ δ(η − G[ϕ]). (6)

We casted P(ϕ|η) into a form that only requires to have access to G, but not to G−1.
As G is one to one, P(ϕ|η) = δ(ϕ− G−1(η)) would be our preferred quantity to work
with. However, in DFI of non-linear systems, we rarely have G−1 available as an explicit
expression and therefore have to restore to Equation (6). Now, we assume that we know
the prior statistics of P(η) and find the following implications on P(ϕ),

P(ϕ) =
∫
Dη P(ϕ|η)P(η)

=
∫
Dη

∥∥∥∥ δG[ϕ]

δϕ

∥∥∥∥ δ(η − G[ϕ]) P(η)

=

∥∥∥∥ δG[ϕ]

δϕ

∥∥∥∥ P(η = G[ϕ]). (7)

This shows that the field of interest ϕ inherits the statistics of the related field η,
however, with a modification by the functional determinant ||∂G/∂ϕ|| that is sensitive
to non-linearities in the field relation. Here, the probability P(ϕ|η) contains already the
two elements that will lead to SUSY in DFI, the delta function, which will be represented
with bosonic Lagrange fields and the functional determinant, for which fermionic fields
are introduced. Since both terms contain the functional G, it is plausible that bosons and
fermions might be connected via a symmetry.

2.4. Likelihood

Let us now turn to the measurement and its likelihood. The measurement process of
the data can always be written as:

d = R[ϕ] + n, (8)

if we define the signal response to be R[ϕ] = 〈d〉(d|ϕ) :=
∫
DdP(d|ϕ) d and the noise as

n := d− R[ϕ]. In measurement practice, the response converts a continuous signal into
a discrete data set. The linear noise of the measurement is given by the residual vector
in data space between data and signal response, n = d− R[ϕ]. The statistics of the noise,
which can be signal dependent, then determines the likelihood,

P(d|ϕ) =
∫
DnP(d, n|ϕ)

=
∫
DnP(d|n, ϕ)P(n|ϕ)

=
∫
Dn δ(d− R[ϕ]− n)P(n|ϕ)

= P(n = d− R[ϕ]|ϕ). (9)

Note, however, that we might want to specify initial conditions of a dynamical field
via data as well. Let ϕ0 = ϕ(·, t0) be the initial field configuration at initial time t0.
Then, we specify the initial data to be exactly this initial field configuration, d0 = ϕ0,
the corresponding response as R0[ϕ] = ϕ(·, t0), and the noise to vanish, P(n) = δ(n). Now,
the initial condition is represented via the likelihood P(d0|ϕ) := P(d|ϕ, d0=ϕ(·, t0)) =
δ(ϕ(·, t0)− ϕ0). This initial data likelihood can be combined with any other data on the
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later evolution, dl, via P(d|ϕ) = P(d0|ϕ)P(dl|ϕ), where d = (d0, dl) is the combined
data vector.

2.5. Information

Bayes theorem Equation (2) can be rewritten in terms of statistical mechanics by defin-
ing an information Hamiltonian, or short the information, which contains all the informa-
tion needed for inference, and the partition function, which serves as a normalization factor,

P(ϕ|d) = e−H(d,ϕ)

Zd
, (10)

H(d, ϕ) := − ln(P(d, ϕ)), (11)

Zd :=
∫
Dϕ e−H(d,ϕ). (12)

Note, these formal definitions of information Hamiltonian and partition function hold
in the absence of a thermodynamic equilibrium. This formulation of field inference in
terms of a statistical field theory permits the usage of the well-developed apparatus of field
theory, as we briefly show in the following.

2.6. Partition Function

There is an infinite number of possible signal field realizations that meet the con-
straints given by a finite number of measurements as encoded in the field posterior P(ϕ|d).
For practical purposes, for example to have a figure in a publication showing what is known
about a field, one has to extract lower dimensional views of this very high dimensional
posterior function. These can be obtained by calculating posterior expectation values of
the signal field, like its posterior mean m = 〈ϕ〉(ϕ|d) =

∫
Dϕ P(ϕ|d) ϕ or its uncertainty

dispersion D = 〈(ϕ−m) (ϕ−m)†〉(ϕ|d). Thus, we want to be able to calculate posterior
field moments.

Given some data on a signal field ϕ, the posterior n-point function is:

〈ϕ(x1). . .ϕ(xn)〉(ϕ|d) =
∫
Dϕ ϕ(x1) . . . ϕ(xn) P(ϕ|d). (13)

The involved integral can be calculated exactly in case the posterior P(ϕ|d) is a
Gaussian. Otherwise, the posterior may be expanded around a Gaussian.

With the help of the moment generating function:

Zd[J] =
∫
Dϕ e−H(d,ϕ)+J† ϕ, (14)

which incorporates a moment generating source term J† ϕ =
∫

dxJ∗(x)ϕ(x), the moments
can be calculated via derivation with respect to J as:

〈ϕ(x1)..ϕ(xn)〉(ϕ|d) :=
1
Zd[J]

δnZd[J]
δJ∗(x1). . .δJ∗(xn)

∣∣∣∣
J=0

. (15)

Likewise, the connected correlation functions, also called cumulants, are defined as:

〈ϕ(x1)..ϕ(xn)〉c(ϕ|d) :=
δn logZd[J]

δJ∗(x1). . .δJ∗(xn)

∣∣∣∣
J=0

. (16)
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Particularly, the cumulants of the first and second order are of importance as they
describe the posterior mean and uncertainty dispersion, m = 〈ϕ〉c

(ϕ|d) = 〈ϕ〉(ϕ|d) and

D = 〈ϕ ϕ†〉c
(ϕ|d) = 〈(ϕ− m) (ϕ− m)†〉(ϕ|d), respectively. Thus, the ultimate goal of any

field inference is to obtain the moment generating partition function Zd[J] as any desired
n-point correlation function can be calculated from it. For this reason, this partition function
will be the focus of our investigations.

2.7. Free Theory

An illustrative example for the signal reconstruction and the simplest scenario in IFT
is given by the free theory. The underlying initial assumptions of the free theory lead to
a theory without non-linear field interactions. In other words, the information H(d, ϕ)
includes no terms of an order higher than quadratic in the signal field ϕ.

The free theory emerges in practice under the following conditions:

(i) A Gaussian zero-centered prior, P(ϕ) = G(ϕ, Φ), with known covariance
Φ = 〈ϕϕ†〉(ϕ);

(ii) A linear measurement, d = R ϕ+ n, with known linear response R and additive noise;
(iii) A signal-independent Gaussian noise, P(n|ϕ) = G(n, N), with known covariance

N = 〈nn†〉(n).
The informationH(d, ϕ) is then calculated via the data likelihood and the signal prior,

H(d, ϕ) = − log(P(d|ϕ))− log(P(ϕ)). (17)

With the assumptions of the free theory and Equation (9) the likelihood is:

P(d|ϕ) = G(R ϕ− d, N). (18)

Thus, the information for the free theory is given by:

H(d, ϕ) = − log(G(Rϕ− d, N) G(ϕ, Φ)) (19)

=
1
2

ϕ†(R†N−1R + Φ−1)ϕ− d†N−1Rϕ

+
1
2

ln(|2πN|) + 1
2

ln(|2πΦ|) + 1
2

d†N−1d (20)

=
1
2

ϕ†D−1 ϕ− j† ϕ +H0. (21)

Here, the so-called information source j, the information propagator D, andH0 were
introduced. The latter contains all the terms of the information that are constant in ϕ. The
others are,

D =
(

Φ−1 + R†N−1R
)−1

, (22)

= Φ−Φ R†
(

R Φ R† + N
)−1

R Φ (23)

j = R†N−1d. (24)

The second form of the information propagator D can be verified via explicit calculation,
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D D−1

=

[
Φ−Φ R†

(
R Φ R† + N

)−1
R Φ

] [
Φ−1 + R†N−1R

]
=

[
1−Φ R†

(
R Φ R† + N

)−1
R
] [
1+ Φ R†N−1R

]
= 1+ Φ R†N−1R−Φ R†

(
R Φ R† + N

)−1
R

−Φ R†
(

R Φ R† + N
)−1

R Φ R†N−1R

= 1+ Φ R†N−1R−Φ R†
(

R Φ R† + N
)−1

R

−Φ R†
(

R Φ R† + N
)−1(

R Φ R† + N − N
)

N−1R

= 1+ Φ R†N−1R−Φ R†
(

R Φ R† + N
)−1

R

−Φ R†N−1R + Φ R†
(

R Φ R† + N
)−1

R

= 1 (25)

and also holds in the limit N → 0 of a noise-less measurement.
The information can be expressed in terms of the field:

m = Dj (26)

by completing the square in Equation (21), which is also known as the generalized
Wiener filter solution [33]. This can also be written in a form that permits a noiseless
measurement limit,

m =
(

Φ−1 + R†N−1R
)−1

R†N−1d

= R†Φ
(

R Φ R† + N
)

d, (27)

which can be verified with a very analogous calculation.
Only terms, which depend on the signal field ϕ need to be considered and therefore

the symbol “=̂” is introduced, to mark the equality up to an additive constant. We
therefore have:

H(d, ϕ) =̂
1
2
(ϕ−m)†D−1(ϕ−m). (28)

Knowing the information, the moment generating function of the free theory, ZG [J],
is constructed in the next step on the way of calculating the best fit reconstruction of the
signal by means of expectation values.

