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Abstract

Background: Alpha-particle-emitting radiotherapies are of great interest for the treatment of disseminated
cancer. Actinium-225 (225Ac) produces four a-particles through its decay and is among the most attractive
radionuclides for use in targeted radiotherapy applications. However, supply issues for this isotope have limited
availability and increased cost for research and translation. Efforts have focused on accelerator-based methods
that produce 225Ac in addition to long-lived 227Ac.
Objective: The authors investigated the impact of 225Ac/227Ac material in the radiolabeling and radiophar-
maceutical quality control evaluation of a DOTA chelate-conjugated peptide under good manufacturing
practices. The authors use an automated module under identical conditions with either generator or accelerator-
produced actinium radiolabeling.
Methods: The authors have performed characterization of the radiolabeled products, including thin-layer
chromatography, high-pressure liquid chromatography, gamma counting, and high-energy resolution gamma
spectroscopy.
Results: Peptide was radiolabeled and assessed at >95% radiochemical purity with high yields for generator
produced 225Ac. The radiolabeling results produced material with subtle but detectable differences when using
225Ac/227Ac. Gamma spectroscopy was able to identify peptide initially labeled with 227Th, and at 100 d for
quantification of 225Ac-bearing peptide.
Conclusion: Peptides produced using 225Ac/227Ac material may be suitable for translation, but raise new issues
that include processing times, logistics, and contaminant detection.
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Introduction

Radionuclide therapy has been a pillar of nuclear medi-
cine for over 80 years. Phosphorus-32 was first applied

by Lawrence in 1938 for treatment of leukemia,1 followed by
other agents. Notably, the use of radioiodine for hyperthyroid
conditions and cancer has become standard of care.2–4 Alpha-
particle emitters have long been of interest for systemic ap-
plications in oncology and degenerative conditions. These
charged helium nuclei deposit MeV of energy along a short
path-length of only several cell diameters.5 Alpha-particle-
emitting radium isotopes localize to sites of bone turnover,
and the treatment of ankylosing spondylitis using radium-224
(224Ra) had been used widely for decades.6 The recent ap-
proval of radium-213 (213Bi) dichloride for metastatic pros-
tate cancer has stimulated even further interest in the field.7

Molecularly specific radioimmunotherapy involves con-
jugation of radionuclides to targeting vectors, often antibodies
or peptides. The first clinical targeted a-particle-emitting
radiotherapies developed by McDevitt et al. for bismuth-213
(213Bi) subsequently led to development of actinium-225
(225Ac)-conjugated antibody and small-molecule thera-
pies.8,9 The 225Ac isotope is considered nearly ideal for
antibody-based targeted radiotherapy applications because
the biological half-life of a full-length immunoglobulin and
the physical half-life of the parent radionuclide (t1/2 = 9.92 d)
are well matched.10,11

Increased translational efforts have revealed a supply-
chain constraint for access to 225Ac. Production method, i.e.,
elution of a thorium-229 (229Th) generator–produces sev-
eral times less than the estimated need for routine clinical
practice.12,13 Demand for the isotope has spurred several
developmental efforts, including cyclotron, electron, or
photon irradiation of radium-226,14,15 and spallation of thorium
targets by high-energy protons.16,17 This latter accelerator-based
approach can produce large quantities of actinium. This
includes the desired 225Ac, along with an isotopic mixture
of short-lived 224,226,228Ac (t1/2 < 2 d) and long-lived 227Ac
(t1/2 = 21.8 year). Half-life, infrastructure requirements, and
the cost and capabilities of physical separation methods
preclude enrichment of the desired 225Ac. As such, the long-
lived 227Ac is present in this drug formulation reagent.

227Ac decays predominantly to 227Th (t1/2 = 18.72 d) fol-
lowed by 223Ra (t1/2 = 11.43 d), both of which are also alpha-
particle emitters of interest for their therapeutic potential
(Supplementary Fig. S1).18–21 This creates potential issues
relating to radiochemical and dosimetric impact of this in-
creasingly complex radionuclide mixture, which includes
the concatenated decay progeny of both 225/227Ac. Studies to
date have investigated the radiochemical impact of the
presence of 227Ac in chelate radiolabeling.16,22,23 At the end
of bombardment, the radioisotopic impurity of 227Ac in the
225/227Ac material is reported to be low (0.2%–0.3%).24 The
ratio of isotopes changes rapidly with time as the 225Ac
material decays during chromatographic separation from the
target thorium and coproduced isotopes, shipment, and ra-
diopharmaceutical preparation.25

Early evaluation of the radiobiological impact of the
impurity is underway in preclinical and modeling stud-
ies.22,26 These and future studies are important as long-lived
impurities in historical formulations of 224Ra may have
contributed to incidences of treatment-induced malignan-

cies,27,28 however, evaluation of these data is ongoing.29 As
well, regulatory consideration regarding the handling and
disposal of the chemical and biological wastes that are
contaminated with this long-lived 227Ac material are a point
of continuing discussion.