ZG [J] =
∫
Dϕ e−H(d,ϕ)+J† ϕ (29)

=
√
|2πD|e

1
2 (j+J)†D(j+J)−H0 . (30)

All higher order (n > 2) cumulants vanish and the non-vanishing cumulants are,

m(x) = 〈ϕ(x)〉c(ϕ|d) =
δ logZG [J]

δJ∗(x)

∣∣∣∣
J=0

, (31)

D(x, y) = 〈ϕ(x)ϕ∗(y)〉c(ϕ|d) =
δ2 logZG [J]
δJ∗(x)δJ(y)

∣∣∣∣
J=0

. (32)
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As higher-order cumulants vanish, the posterior distribution can be written as a
Gaussian with mean m and uncertainty covariance D,

P(ϕ|d) = G(ϕ−m, D). (33)

Hence, computations in free theory are simple, as the Gaussian posterior can be treated
analytically. The usage of the same symbol D for the information propagator, the inverse of
the kernel of the quadratic term in the information, and the posterior uncertainty dispersion
is justified, as they coincide in the free theory, but only there.

In other cases, when the signal or noise are non-Gaussian, the response non-linear
or the noise is signal dependent, the theory becomes interacting in the sense thatH(d, ϕ)
contains terms that are of higher than quadratic order. Thus, the information of this non-
free, interacting theory incorporates not only the propagator and source terms of the free
theory but also interaction terms between more than two signal field values. We will
encounter such situations for a field with non-linear dynamics.

3. Dynamical Field Inference
3.1. Field Prior

In the previous section, we saw how to infer a signal field from measurement data d
with some measurement noise n particularly in the case of a free theory. Now, we consider
a DS, for which the time evolution of the signal field is described by an SDE:

∂t ϕ(x) = F[ϕ](x) + ξ(x). (34)

We want to see how this knowledge can be incorporated into a prior for the field for
DFI. The first part of the SDE in Equation (34), ∂t ϕ(x) = F[ϕ](x), describes the deterministic
dynamics of the field. The excitation field ξ turns the deterministic evolution into an SDE
and mirrors the influence of external factors on the dynamics. DFI aims to infer a signal in
such a DS using the tools from IFT. Thus, in DFI next to the observational n, which results
from the measurement contaminated by nuisance influences, the excitation field ξ of the
SDE has to be considered during inference.

Care has to be taken as the domains of the fields ϕ and ξ differ. While ϕ(x) is defined
far all x ∈ Ω = Ru ×R+

0 , the fields ∂t ϕ and ξ live only over Ω′ = Ru ×R+, from which
the intial time slice at t0 = 0 is removed. Equation (34) therefore makes only statements
about fields on Ω′, although it also depends on the intial conditions ϕ0 = ϕ(·, t0). As such
requires specification, an initial condition prior P(ϕ0) is required. We further introduce
the notation ϕ′ = ϕ(·, t 6= t0) for all field degrees of freedom except the ones fixed by the
initial condition, ϕ0, so that we have ϕ = (ϕ0, ϕ′).

The SDE in Equation (34) can be condensed and generalized by a differential operator
G[ϕ], G : Cn,1(Ω)→ C(Ω′), which contains all the time and space derivatives of the SDE
up to order n in space. In other words, the operator G acts on the space Cn,1 which is the
class of all functions that have continuous first derivatives in time and continuous n-th
derivatives in space.

G[ϕ](x) = ξ(x) with (35)

G[ϕ](x) := ∂t ϕ(x)− F[ϕ(·, t)](x). (36)

Within the framework of this study, we will assume that the excitation of the SDE has
a prior Gaussian statistics,

P(ξ) = G(ξ, Ξ), (37)
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with known covariance Ξ. For a general G, ξ in its present form does not fully specify
ϕ, for this additional initial conditions ϕ0 at time t0 have to be specified. We fix this by
augmenting ξ with: ϕ0 = ϕ(·, t0) by setting η = (ϕ0, ξ)† with

P(η) = P(ϕ0) G(ξ, Ξ), (38)

and by extending G to:

G′[ϕ] = (ϕ0, G[ϕ]) (39)

with G′ : Cn,1(Ω) → C(Ω) such that G′[ϕ] = η and G′−1[η] = ϕ hold and are both
uniquely defined.

Then, the prior probability for the signal field is according to Equation (6),

P(ϕ) = P(η = G′[ϕ])
∥∥∥∥ δG′[ϕ]

δϕ

∥∥∥∥
= G(G[ϕ], Ξ)P(ϕ0)

∥∥∥∥ δG′[ϕ]
δϕ

∥∥∥∥, (40)

and the functional determinant becomes:∥∥∥∥ δG′[ϕ]
δϕ

∥∥∥∥ =

∥∥∥∥∥∥
 δϕ0

δϕ0

δG[ϕ]
δϕ0

δϕ0
δϕ′

δG[ϕ]
δϕ′

∥∥∥∥∥∥ =

∥∥∥∥∥∥
1 δG[ϕ]

δϕ0

0 δG[ϕ]
δϕ′

∥∥∥∥∥∥
=

∥∥∥∥ δG[ϕ]

δϕ′

∥∥∥∥, (41)

where we note that δG/δϕ′ : Cn,1(Ω)× C(Ω′)→ C(Ω′) and therefore, after evaluation of
this for a specific field configuration ϕ, δG[ϕ]/δϕ′ : C(Ω′) → C(Ω′) is a linear operator,
which actually is an isomorphism. Thus, we get finally:

P(ϕ)= G(G[ϕ], Ξ)P(ϕ0)

∥∥∥∥ δG[ϕ]

δϕ′

∥∥∥∥. (42)

If we want to have the initial conditions unconstrained, we could set P(ϕ0) = const.
This is possible, as we could specify initial or later time conditions via additional data on
the field, as explained before.

3.2. Partition Function

DFI builds on P(d, ϕ) = P(d|ϕ)P(ϕ), the joint probability of data and field, to obtain
field expectation values by investigating the moment generating partition function:

Zd[J] =
∫
DϕP(d, ϕ) eJ† ϕ

=
∫
DϕP(d|ϕ)P(ϕ) eJ† ϕ

=
∫
Dϕ

e−
1
2 (d−Rϕ)† N−1(d−Rϕ)+J† ϕ√

|2πN|
P(ϕ)

=
∫
Dϕ

e−
1
2 ϕ†R† N−1Rϕ+(J+j)† ϕ− 1

2 d† N−1d√
|2πN|

P(ϕ)

with j = R†N−1d. (43)

Here, we used that the measurement noise exhibits Gaussian statistics with known
covariance N. We observe that the generating function J is not needed, as we could equally
well take derivatives with respect to j in order to generate moments.
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Central to this partition function is the field prior:

P(ϕ) = P(ξ = G[ϕ])

∥∥∥∥ δG[ϕ]

δϕ′

∥∥∥∥P(ϕ0) (44)

=
1√
|2πΞ|

e−
1
2 G[ϕ]†Ξ−1G[ϕ]

︸ ︷︷ ︸
=:B(ϕ)

∥∥∥∥ δG[ϕ]

δϕ′

∥∥∥∥︸ ︷︷ ︸
=:J (ϕ)

P(ϕ0). (45)

This contains a signal-dependent term B(ϕ) from the excitation statistics as well as
another one, J (ϕ), from the functional determinant. In particular, the calculation of this
determinant remains a computational problem. The aim of the next section is to represent
the Jacobian determinant J by a path-integral over fermionic fields for the data-free
partition function:

Z =
∫
Dϕ P(ϕ) =

∫
Dϕ e−H(ϕ)

=
∫
Dϕ B(ϕ) J (ϕ) P(ϕ0). (46)

4. Dynamical Field Inference with Ghost Fields
4.1. Grassmann Fields

Grassmann numbers {χ1, χ̄1, . . . χN , χ̄N} are independent elements, which anticom-
mute among each other [34–36] and thus follow the Pauli principle, χ2

i = χ̄2
i = 0 for

i ∈ {1, . . . N}. Consequently, a corresponding function depending on the Grassmann
numbers χ and χ̄ can be Taylor expanded to:

f (χ, χ̄) = a + b1χ + b2χ̄ + c12χχ̄ + c21χ̄χ. (47)

A special feature of Grassmann numbers is that the integration and differentiation to
them are the same. As a consequence, one can write down the following Grassmann integrals:∫

dχ dχ̄ = 0 (48)∫
dχ dχ̄ χ̄χ = 1 (49)

In order to represent the Jacobian with infinite dimensions by a path integral, we need
to transform the Grassmann variables to Grassmann fields with infinite dimensions. This
leads us to path integrals over Grassmann fields,

∫
dχ1dχ̄1 . . . dχNdχ̄N

N→∞
−−−→

∫
DχDχ̄, (50)

with the following integration rules,∫
Dχ Dχ̄ = 0 (51)∫
Dχ Dχ̄ χ̄†χ =

∫
Dχ Dχ̄

(∫
Ω′

dxχ̄(x)χ(x)
)
= 1, (52)

where the χ̄† is the adjoint of the anti-commuting field χ̄. The scalar product:

χ̄†χ =
∫

Ω′
dx χ̄(x)χ(x) (53)

will here be taken only over the domain Ω′ without the inital time slice, as the Grassmann
fields are introduced to represent a determinant of the functional J (ϕ), which is also
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defined only over this domain. In the following, we abbreviate the notation by writing∫
dx for

∫
Ω′ dx.