The authors’ interest in the present study was to investi-
gate the implications for quality control and clinical release
processing for accelerator-produced actinium used to for-
mulate a therapeutic agent; and the application of an auto-
mated synthesis system for such a radiopharmaceutical.
They report and discuss the radionuclide and radioisotopic
purity impact for this material following good manufactur-
ing processes for labeling, including an automated radi-
olabeling module, and a variety of analytical methods.

Materials and Methods

Radionuclides

The 229Th generator-produced 225Ac and accelerator-
produced 225/227Ac sources were supplied by the United
States Department of Energy. The accelerator-produced
material activity was 79.2 MBq (2.1 mCi) on 07/01/2021, 1
d following purification, and subsequently evaporated and
shipped as dried nitrates (Supplementary Fig. S2). The cer-
tificate of analysis for this batch indicated an estimated
0.7 MBq (20 lCi) of 227Ac contaminant, as extrapolated from
measurements of previously generated material. At receipt,
the material in a Wheaton vial (3.0 mL) was measured using a
well-style dose calibrator (Capintec CRC25R) set on pre-
calibrated 225Ac setting number (#82) with 55 MBq (1.5 mCi)
of starting material (at day 7 postradiomaterial purification,
07/06/2021). A representative certificate of analysis for gen-
erator produced material is included (Supplementary Fig. S3).

Radiolabeling

The DOTA-labeled peptide precursor was supplied by
Modulation Therapeutics, Inc., (Fig. 1C). The labeling of the
peptide was carried out under good manufacturing practice,
within a shielded hot cell using a multifunctional automated
radiosynthesis module (Trasis, AllinOne mini). The process
was controlled remotely using Supervision (v.2.28 Rev. 2,
Trasis). In brief, 46.6 MBq (1.27 mCi) of the source dis-
solved in 0.2 M HCl was loaded under vacuum in the initial
vial for radiolabeling with the DOTA-conjugated precursor
(200 lg) on day 5 postsource purification.

The source was transferred to the one-pot radiolabeling
reactor cassette, in which the reaction occurred in Tris
buffer (1 M, pH 7.2) at 85�C for 70 min in the presence of
20% v/v L-ascorbic acid at pH 6–8. The radiolabeled pep-
tide was transferred in saline and passed through a 0.2 lm
sterilizing filter, resulting in a final volume of 9.7 mL. The
final radiolabeled sample was tested for sterility and pres-
ence of bacterial endotoxins.

Radio-instant thin-layer chromatography

A sample of the final drug product material (0.4 lL each)
was spotted on glass-microfiber chromatography paper im-
pregnated with a silica gel (115 mm length) and developed
using 50 mM DTPA in ultrapure water. Acquisitions of 5 min
were conducted at 225Ac/213Bi equilibrium (>4 h postmigra-
tion; typically 6–7 h) utilizing a radioTLC imaging system
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under default settings and analyzed using vendor software
(AR-2000 and Winscan; Bioscan). Free radiometals mi-
grated to the front and the bioactive-labeled material re-
mained at the origin (0–50 mm).

Peptide purification and fractionation

Reverse phase high-pressure liquid chromatography (HPLC)
was undertaken utilizing an Agilent system equipped with a
HICHROM Vydac 218MS C18 (4.6 · 250 mm, 5 lm) col-
umn, running with a flow rate of 1 mL/min, and a UV de-
tection set at 220 nm. Twenty microliters of the labeled
peptide was injected for analytical chromatography and
fractions were collected for radiotrace determination. The
total separation was performed over 35 min and fractions
were collected every 1 mL. A gradient mobile phase was
used consisting of HPLC grade water (Solvent A) and
acetonitrile (Solvent B) both with 0.1% trifluoracetic acid.

Gradient conditions were initially 100% (A), 0% (B); 0–
20 min to reach 20% (A), 80% (B); 20–20.5 min was ramped
to 100% (A), 0% (B); 20.5–35 min 100% (A), 0% (B). An

elution time of 11.736 min was recorded from the radi-
olabeled product UV spectra, and 11.779 min was identified
to be the unlabeled precursor.