4.2. Path Integral Representation of Determinants and δ-Functions

By means of the Grassmann fields, we derive the path integral representation for
J , the absolute value of the determinant of the Jacobian δG[ϕ]

δϕ′ [37]. For this purpose,

we take two unitary transformations U and V with the property that M = V δG[ϕ]
δϕ′ U

becomes diagonal with positive and real entries. These are then used to transform the
Grassmann fields:

χ = Uχ′, χ̄† = χ̄′†V. (54)

This leads to a weighting of the path integral differentials by the determinants of U
and V:

DχDχ̄ = |U|−1|V|−1Dχ′Dχ̄′. (55)

Here we used the identity of integration and differentiation for Grassmann variables∫
dχ = ∂

∂χ = ∂χ′

∂χ
∂

∂χ′ = |U|
−1
∫

dχ′ to transform their differentials. The determinant of
the operator M is given by the product of the operators, from which we can infer the
Jacobian determinant:

|M| = |V|
∣∣∣∣ δG[ϕ]

δϕ′

∣∣∣∣ |U| (56)

⇒
∣∣∣∣ δG[ϕ]

δϕ′

∣∣∣∣ = |M| |U|−1 |V|−1. (57)

As the operator M is diagonal with eigenvalues {mi} on the diagonal, we can write its
determinant as a product of N eigenvalues in the limit of infinite dimensions N by means
of Equations (47)–(49).

|M| = lim
N→∞

N

∏
i=1

mi

= lim
N→∞

N

∏
i=1

∫ dχ′i dχ̄′i︸ ︷︷ ︸
=0

+mi

∫
dχ′i dχ̄′i χ̄′iχ

′
i︸ ︷︷ ︸

=1


= lim

N→∞

N

∏
i=1

∫
dχ′i dχ̄′i (1 + miχ̄

′
iχ
′
i)

= lim
N→∞

N

∏
i=1

∫
dχ′i dχ̄′i (1 + miχ̄

′
iχ
′
i +

1
2!

m2
i (χ̄
′
iχ
′
i)

2︸ ︷︷ ︸
=0

)

= lim
N→∞

N

∏
i=1

∫
dχ′i dχ̄′i emi χ̄

′
iχ
′
i . (58)

The insertion of the result for the determinant of the diagonal matrix M in the defini-
tion of the Jacobian in Equation (57) using Equation (55) yields:
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∣∣∣∣ δG[ϕ]

δϕ′

∣∣∣∣ = |U|−1 |V|−1 lim
N→∞

N

∏
i=1

∫
dχ′i dχ̄′i emi χ̄

′
iχ
′
i

=
∫
Dχ′ Dχ̄′ |U|−1 |V|−1eχ̄′† Mχ′

=
∫
Dχ′ Dχ̄′ |U|−1 |V|−1eχ̄†V−1 MU−1χ

=
∫
DχDχ̄e

χ̄† δG[ϕ]
δϕ′ χ

. (59)

Finally, we find the representation of the Jacobian in terms of an integral over inde-
pendent Grassmann fields,

J =

∥∥∥∥ δG[ϕ]

δϕ′

∥∥∥∥ =

∣∣∣∣∫ DχDχ̄ e
χ̄† δG[ϕ]

δϕ′ χ
∣∣∣∣. (60)

We note that an equivalent expression is:

J =

∥∥∥∥−i
δG[ϕ]

δϕ′

∥∥∥∥ =

∣∣∣∣∫ Dχ Dχ̄ e
−iχ̄† δG[ϕ]

δϕ′ χ
∣∣∣∣, (61)

as the factor −i cancels out in taking the absolute value. In the following, we will not track
such multiplicative factors of unity absolute value for probabilities, as these can be fixed at
the end of the calculation.

The other term in P(ϕ) = B(ϕ)J (ϕ)P(ϕ0) as expressed by Equation (44),
B(ϕ) = G(G[ϕ], Ξ), is highly non-Gaussian for a non-linear dynamics G[ϕ]. Here, it
is useful to step back to the initial form including the excitation field:

B(ϕ) =
∫
Dξ δ(ξ − G[ϕ]) e−H(ξ), (62)

withH(ξ) = − lnG(ξ, Ξ) = 1
2 ξ†Ξ−1ξ + 1

2 ln |2πΞ|, and to replace the δ-function by means
of a path integral. In order to do so the representation of the δ-function as an integral over
Fourier modes is recalled:

δ(x) =
1

2π

∫
dk e−ikx. (63)

The migration of this to path-integral representation is achieved by the introduction
of a Lagrange multiplier field β(x),

δ(ξ) =
1
|2π1|

∫
Dβ e−iβ†ξ . (64)

With this, the field prior reads:

P(ϕ) ∝
∫ DξDβDχDχ̄√

|2πΞ||2π1|
e−

1
2 ξ†Ξ−1ξ−H(ϕ0) ×

e
−i
(

χ̄† δG[ϕ]
δϕ′ χ−β†(G[ϕ]−ξ)

)
(65)

withH(ϕ0) = − lnP(ϕ0) the information on the initial conditions.
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4.3. Ghost Field Path Integrals in DFI

With the introduction of the fields β, χ, and χ̄, the DFI partition function is now given
by path integrals over the excitations and additional two fermionic and two bosonic degrees
of freedom, which are summarized to a tuple of fields ψ = (ϕ, β, χ, χ̄), (note, the here
defined ψ differs from the initially introduced system state, also denoted by ψ. As the latter
will not be used any more in this work, the reuse of the symbol is hopefully acceptable).

Z ∝
∫
Dξ Dψ e

−H(ξ)−H(ϕ0)+iβ†(G[ϕ]−ξ)−iχ̄† δG[ϕ]
δϕ′ χ

. (66)

Let us introduce the functional {Q[ψ], ·} = {Q[χ, β], ·}, which depends on the
fermionic ghost field χ and the bosonic Lagrange multiplier β:

{Q, X}[ψ] =
∫

dx
(

β(x)
δ

δχ̄(x)
+ χ(x)

δ

δϕ′(x)

)
X[ψ]

=

(
β

δ

δχ̄
+ χ

δ

δϕ′

)T

X[ψ]. (67)

Next, the exponent of the partition function in Equation (66) is reshaped in order to
be Q-exact. This means that the exponent shall only depend on the introduced functional
{Q, ·} for a suitable X. For this we investigate the two ghost and Lagrange field dependent
terms in Equation (66) separately.

The fermionic ghost field dependent exponent is:

Efg = −iχ̄† δG[ϕ]

δϕ′
χ

= −i
∫

dx′dx χ̄(x)
δG[ϕ](x)
δϕ′(x′)

χ(x′)

= i
∫

dx′dx χ(x′)
δ

δϕ′(x′)
G[ϕ](x)χ̄(x)

= i
(

χ† δ

δϕ′

)(
χ̄† G[ϕ]

)
= i
(

χ† δ

δϕ′

)(
χ̄† (G[ϕ]− ξ)

)
(68)

and the bosonic Lagrange field dependent exponent is:

Ebg = iβ†(G[ϕ]− ξ)

= i
∫

dx β(x)(G[ϕ](x)− ξ(x))

= i
∫

dx dx′ β(x′)
δχ̄(x)
δχ̄(x′)

(G[ϕ](x)− ξ(x))

= i
(

βT δ

δχ̄

)(
χ̄† (G[ϕ]− ξ)

)
. (69)

Thus the whole ghost and Lagrange field dependent exponent can be written as a
Q-exact expression using Equations (68) and (69):



Entropy 2021, 23, 1652 14 of 34

Efg + Ebg = iβ†(G[ϕ]− ξ)− iχ̄† δG[ϕ]

δϕ′
χ

= i
(

χ† δ

δϕ′
+ β† δ

δχ̄

)(
χ̄† (G[ϕ]− ξ)

)
= i{Q, χ̄†(G[ϕ]− ξ)}. (70)

According to these auxiliary calculations, the partition function in Equation (66) takes
the form,

Z ∝
∫
Dξ Dψ e−H(ξ)−H(ϕ0)+i{Q,χ̄†(G[ϕ]−ξ)}. (71)

The integration over the excitation fields creates a partition function that only contains
the fields of the set ψ = (ϕ, β, χ, χ̄). With the aid of the following relation for a bosonic
field y(x) that is independent of ϕ:

{Q, χ̄†y} =
(

β† δ

δχ̄

)
χ̄†y

=
∫

dx′ β(x′)
δ

δχ̄(x′)

∫
dx χ̄(x)y(x)

=
∫

dx β(x)y(x)

= β†y (72)

the integration over the excitation field can be performed for a Gaussian excitation field
(H(ξ) =̂ 1

2 ξ†ξ) by means of Equation (72):

Z ∝
∫
Dψ Dξ ei{Q,χ̄†G[ϕ]}−i{Q,χ̄†ξ}−H(ξ)−H(ϕ0)

(72)
=
∫
Dψ Dξ ei{Q,χ̄†G[ϕ]}−iβ†ξ−H(ξ)−H(ϕ0)

=
∫
Dψ Dξ ei{Q,χ̄†G[ϕ]}−iβ†ξ− 1

2 ξ†Ξ−1ξ−H(ϕ0)

=
∫
Dψ ei{Q,χ̄†G[ϕ]}− 1

2 β†Ξβ−H(ϕ0)

=
∫
Dψ ei{Q,χ̄†G[ϕ]}− 1

2 {Q,χ̄†Ξβ}−H(ϕ0)

=
∫
Dψ e{Q,iχ̄†G[ϕ]− 1

2 χ̄†Ξβ}−H(ϕ0). (73)

Now, we define the odd function:

θ(ψ) = χ̄†(−iG[ϕ] +
1
2

Ξβ) (74)

for reasons of clarity. Besides we revive the statistical mechanics formalism for the defini-
tion of the partition function from Equation (12) as well as the corresponding ghost and
Lagrange field dependent informationH(ψ):
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Z =
∫
Dψ e−H(ϕ0)−H(ψ|ϕ0) (75)

∝
∫
Dψ e−H(ϕ0)−{Q,θ(ψ)} (76)

H(ψ|ϕ0) =̂ {Q, θ(ψ)}. (77)

Here, =̂ indicates equality up to a constant term due to the not tracked absolute
phase of our expressions. By comparison, we find the following relation between the prior
information Hamiltonian of the signal fieldH(ϕ) from Equation (12) and the just derived
information Hamiltonian of the ghost and Lagrange fields from Equation (75).