Gamma counting

Collected fractions from the HPLC were measured using
a COBRA-2 gamma counter (Packard) after the samples had
reached an equilibrium state for 225Ac (>4 h), with an energy
window channel setting of 15–800 keV. Acquisitions were
recorded 1 min per sample, and the counts per minute were
background corrected to determine radiochemical purity
defined as the integration of collected fractions 10–14 mL
(containing the peptide as determined by UV-trace) over the
entire collection (35 mL). Two fractions contain detectable
activity, noted as fr12 and fr13, and were submitted for fur-
ther analyses.

Gamma spectroscopy

A high-purity germanium (HPGe) detector was used to ac-
quire high energy resolution spectra for isotope identification.

FIG. 1. Automated Radiosynthesis Module and Conditions. (A) A software-controlled automated procedure was used to
225Ac-radiolabel the precursor peptide, under GMP conditions in a radiopharmacy hot cell. (B) Schematic representation of
the conditions and fluid controls. (C) Radiolabeling schema for the DOTA-conjugated peptide. GMP, good manufacturing
practice.
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The cryocooled system (GEM-50195-S; Ortec) was used
with samples placed 5 cm away from the detector enclosed
in a 10 cm lead shield (HPLBS1; Ametek). The energy
and efficiency calibrations were completed using a gamma
ray source traceable to the National Institute of Standards
and Technology (Eckert Ziegler Isotope Products) allowing
preset calibration of each energy peak and quantification per
isotope. The same sample-to-detector geometry was used to
measure the HPLC collected fractions of interest and mea-
sured over 24 h. Counts were normalized to acquisition time
for each gamma spectra, and the isotope quantification was
conducted utilizing Gamma-Vision Software (version 8.0,
Ametek) accounting for background, half-life, abundance,
acquisition time correction, and normalized for each isotope
recognized by the edited library.

Safety statement

Handling and evaluation of radiological materials require
careful planning, infrastructure, and training. This is all the
more important for high linear energy transfer emitters, as
used in this work. All experiments were conducted by staff
with certified Radiation Safety approvals and dose moni-
toring by the Washington University School of Medicine
Department of Environmental Health and Safety, in ap-
proved areas. Samples were handled in either a hot cell or
chemical fume hood, and characterization measurements were
performed with sealed samples in appropriate and moni-
tored areas. All samples used in this work have half-lives
‡10 d, requiring off-site storage and specialized disposal
protocols handled by Radiation Safety.

Results

Accelerator produced 225/227Ac was received for radi-
olabeling using a preprogrammed automated radiosynthesis
module (Trasis, AllinOne mini). In brief, the system con-
sists of a volume and time-controlled heating and mix-
ing platform for single-pot radiolabeling of the precursor
DOTA-conjugated peptide. The advantages of an automated
approach include a systematic and repeatable preparation
method with reduced absorbed dose to the radiochemist.
In addition, the device is located within an ISO7 hot cell,
thereby reducing likelihood of radiocontamination to per-
sonnel, and biocontamination to the material. The module
was programmed to fully automate the benchtop synthesis
used to develop the radiopharmaceutical, see Figure 1. Here,
the dry 227/225Ac-nitrate is dissolved in dilute acid, to which
antioxidant and peptide is added and heated to 85�C for
70 min. The radiolabeled material was sterilized by filtra-
tion, resulting in 9.7 mL of 200 lg of peptide (48.47 MBq)
for subsequent quality control analyses.

Initial radiochemical analyses were performed at the time
of radiopharmaceutical production and at day 2 postlabeling

(to model time elapsed required to reach and be admin-
istered to a patient). The authors first assessed the product
using radio-iTLC. Radiolabeled peptide and control (un-
complexed) source radiomaterial were spotted and devel-
oped using 50 mM DTPA. The acquisition of the paper
chromatographic strip by proportional counter was carried
out at >6 h postdevelopment. This time is provided for 225Ac
to reach secular equilibrium; and for migrated daughters,
primarily 221Fr (t1/2 = 4.9 min) and 213Bi (t1/2 = 45.6 min), to
decay. The radio-iTLC analysis indicated >99%% radio-
chemical purity, Figure 2A and B. The clinical release cri-
terion for this radiopharmaceutical includes ‡95% RCP by
radio-iTLC, which was met.

Reverse-phase HPLC was also performed, demonstrat-
ing >90% chemical purity (Fig. 2C). The early (3–5 min)
fractions correspond to the low retention of free metal ions
(Fig. 2D). The collected peptide fractions were gamma
counted, after reaching 225Ac secular equilibrium, and a
94.2% radiochemical identity was observed. This stands
in contrast to the automated radiolabeling results from
thorium-229 generator produced 225Ac >95% (n ‡ 5; Sup-
plementary Fig. S4), analyzed by identical methods.