Z ∝
∫
Dϕ e−H(ϕ|ϕ0)−H(ϕ0) (78)

=
∫
Dψ e−H(ψ|ϕ0)−H(ϕ0) (79)

⇒H(ϕ|ϕ0) = − ln
(∫
Dχ Dχ̄ Dβ e−H(ψ|ϕ0)

)
. (80)

Let us now emphasize the first time derivative in the SDE by taking the definition of
the SDE from Equation (34), F[ϕ′](x) + ξ(x) = ∂t ϕ(x), so that the θ-functional becomes:

θ(ψ) = +iχ̄†F[ϕ′]− iχ̄†∂t ϕ +
1
2

χ̄†Ξβ

= −iχ̄†∂t ϕ + iQ̄(ψ). (81)

Here we introduced the functional on the set of fields ψ:

Q̄(ψ) = χ̄†F[ϕ′]− i
1
2

χ̄†Ξβ. (82)

Evaluating the information for this θ-functional using Equation (77) one gets:

H(ψ|ϕ0)=̂− {Q, iχ̄†∂t ϕ}+ i{Q, Q̄}. (83)

The Fermionic field χ was only defined over Ω′ the field domain without the initial
time slice in order to represent the determinant of the Jacobian of G(ϕ) with respect to ϕ′.
One can extend the support of χ to Ω, including the initial time slice by introducing a split
notation for this extended χ = (χ0, χ′)†, with χ′ denoting the original Fermionic field over
Ω′. We then find that the ghost field has to vanish at the initial time step t0, i.e., χ = (0, χ′)†

in order to assure that the following expression does not diverge. Here, we abbreviate
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ϕt = ϕ(x) = ϕ(~x, t) and ϕt+∆ = ϕ(~x, t + ∆t):

{Q, iχ̄†∂t ϕ}

=

(
χ† δ

δϕ′
+ β† δ

δχ̄

)
iχ̄†∂t ϕ

= iχ† δ

δϕ′
χ̄†∂t ϕ︸ ︷︷ ︸

=A

+ iβ† δ

δχ̄
χ̄†∂t ϕ︸ ︷︷ ︸

=B

(84)

A =i
∫

dx′ dx χ(x′) χ(x)
δ

δϕ′(x′)
∂t ϕ(x)

=− i
∫

dx dx′χ̄(x) χ(x′)
δ

δϕ′(x′)
lim

∆t→0

( ϕ0+∆−ϕ0
∆t

ϕt+∆−ϕt
∆t

)

=− i
∫

dx dx′χ̄(x) χ(x′) lim
∆t→0

( δ~x,~x′ δ0+∆,t′
∆t

δ~x,~x′ (δt+∆,t′−δt,t′ )
∆t

)

=− i
∫

dxχ̄(x) lim
∆t→0

(
χ0+∆

∆t
χt+∆−χt

∆t

)

=− i
∫

dxχ̄(x)


{

0 if χ0 = 0
∞ otherwise

∂tχ
′

 (85)

=− i
∫

dxχ̄(x) ∂tχ(x) (86)

=− iχ̄†∂tχ (87)

B =i
∫

dx′β(x′)
∫

dx
δχ̄(x)
δχ̄(x′)

∂t ϕ(x)

=i
∫

dx′β(x′)
∫

dx δ(x− x′)∂t ϕ′(x)

=i
∫

dx
∫

dx′ β(x′)δ(x− x′)∂t ϕ(x)

=i
∫

dx β(x)∂t ϕ(x)

=iβ†∂t ϕ (88)

such that,

H(ψ|ϕ0) =̂ iχ̄†∂tχ− iβ†∂t ϕ + i{Q, Q̄}. (89)

The crucial insight is given by Equation (85). If χ0 6= 0, the expression A would
diverge and Equation (83) would not hold. In order to reestablish a compact notation in
Equation (86), we note that any finite assignment of ∂tχ0 6= 0 would only make a vanishing
contribution to the integral as being on an infinitesimal smart support.

The information Hamiltonian of Equation (83) has two parts. We call the left part,
which contains the time derivatives of the fermionic and bosonic fields, the dynamic
information. The right part, which is described by the Poisson bracket, is referred to as
the static information. The derivation of Poisson brackets in a system with fermionic and
bosonic fields is described in [38,39].

This yields the partition function,

Z ∝
∫
Dψ e−iχ̄†∂tχ+iβ†∂t ϕ−i{Q,Q̄}−H(ϕ0). (90)

So far we represented the partition function in terms of the signal field, ϕ, and the
three fields, β, χ, χ̄.
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In case of a white excitation field ξ, the partition function of DFI can be derived using
the Markov property. For this, we start with the IFT partition function for a bosonic field ϕ
and a fermionic field χ and decompose it in terms of time-ordered conditional probabilities:

Z =
∫
Dϕ Dχ P(ϕ, χ) (91)

=

(
N

∏
n=0

∫
Dϕn

∫
Dχn

)
P(ϕN , χN , ϕN−1, χN−1,

ϕN−2, . . ., ϕ1, χ1, ϕ0), (92)

=

(
N

∏
n=0

∫
Dϕn

∫
Dχn

)
P(ϕN , χN |ϕN−1, χN−1)

× . . . . . .×P(ϕ1, χ1|ϕ0)P(ϕ0) (93)

where ϕ0 = ϕ(·, t0) is the field at initial time t0 = 0 while there is no χ0 = χ(·, t0).
The conditional probabilities can then be represented as QFT transition amplitudes [40,41]

between states of the system denoted by the Dirac notation as:

P(ϕk, χk|ϕj, χj) =: 〈ϕk, χk, tk||ϕj, χj, tj〉
:= 〈ϕk, χk|M(tk, tj) |ϕj, χj〉 . (94)

At this stage, these are formal definitions, with the time localized states 〈ϕk, χk, tk| :=
δ(ϕ(·, tk)− ϕk) δ(χ(·, tk)− χk), |ϕj, χj, tj〉 := δ(ϕ(·, tj)− ϕj) δ(χ(·, tj)− χj), and the not lo-
calized ones 〈ϕk, χk| := δ(ϕ(·, t)− ϕk) δ(χ(·, t)− χk), |ϕj, χj〉 := δ(ϕ(·, t)− ϕj) δ(χ(·, t)−
χj), with t being some unspecified time. Here, j and k label time-slice field configurations,
like ϕ(·, t) = ϕj and ϕ(·, t) = ϕk, and their associated times are t = tj and t = tk. The first
line does not contain a usual scalar product between states, as the variables have first to
be brought to a common time. This is done in the second line by the transfer operator
M(tk, tj), which describes the mapping of states at time tj to such at tk. In [19], it is shown
that a representation of these state vectors is given by the exterior algebra over the field
configuration space.

By assigning field operators to the fermionic and bosonic fields, χ and ϕ, as well
as their momenta, ν and ω, respectively, the partition function in Equation (93) can be
rewritten in terms of the generalized Fokker–Planck operator of the states Ĥ according
to [31,40–42]. Ĥ is not to be confused with the information HamiltonianH(ψ|ϕ0). The pre-
cise relation of these will be established in the following.

As mentioned in [18–21], the time evolution operator Ĥ is not Hermitian and thus
the time evolution is not described by the Schrödinger equation but by the generalized
Fokker–Planck equation instead:

∂t |ϕ, χ, t〉 = −Ĥ |ϕ, χ, t〉 (95)

⇒ |ϕ, χ, t + ∆t〉 = e−Ĥ∆t |ϕ, χ, t〉 (96)

⇒M(tk, tj) = e−Ĥ(tk−tj). (97)

These and the following equations define the properties of Ĥ. The conditional prob-
abilities for the fields ϕk and χk, given the fields at the previous time step ϕk−1, χk−1 are
given by the transition amplitudes between the corresponding states and are defined via
the time evolution:

Pk,k−1 = P(ϕk, χk|ϕk−1, χk−1)

= 〈ϕk, χk, tk||ϕk−1, χk−1, tk−1〉
= 〈ϕk, χk|e−Ĥ∆t|ϕk−1, χk−1〉 . (98)
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At this point we multiply with unity,

1 =
∫
Dωk Dνk |ωk, νk〉 〈ωk, νk| , (99)

where the |ωk, νk〉 are momentum eigenstates of the field that obey on equal time slices:

〈ωk, νk|ϕk, χk〉 = e−iωk ϕk+iνkχk . (100)

If we choose infinitesimal small time steps, we can evaluate the time-evolution oper-
ator on the momentum eigenstate, which leads to the following expression for the conditional
probability:

Pk,k−1 =
∫
Dωk Dνk 〈ϕk, χk| e−Ĥ∆t

× |ωk, νk〉 〈ωk, νk|ϕk−1, χk−1〉

=
∫
Dωk Dνk e−iωk ϕk−1+iνkχk−1

× 〈ϕk, χk|e−Ĥ∆t|ωk, νk〉

∝
∫
Dωk Dνk e−H(ϕk ,χk ,ωk ,νk)∆t−iωk ϕk−1

×e+iνkχk−1 〈ϕk, χk|ωk, νk〉

=
∫
DωkDνke−H(ϕk ,χk ,ωk ,νk)∆t+iωk(ϕk−ϕk−1)

×e−iνk(χk−χk−1). (101)

The formal definition of H(ϕk, χk, ωk, νk) for ∆t→ 0 is:

H(ϕk, χk, ωk, νk) = −
1

∆t
ln 〈ϕk, χk|e−Ĥ∆t|ωk, νk〉 . (102)

With this in mind the conditional transition probability distributions can be written in
terms of the function H. In the next step, these are inserted into the partition function in
Equation (93). Taking the limit ∆t→ 0, N → ∞ leads to:

Z∝
∫
Dψ e−

∫
dt H(ϕt ,χt ,ωt ,νt)+iω†∂t ϕ−iν†∂tχ−H(ϕ0). (103)

In the end, the partition function in Equation (90) needs to be equal to the partition
function in Equation (103) in order to guarantee consistency of the theory. This permits the
following identifications,

ν = χ̄, (104)

ω = β, (105)∫
dt H(ψt) = i{Q(ψ), Q̄(ψ)}. (106)

To sum up, it was shown that the auxiliary fields χ̄ and β are simply the momenta
of the ghost field χ and the signal field ϕ, respectively. And, for the moment the more
important finding is that the time evolution is governed by the Q-exact static information ,
i.e.,

∫
dt H(t) = i{Q, Q̄}. Comparing Equation (89) to Equation (106), we find this enters

directly the information Hamiltonian,

H(ψ|ϕ0) =̂ iχ̄†∂tχ− iβ†∂t ϕ +
∫

dt H(ψt), (107)

which can be regarded in combination with Equation (80) as the central connection be-
tween STS and IFT, relating the information Hamiltonian H(ψ|ϕ0) for the full system
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trajectory to the Fokker–Planck evolution operators H(ψt) on individual time-slices. H is a
dimensionless quantity, whereas H has the units of a rate.

In [19] it is shown that {Q, ·} is the path-integral version of the exterior derivative d̂ in
the exterior algebra. This recognition allows to identify the time-evolution in Equation (106)
as the path-integral version of the time-evolution operator in the Focker–Planck equation.
Moreover, it is demonstrated that this time-evolution operator is d̂-exact and since the
exterior derivative is nilpotent, the exterior derivative commutes with the time-evolution.
The conclusion is made that this corresponds to a topological supersymmetry. Firstly, d̂ as
the operator representative of {Q, ·} interchanges fermions and bosons, since it replaces one
bosonic field variable by a fermionic one. Secondly, since a physical system is symmetric
with regard to an operator, if the operator commutes with the time-evolution operator.
As this is the case for d̂ and Ĥ, the field dynamics is supersymmetric.
Here it should be recalled that the ghost fields are scalar with fermionic statistics. In thise
sense, the symmetry generated by the charge Q can be considered as a Becchi-Rouet-Stora-
Tyutin (BRST) symmetry [43] in the context of this paper. Still, for further investigations of
STS in [18,19], the formulation of the generated symmetry as a topological supersymmetry
according to [44] is crucial. For this reason, we talk about a topological supersymmetry in
this paper).

4.4. Spontaneous SUSY Breaking and Field Inference

The supersymmetry of a dynamical field can be spontaneously broken [18–21]. This
coincides with the appearance of dynamical chaos as characterized by positive Lyaponov
exponents for the growth of the difference of nearby system trajectories. It is intuitively
clear that the occurrence of chaos will reduce the predictability of the system and therefore
make field inference from measurements more difficult. We hope that the here established
connection of DFI and STS will permit to quantify the impact of chaos on field inference in
future research. For the time being, we investigate the reverse impact, that of measurements
on the supersymmetry of the field knowlege as encoded in the partition function.

5. SUSY and Measurements
5.1. Abstract Considerations

In Section 2.6, we introduced the moment generating function in IFT in order to calcu-
late field expectation values after measurement data d became available. For a dynamical
field, this can now be written with the help of STS according to Equation (29) as:

Zd[J] =
∫
Dϕ e−H(d,ϕ)+J† ϕ

=
∫
DϕP(ϕ)P(d|ϕ)eJ† ϕ

=
∫
Dϕ

∥∥∥∥ δG[ϕ]

δϕ′

∥∥∥∥G(G[ϕ], Ξ)P(ϕ0)P(d|ϕ)eJ†ϕ

∝
∫
Dψe{Q,−χ̄†G[ϕ]− 1

2 χ̄†Ξβ}−H(ϕ0)−H(d|ϕ)+J† ϕ. (108)

Note that we removed the −i factor from the Fermionic variables that was introduced
in Equation (61) in order to connect to the conventions of the STS literature. Doing so
alleviates the necessity to take the absolute value from the corresponding term. From Equa-
tion (108), we see that the combined information representing the knowledge from mea-
surement data d and about the dynamics as expressed by the θ-function from Equation (74)
consists of several parts,

H(d, ψ) =̂ {Q, θ(ψ)}+H(d|ϕ) +H(ϕ0)

= −χ̄†∂tχ− iβ†∂t ϕ′ + {Q(ψ), Q̄(ψ)}
+H(d|ϕ) +H(ϕ0). (109)
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The first part, −χ̄†∂tχ− iβ†∂t ϕ′ + {Q(ψ), Q̄(ψ)}, describes the dynamics of the field
ϕ′ and that of the ghost fields χ and χ for times after the initial moment by a Q-exact
term, meaning that supersymmetry is conserved if only this would affect the fields for
non-inital times t > t0. The last term, H(ϕ0) = − lnP(ϕ0), describes our knowledge on
the initial conditions and not of the evolving field. The middle term,H(d|ϕ) = − lnP(d|ϕ),
describes the knowledge gain by the measurement. If it addresses non-inital times, it is in
general not Q-exact. Thus, if one would take the perspective of including the measurement
constraints into the system dynamics, as it was done with the noise excitation, the thereby
extended system would not be Q-exact any more. The reason for this is that “external
forces” need to be introduced into the system description to guide its evolution through
the constraints set by the measurement, which are not stationary and Gaussian as the
excitation noise is. Or more precisely, the knowledge state on the excitation field ξ is in
general not a zero-centered Gaussian prior with a stationary correlation structure any more,
but a posterior P(ξ|d) with explicitly time-dependent mean and correlation structure in ξ.

5.2. Idealized Linear Dynamics

In order to illustrate the impact of chaos on the predictability of a system, we analyze
a simplified, but instructive scenario. Our starting point is the information Hamiltonian for
all fields, Equation (109), integrated over the β field,

H(d, ϕ, χ, χ)

= − ln
∫
Dβ e−H(d,ψ)

= − ln
∫
Dβ e−{Q,θ(ψ)}−H(d|ϕ)−H(ϕ0)

= − ln
∫
Dβ eiβ†G[ϕ]− 1

2 β†Ξβ−χ̄†G′ [ϕ] χ−H(d|ϕ)−H(ϕ0)

=̂ − ln e−
1
2 G[ϕ]†Ξ−1G[ϕ]−χ̄†G′ [ϕ] χ−H(d|ϕ)−H(ϕ0)

=
1
2

G[ϕ]†Ξ−1G[ϕ] + χ̄†G′[ϕ] χ +H(d|ϕ) +H(ϕ0). (110)

The information Hamiltonian contains now, in this order, terms that represent the
excitation noise statistics G(ξ, Ξ) (as ξ = G[ϕ]), the functional determinant of the dynamics
(represented with help of fermionic fields), the measurement informationH(d|ϕ), and the
information on the initial conditionH(ϕ0).

We assume the system ϕ to be initially ϕ(·, 0) = ϕ0 at t = 0 and to obey Equation (34)
afterwards with ξ ←↩ G(ξ,1), i.e., Ξ = 1. We can then define a classical field ϕcl that obeys
the excitation-free dynamics:

∂t ϕcl(x) = F[ϕcl](x) (111)

and a deviation ε := ϕ− ϕcl from this, which evolves according to:

ε(·, 0) = 0 and (112)

∂tε = F[ϕcl + ε]− F[ϕcl] + ξ

=
∂F[ϕcl]

∂ϕcl︸ ︷︷ ︸
=:A

ε + ξ +O(ε2). (113)

Here, we performed a first-order expansion in the deviation field. Furthermore, we
assume that only a sufficiently short period after t = 0 is considered, such that second-order
effects in ε as well as any time dependence of A can be ignored. For this period, we have
the solution:

εt =
∫ t

0
dτ eA(t−τ)ξt′ . (114)
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Further, we imagine that a system measurement at time t = to probes perfectly a
normalized eigendirection b of A, i.e., that we get noiseless data according to:

d = Rϕ = b†̂ε(·, to). (115)

Here, R1 (~x,t) := b~xδ(t− to) is the linear measurement operator, b fulfills:

A b = λb b, (116)

with λb the corresponding eigenvalue, and †̂ denoting the adjoint with respect to spatial
coordinates only. λb is also the Lijapunov coefficient of the dynamical mode b, which is
stable for λb < 0 and unstable for λb > 0. The latter is a prerequisite for chaos.

Finally, to exclude any further complications, we assume that A can be fully expressed
in terms of a set of such orthonormal eigenmodes,

A = ∑
a

λa a a†̂ with a†̂a′ = δaa′ . (117)

Now, we are in a convenient position to work out our knowledge on ε for all times for
which our idealizing assumptions hold.

A priori, the deviation evolves with an average:

εt := 〈εt〉(ξ) =
∫ t

0
dτ eA(t−τ) 〈ξτ〉(ξ)︸ ︷︷ ︸

=0

= 0 (118)

and an dispersion, most conveniently expressed in the eigenbasis of A, of:

E(a,t)(a′ ,t′) :=
〈

a†̂εtε
†̂
t′

a′
〉
(ξ)

=
∫ t

0
dτ

∫ t′

0
dτ′ a†̂eA(t−τ) ×〈

ξτξ †̂
τ′

〉
(ξ)︸ ︷︷ ︸

=δ(τ−τ′)1

eA†̂(t′−τ′)a′

=
∫ min(t,t′)

0
dτ eλa(t−τ)a†̂a′ eλa′ (t

′−τ)

= eλa(t+t′)δaa′
[
1− eλamin(t,t′)

]
(2λa)

−1

= δaa′
[
eλa(t+t′) − eλa |t−t′ |

]
(2λa)

−1︸ ︷︷ ︸
=: fa(t,t′)

. (119)

We introduced here with fa(t, t′) := 〈a†̂εtε
†̂
t′

a〉(ξ) the a priori temporal correlation
function of a field eigenmode a. Since both the dynamics as well as the measurement
keep the eigenmodes separate in our illustrative example, we only obtain additional
information on the mode b from our measurement. This is given according to Equation (33)
by the posterior:

P(ε|d) = G(ε−m, D) (120)

with posterior mean:

m = E R†
(

RE R†
)−1

d (121)



Entropy 2021, 23, 1652 22 of 34

and posterior uncertainty:

D = E− E R†
(

RE R†
)−1

R E, (122)

which follow respectively from Equations (27) and (23) for the limit of vanishing noise
covariance N. Expressing these in the eigenbasis of A gives:

ma(t) := a†̂m(·, t)

= δab
fb(t, to)

fb(to, to)
d (123)

and

D(a,t)(a′ ,t′) = δaa′

[
fa(t, t′)− δab

fb(t, to) fb(t′, to)

fb(to, to)

]
.

(124)

Figure 1 shows the mean and uncertainty dispersion of the measured mode for various
values of λb. The correlation between different modes a 6= a′ vanishes and therefore any
mode a 6= b behaves like a prior mode shown in grey in Figure 1. For the measured mode b,
the propagator is in general non-zero, but vanishes for times separated by the observation,
e.g., D(b,t)(b,t′) = 0 for t < to < t′, as one can easily verify:

D(b,t)(b,t′) × fb(to, to)

= fb(t, t′) fb(to, to)− fb(t, to) fb(t′, to)

=
[
eλb(t+t′) − eλb |t−t′ |

] [
e2λbto − 1

]
−[

eλb(t+to) − eλb |t−to|
] [

eλb(to+t′) − eλb |to−t′ |
]

=
[
eλb(t+t′) − eλb(t′−t)

] [
e2λbto − 1

]
−[

eλb(t+to) − eλb(to−t)
] [

eλb(to+t′) − eλb(t′−to)
]

=
[
eλb(t+t′+2to) − eλb(t+t′) − eλb(t′−t+2to) + eλb(t′−t)

]
−[

eλb(t+t′+2to) − eλb(t+t′) − eλb(2to+t′−t) + eλb(t′−t)
]

= 0. (125)

Thus, the perfect measurement introduces a so-called Markov-blanket, which sep-
arates the periods before and after it from each other. Knowing anything above earlier
times than to does not inform about later times, as the measurement at to provides the
only relevant constraint for the later period. The equal time uncertainty of the measured
mode is:

D(b,t)(b,t) = fb(t, t)− fb(t, to) fb(t, to)

fb(to, to)

=
1

2λb

e2λbt − 1−

[
eλb(t+to) − eλb |t−to|

]2

2λb
[
e2λbto − 1

]
. (126)

Figure 1 shows this for a number of instructive values of λb. The impact of the
Liapunov exponent on the predictability of the system is clearly visible. The larger the
Liapunov exponent, the faster the uncertainties grow. This can be seen by comparison of
the top panels or by inspection of the bottom middle panel of Figure 1. Thus, chaos, which
implies the existence of positive Liapunov exponents, makes field inference more difficult.
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This, however, is only true on an absolute scale. If one considers relative uncertainties,
as also displayed in Figure 1 on the bottom right, then it turns out that these grow slowest
for the more unstable modes. This is the memory effect of chaotic systems, which can
remember small initial disturbances for long, if not infinite times.

To simplify the system further, we concentrate first on the case λb = 0, which corre-
sponds to a Wiener process. For this we get:

fa(t, t′) = min(t, t′), (127)

implying a posterior mean of:

ma(t) = δabmin(t/to, 1) d (128)

and an information propagator of:

D(a,t)(a′ ,t′) = δaa′

[
min(t, t′)− δab

min(t, to)min(t′, to)

to

]
. (129)

This provides the equal time uncertainty for our measured mode b:

D(b,t)(b,t) = t− min(t, to)2

to
=

{
t (1− t/to) t < to

t− to t ≥ to
, (130)

which is also shown in Figure 1 in both middle panels. This scenario with λb = 0 cor-
responds to a Wiener process, which sits on the boundary between the stable Ornstein–
Uhlenbeck process with λb < 0 and the instability of chaos with λb > 0. This marginal
stable case should now be taken into the non-linear regime.
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Figure 1. Illustration of the knowledge on a measured system mode b. Top row: A priori (gray) and a posteriori (cyan) field
mean (lines) and one sigma uncertainty (shaded) for an Ornstein–Uhlenbeck process (left, λb = −1), a Wiener process
(middle, λb = 0), and a chaotic process (right, λb = 1) of a system eigenmode b after one perfect measurement at to = 1.
Bottom row: The same, but on logarithm scales and for Liapunov exponents λb = −3, −2, −1, 0, 1, 2, and 3, as displayed in
colors ranging from light to dark gray in this order (i.e., strongest chaos is shown in black). Left: Posterior mean. Middle:
Uncertainty of prior (dotted) and posterior (dashed). Right: Relative posterior uncertainty.

5.3. Idealized Non-Linear Dynamics

We saw that the posterior uncertainty is a good indicator for the difficulty to predict the
field at locations or times where or when it was not measured. This holds—modulo some
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corrections—also in the case of non-linear dynamics, which introduces non-Gaussianities
into the field statistics.

In order to investigate such a non-Gaussian example, we extend the previous case
with λb = 0 to the next order in ε, while still assuming that all modes are dynamically
decoupled (up to that order), such that we only need to concentrate on the dynamics of
εb(t) := b†̂ε(·, t),

∂tεb =
1
2

µb ε2
b + ξ +O(ε3

b), (131)

where again †̂ denotes an integration in position space only. This mode will exhibit an
infinite posterior mean for times larger than to. To understand why, let us first investigate
the noise free solution of ∂tεb = 1

2 µb ε2
b for some finite starting value ε(ti) = εi at ti > to.

This might have been created by an excitation fluctuation during the period [to, ti] for
which always a potentially tiny, but finite probability exists. The free solution after ti is
given by:

εb(t) =
εi

1− 1
2 εi µb(t− ti)

, (132)

which develops a singularity for εi µb > 0 in the finite period τ = 2/(εi µb). Thus, there
is a finite probability that at time ts = ti + τ the system is at infinity, and this lets also
the expectation value of ε diverge for ts. This moment, when the expectation value has
diverged, can be made arbitrarily close to to, as the Gaussian fluctuations in ξ permit to
reach any necessary εi at say ti = (ts − to)/2 = τ with a small, but finite probability, where
εi = 2/(τ µb) = 4/[(ts − to) µb].

For times t ∈ [0, to], in between the moments when the two data points were measured,
the posterior mean should stay finite. The reason is that any a priori possible trajectory
diverging to (plus) infinity (for µb > 0) during this period is excluded a posteriori by the
data point (t, εb) = (1, 1). Such trajectories could not have taken place, as the dynamics
does not permit trajectories to return from (positive) infinite values to finite ones, since that
would require an infinite large (negative) excitation, which does have a probability of zero.

Let us assume that for the period t ∈ [0, to], the second-order approximation of the
dynamical equation holds. We then have:

G[εb] = ∂tεb −
1
2

µb ε2
b, (133)

and therefore,

δG[εb]

δεb
= ∂t − µb εb. (134)

Inserting this into Equation (110) yields:

H(d, ϕ, χ, χ) =
1
2

[
∂tεb −

1
2

µb ε2
b

]†[
∂tεb −

1
2

µb ε2
b

]
+χ̄†[∂t − µb εb] χ +H(d|ϕ) +H(ϕ0).

= Hfree(d, ϕ, χ, χ) +Hint(d, ϕ, χ, χ) (135)

with

Hfree(d, ϕ, χ, χ) =
1
2

ε†
b∂†

t ∂tεb + χ̄†∂t χ +H(d|ϕ) +H(ϕ0)

Hint(d, ϕ, χ, χ) = −µb

[
ε2

b

]†
∂t εb +

µ2
b

8

[
ε2

b

]†[
ε2

b

]
−µbχ̄†(εb χ). (136)
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The free information Hamiltonian Hfree(d, ϕ, χ, χ) defines the Wiener process field
inference problem we addressed before, and has the classical field as well as the bosonic
and fermionic propagators given by:

m(t) = min(t/to, 1) d =
t d
to

for t < to

= t (137)

Db
tt′ = min(t, t′)− min(t, to)min(t′, to)

to

= min(t, t′)− t t′

to
for t, t′ < to

= t t′ (138)

Df
tt′ =

[
δ(t− t′)∂t′

]−1
= θ(t− t′)

= t t′ (139)

respectively. Here, we introduced their Feynman diagram representation as well. The Fermionic
propagator is the inverse of δ(t− t′)∂t′ as is verified by:∫

dt′
[
δ(t− t′)∂t′

]
Df

t′t′′ =
∫

dt′
[
δ(t− t′)∂t′

]
θ(t′ − t′′)

=
∫

dt′ δ(t− t′)δ(t′ − t′′)

= δ(t− t′′) = 1tt′′ . (140)

The interacting HamiltonianHint(d, ϕ, χ, χ) provides the following interaction vertices:

= −2 µbδ(t1 − t2) δ(t2 − t3) [∂t1 + ∂t2 + ∂t3 ]

(141)

= −3! µbδ(t1 − t2) δ(t2 − t3) (142)

= 3µ2
bδ(t1 − t2) δ(t2 − t3) δ(t3 − t4). (143)

The integration over the time axis in Feynman diagrams can be restricted to the
interval [0, to] as the propagator vanishes for (exactly) one of the times being larger than to,
see Equation (125).

To first order in µb, the posterior mean and uncertainty dispersion for 0 ≤ t, t′ ≤ to
are then given by the Feynman diagrams:
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〈εb〉(εb |d) = + +

+ +O(µ2
b)

=
t
to

d− 3
2

µbt (to − t) +O(µ2
b) (144)

〈
εbε†

b

〉c

(εb |d)
= + +O(µ2

b)

= min(t, t′)− t t′

to
+O(µ2

b), (145)

see Appendix A. It turns out that all first-order diagrams (in µb) with a bosonic three-vertex
are zero. The reason for this lies in the fact that these are all of a similar form,∫ to

0
dt1

∫ to

0
dt2

∫ to

0
dt3δ(t1 − t2) δ(t2 − t3)×[

Db
tt3

∂t1 g(t1, t2) + Db
tt3

∂t2 g(t1, t2) + g(t1, t2)∂t3 Db
tt3

]
=

∫ to

0
dt1

[
Db

tt1
∂t1 g(t1, t1) + g(t1, t1)∂t1 Db

tt1

]
=

∫ to

0
dt1Db

tt1
∂t1 g(t1, t1)

+
[

g(t1, t1)Db
tt1

]to

t1=0
−
∫ to

0
dt1Db

tt1
∂t1 g(t1, t1)

= g(to, to)Db
toto − g(0, 0)Db

00 = 0, (146)

with g(t1, t2) = µbmt1 mt2 , 1
2 µbDb

t1t2
, and µbmt1 Db

t2t′ respectively. All these diagrams vanish,
because Db

toto
= Db

00 = 0. Thus, to first order in µb only a correction due to the Fermionic
loop is necessary. This is negative (for positive µb) as from the sum over trajectories,
which go through the initial data (ti, εbi) = (0, 0) as well as through the later observed
data (to, εbo) = (1, 1), all the trajectories that diverge prematurely (within t ∈ [0, to])
are excluded.

The posterior mean and uncertainty of the scenario with λb = 0 and µb = 0.3 is
displayed for t ∈ [0, to] in the middle panel of Figure 2 in red in comparison to those for
λb = 0 and µb = 0 in cyan. It can there be observed that the exclusion of the diverging
trajectories by the observation has made the ensemble of remaining trajectories stay away
from high values, which more easily diverge. Furthermore, this effect is solely represented
by the fermionic Feynman diagram, as all bosonic corrections vanish (for λb = 0) up to
the considered linear order in µb. Thus, taking the functional determinant into account,
for which the fermionic fields were introduced, is important in order to arrive at the
correct posterior statistics. This effect naturally arises in the used Stratonovich formalism
of stochastic systems, and is less obvious in Îto’s formalism.
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Figure 2. Like top row of Figure 1 just for the non-linear system defined by Equation (147) within the period t ∈ [0, 1]
with first-order bosonic and fermionic perturbation corrections for µb = 0.3 in red, as in Figure 1 without such non-linear
corrections in cyan, and with only bosonic corrections in blue (dotted, displayed without uncertainty). The three panels
display the cases λb = −1 (left), λb = 0 (middle), and λb = 1 (right). Note that the a priori mean and uncertainty dispersion
are both infinite for any time t > 0, as without the measurement, trajectories reaching positive infinity within finite times
are not excluded from the ensemble of permitted possibilities.

Now, we are in a position to also work out the corrections in case λ 6= 0. In this case,
we have:

G[εb] = ∂tεb − λb εb −
1
2

µb ε2
b (147)

and

δG[εb]

δεb
= ∂t − λb − µb εb (148)

such that now:

Hfree(d, ϕ, χ, χ) =
1
2

ε†
b

[
(∂t − λb)

†(∂t − λb)
]
εb (149)

+χ̄†(∂t − λb) χ +H(d|ϕ) +H(ϕ0)

Hint(d, ϕ, χ, χ) = −µb

[
ε2

b

]†
(∂t − λb) εb +

µ2
b

8

[
ε2

b

]†[
ε2

b

]
−µbχ̄†(εb χ) (150)

and

m(t) =
fb(t, to)

fb(to, to)
d for t < to

= t (151)

Db
tt′ = fb(t, t′)− fb(t, to) fb(t′, to)

fb(to, to)

= t t′ (152)

Df
tt′ =

[
δ(t− t′)(∂t − λb)

]−1

= θ(t− t′)eλb(t−t′)

= t t′ (153)

where:

fb(t, t′) =
eλb(t+t′) − eλb |t−t′ |

2λb
. (154)
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The Fermionic propagator for λ 6= 0 is easily verified:∫
dt′δ(t− t′)(∂t′ − λb)Df

tt′

=
∫

dt′δ(t− t′)(∂t′ − λb)
[
θ(t′ − t′′)eλb(t′−t′′)

]
=

∫
dt′δ(t− t′)

[
δ(t′ − t′′)eλb(t′−t′′)

+θ(t′ − t′′)λbeλb(t′−t′′) − λbθ(t′ − t′′)eλb(t′−t′′)
]

= δ(t− t′′). (155)

The only changed interaction vertex is:

= −2 µbδ(t1 − t2) δ(t2 − t3) [∂t1 + ∂t2 + ∂t3 − 3λb]

=̂ 3! µbδ(t1 − t2) δ(t2 − t3) λb, (156)

where we used in the last step that the derivatives lead to vanishing contribution to all
diagrams up to linear order in µb as we showed in Equation (146). The relevant diagrams
correcting the posterior mean are then:

+ +

= −3!µb

∫ to

0
dt′ Db

tt′

λb
2

m2
b(t
′) +

λb
2

Db
t′t′ − Df

t′t′︸︷︷︸
1/2


= −3µb

∫ to

0
dt′
[

fb(t, t′)− fb(t, to) fb(t′, to)

fb(to, to)

]
×[[

f 2
b (t
′, to)

f 2
b (to, to)

d2 + fb(t′, t′)−
f 2
b (t

′
, to)

fb(to, to)

]
λb − 1

]
. (157)

This integral can be calculated analytically. However, the resulting expression is
relatively complicated, therefore omitted here, and only plotted in Figure 2. We calculate it
with the computer algebra system SymPy [45]. The same is true for the first order (in µb)
correction to the uncertainty:

= −3!µbλb

∫ to

0
dt′′ Db

tt′′mb(t′′)Db
t′′t′ , (158)

which we also only present graphically in Figure 2.
This figure shows that in all displayed cases (λb ∈ {−1, 0, 1}), the posterior trajectories

preferentially avoid getting close to easily diverging regimes (larger positive values for
µb > 0), and they avoid such areas more, as more linear dynamics are unstable (i.e., larger
values of λb).
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Interestingly, the interplay of this non-linear dynamics with the constraint provided by
the measurement leads to a reduced a posteriori uncertainty for unstable systems (λb > 0)
for times prior to the measurement. This is not in contradiction to the notion of chaotic
systems being harder to predict. Here, we are looking at trajectories that could have lead—
starting from some known value—to the observed situation at a later time. Thanks to the
stronger divergence of trajectories of chaotic systems, the variety of trajectories that pass
through both the initial condition and the later observed situation, is smaller than if the
system is not chaotic. Thus, the measurement provides more information for this period in
the chaotic regime, but less for the period after the measurement.

6. Conclusions and Outlook

We brought dynamical field inference based on information field theory and the
suspersymmetric theory of stochastics into contact. To this end, we showed that the DFI
partition function becomes the STS one if the excitation of the field becomes white Gaussian
noise and no measurements constrain the field evolution. In this case, the dynamical
system has a supersymmetry. We note that neither STS nor DFI are limited to the white
noise case.

For chaotic systems, this supersymmetry is broken spontaneously. As the presence of
chaos limits the ability to predict a system, DFI for systems with broken supersymmetry
should become more difficult. We hope that the here established connection of STS and
DFI allows to quantitatively investigate this.

While re-deriving basic elements of STS within the framework of IFT, we carefully
investigated the domains on which the different fields and operators live and act, respec-
tively, using the perspective that the continuous time description of the system should be
the limiting case of a discrete time representation for vanishing time steps. Thereby, we
showed, for example, that the fermionic ghost field has to vanish on the initial time slice
for the theory to be consistent.

Furthermore, we showed that most measurements of the field during its evolution
phase do not obey the system’s supersymmetry, and are not Q-exact. Nevertheless, the for-
malism of STS is still applicable and might help to develop advanced DFI schemes. For ex-
ample, two of the challenges DFI is facing are the representation of the dynamics enforcing
delta function and a Jacobian in the path integral of the DFI partition function. For these,
STS introduces bosonic Lagrange and fermionic ghost fields. Using those in perturbative
calculations, for example via Feynman diagrams, might allow to develop DFI schemes that
are able to cope with non-linear dynamical systems.

In order to illustrate how such a non-linear dynamics inference would look like, we
investigate a simplified situation, in which the deviation of a system driven by stochastic
external excitation from the classical (not perturbed system) is measured at an initial and
a later time. The simplifications we impose are that (i) the measurement probes exactly
one eigenmode of the linear part of the evolution operator for these deviations, that (ii) the
evolution operator stays stationary during the considered period (thus different modes do
not mix), and that the non-linear part of the evolution is also (iii) stationary, (iv) second
order in the observed eigenmode, and (v) keeps that mode also separate from the other
modes (no non-linear mode mixing). Under these particular conditions (i)–(v), the field
inference problem becomes a one dimensional problem for the measured mode as a function
of time, which can be treated exactly for a vanishing non-linearity and perturbatively with
the help of Feynman diagrams in case of non-vanishing non-linearity. Thereby, it turns out
that the Fermionic contributions, which implement the effect of the functional determinant,
are key to obtain the correct a posteriori mean of the system.
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The investigation of the illustrative example show a few things. First, predicting the
future evolution of a more chaotic system from measurements is harder than for a less
chaotic one as the absolute uncertainty of the measured mode increases faster in the former
situation. This is not very surprising, but the following insight might be: The relative
uncertainty (uncertainty standard deviation over absolute value of the deviation) grows
slower for a chaotic system. This is an echo of the known memory effect of chaotic systems,
which remember small perturbations in unstable modes for a longer time thanks to their
rapid amplification. Third, non-linear dynamics, which can lead to even more drastic
divergence of system trajectories (even to infinity in finite times), makes prediction of the
future even harder, but enhances the amount of information measurements provide for
periods between them. Due to the larger sensitivity of the system to perturbations, the
measurements now exclude more trajectories that were possible a priori.

Thus, the interplay of measurements and non-linear chaotic systems is complex and
more interesting phenomena should become visible as soon as the simplifying assumptions
(i)–(v) made in our illustrative example are dropped. For those, the inclusion of the
Fermionic part of the information field theory of stochastic systems will be as essential to
obtain the correct statistics on the system trajectories as it is in our idealized illustrative
example. We believe that insights provided by the stochastic theory of supersymmetry
will continue to pay off in investigations of more complex systems, which we leave for
future research.
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Appendix A. Feynman Diagrams

Here we calculate explicitly the Feynman diagrams from Section 5.3 for the case
λb = 0. These are:

=
1
2

2 µb

∫ to

0
dt′
{

2Db
tt′mt′ [∂t′′ mt′′ ]t′′=t′

+m2
t′

[
∂t′′ Db

tt′′

]
t′′=t′

}
= µb

∫ to

0
dt′
{

2Db
tt′mt′

[
∂t′′

t′′d
to

]
t′′=t′

+m2
t′

[
∂t′′

(
min(t, t′′)− t t′′

to

)]
t′′=t′

}
= µb

∫ to

0
dt′
{

2Db
tt′

t′d2

t2
o

+
t′2d2

t2
o

[
θ(t− t′)− t

to

]}
= µbd2

∫ to

0
dt′
{

2
(

min(t, t′)− t t′

to

)
t′

t2
o

+
t′2

t2
o

[
θ(t− t′)− t

to

]}
= 2µbd2

∫ t

0
dt′

t′2

t2
o
+2µbd2

∫ to

t
dt′

t′t
t2
o

−2µbd2
∫ to

0
dt′

t t′2

t3
o

+µbd2
∫ t

0
dt′

t′2

t2
o
−µbd2

∫ to

0
dt′

t t′2

t3
o

= µbd2 t3

t2
o
−µbd2 t+µbd2 (t

2
o − t2) t

t2
o

= µbd2 t3−t2
ot+t2

ot− t3

t2
o

= 0, (A1)
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=
1
2

2 µb

∫ to

0
dt′
{

2Db
tt′

[
∂t′′ Db

t′t′′

]
t′′=t′

+Db
t′t′

[
∂t′′ Db

tt′′

]
t′′=t′

}
= 2µb

∫ to

0
dt′ Db

tt′

[
∂t′′

(
min(t′, t′′)− t′ t′′

to

)]
t′′=t′

+µb

∫ to

0
dt′ Db

t′t′

[
∂t′′

(
min(t, t′′)− t t′′

to

)]
t′′=t′

= 2µb

∫ to

0
dt′
(

min(t, t′)− t t′

to

)θ(t′ − t′)︸ ︷︷ ︸
1/2

− t′

to


+µb

∫ to

0
dt′
(

min(t′, t′)− t′2

to

) [
θ(t− t′)− t

to

]
= 2µb

∫ t

0
dt′
[

t′

2
− t′2

to

]
+ 2µb t

∫ to

t
dt′
[

1
2
− t′

to

]
+2µb

∫ to

0
dt′
(
− t t′

2to
+

t t′2

t2
o

)
+µb

∫ t

0
dt′
(

t′ − t′2

to

)
− µb

∫ to

0
dt′
(

t′ − t′2

to

)
t
to

= 2µb

(
t2

4
− t3

3to

)
+ 2µb t

[
(to − t)

2
− (t2

o − t2)

2to

]
+2µb

(
− t t2

o
4to

+
t t3

o
3t2

o

)
+µb

(
t2

2
− t3

3to

)
− µb

(
t2
o
2
− t3

o
3to

)
t
to

=
µb
6

(
3t2−4t3

to
+ 6t (to−t)− 6t (t2

o−t2)

to

−3t to + 4t to+3t2−2t3

to
−3t to + 2tto

)
=

µb
6

(0+0+0) = 0, (A2)

using here and in the following color code to highlight canceling terms,

= −3! µb

∫ to

0
dt′ Db

tt′D
f
t′t′

= −6 µb

∫ to

0
dt′
(

min(t, t′)− t t′

to

)
θ(t′ − t′)︸ ︷︷ ︸

1/2

= −3 µb

[∫ t

0
dt′ t′ +

∫ to

t
dt′ t−

∫ to

0
dt′

t t′

to

]
= −3 µb

[
t2

2
+ (to − t) t− t to

2

]
= −3

2
µbt (to − t), (A3)
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and assuming 0 ≤ t ≤ t′ ≤ to):

= 2 µb

∫ to

0
dt′′

{[[
∂t′′D

b
tt′′

]
mb(t′′)Db

t′′t′

]
+Db

tt′′
[
∂t′′mb(t′′)

]
Db

t′′t′ + Db
tt′′mb(t′′)

[
∂t′′D

b
t′′t′

]}
= 2 µb

∫ to

0
dt′′

{[(
θ(t− t′′)− t

to

)
t′′d
to

(
min(t′′, t′)− t′′ t′

to

)]
+

(
min(t, t′′)− t t′′

to

)
d
to

(
min(t′′, t′)− t′′ t′

to

)
+

(
min(t, t′′)− t t′′

to

)
t′′d
to

(
θ(t′ − t′′)− t′

to

)}
= 2µb
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0
dt′′

[(
1− t

to

)
t′′d
to

(
t′′ − t′′t′

to

)
+

(
t′′ − t′′t

to

)
d
to

(
t′′ − t′′t′

to

)
+

(
t′′ − t′′t

to

)
t′′d
to

(
1− t′

to

)]
+
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t
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[(
− t

to

)
t′′d
to

(
t′′ − t′′t′

to

)
+

(
t− t′′t

to

)
d
to

(
t′′ − t′′t′

to

)
+

(
t− t′′t

to

)
t′′d
to

(
1− t′

to

)]
+
∫ to

t′
dt′′

[(
− t

to

)
t′′d
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(
t′ − t′′t′

to

)
+

(
t− t′′t

to

)
d
to

(
t′ − t′′t′

to

)
+

(
t− t′′t

to

)
t′′d
to

(
− t′

to

)]}
= 2µb
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0
dt′′

[
3t′′2d
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− 3t′′2dt′
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− 3t′′2dt

t2
o
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3t′′2dtt′
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o
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+
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+ 3
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