They next sought to investigate the radioisotopic content
of the HPLC-separated peptide to interrogate this discrep-
ancy. High-resolution gamma spectroscopy using cryo-
cooled HPGe was acquired at multiple time points following
radiolabeling to identify the peptide-complexed radionu-
clides. At the earliest analyzed time point, day 2 following
radiolabeling, the abundant gamma emissions from 221Fr
(218 keV) and 213Bi (440 keV) are prominent (Fig. 3A). The
direct detection of 225Ac itself was also observed; and was
quantifiable at 188 keV (this gamma ray line is isolated from
daughter contributions). The activity determined from this
225Ac peak (99508 Bq) matched that of progeny 213Bi
(98086 Bq) at equilibrium (Table 1). The HPGe method
was in good agreement with the dose calibrator reading of
the labeled radiopharmaceutical, after compensating for the
proportion of activity injected by HPLC and that collected
in fractions 12 and 13.

Detailed observation also revealed the presence of 227Th
in the purified radiolabeled peptide fraction at day 2. The
amount measured here indicates that the 227Th present was
labeled onto the conjugate at synthesis. In addition, 223Ra
is not clearly detected at this early time point. This under-
lines successful chemical purification by HPLC of this
nonchelated rare earth metal, and the direct DOTA-peptide
labeling by both 225/227Ac and 227Th (Fig. 3B). The samples
were reanalyzed for isotopic content at 82 and 100 d post-
radiolabeling (Fig. 3C, D).

Quantification of these isotopes’ activities is presented in
Table 1, for each of the displayed gamma spectrum mea-
surements. Direct quantification of 225Ac was not successful
at later time points due to interfering gamma and X-rays

‰
FIG. 2. Radiochemical Purity Analysis. (A) Radio-instant thin-layer (radio-iTLC) chromatography of 225/227Ac radi-
olabeled peptide migrated by DTPA (50 mM). (B) Control radio-iTLC of source 225/227Ac material under identical con-
ditions. Peak analysis results show >99% radiochemical yield by radio-iTLC of (A). (C) UV-chromatogram from HPLC of
the peptide postradiolabeling; DOTA-conjugated radiolabeled peptide peak at 11.7 min is detected. (D) Gamma counting of
the HPLC fractionated samples, using an open, 15–800 keV, energy window. Free ions, noncomplexed, ions are detected in
fractions 3–4, while the majority of the activity is associated with peptide at 12 mL. Calculation of radiochemical yield by
gamma counted HPLC fractions was RCP = 94.2%. HPLC, high-pressure liquid chromatography.
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from the complex radionuclide mixture. The high-energy
440 keV of the 213Bi daughter could be cleanly assessed, and
measured values at 82 and 100 d are within the error of the
method as predicted from 225Ac-decay rate from the initial
day 2 quantification. In contrast, the 227Th activity in the

peptide fraction does not follow the predicted values for the
half-life of this isotope, as it is fed by 227Ac decay.

The 256 keV line used for 227Th analysis has negligible
interference from other emissions. Using the activity quanti-
fied at 100 d postradiolabeling (for which 227Th has reached
>98% equilibrium with its parent), the authors calculated an
initial 227Ac activity of 1514.2 Bq in the primary peptide
fraction at the proposed day of injection. A further 68.1 Bq
in the second largest fraction was measured, Table 2. The

FIG. 3. Gamma Spectroscopy of HPLC-Purified Peptide. (A) At day 2 postradiolabeling (day of patient injection) the
gamma ray lines from 225Ac and daughters 221Fr and 213Bi are prominent. (B) Magnification of dashed region; presence of
227Th associated with the radiolabeled peptide. (C) The same fraction evaluated at day 82 and (D) day 100 postradiolabeling.
The 225Ac contribution to the spectra has diminished, while 227Ac-daughters emissions have reached equilibrium.

Table 1. Activity (Bq) of Purified
227/225

Ac-Labeled Peptide Fractions

Measured Utilizing Gamma Spectrometry

Acquired at Day 2, 84, and 100 Postradiolabeling

Time postradiolabeling

2 d 84 d 100 d

Ac-225 (Bq;188 keV)
Measured 99,508.98 n.d n.d.
Predicted — 301.33 97.18

Bi-213 (Bq; 440 keV)
Measured 98,086.32 213.81 77.58
Predicted — 297.02 95.79

Th-227 (Bq; 256 keV)
Measured 1824.83 1435.5 1501.64
Predicted — 87.34 48.26

The predicted activities are calculated for the half-life of each
radionuclide from that measured at day 2. The characteristic gamma
line for Ac-225 could not be determined (n.d.) after day 2.

Table 2. Isotopic Purity at the Time of Patient

Injection (Day 2 Postlabeling) of Purified Peptide

Activity (Bq) at day
of injection

Ac-225 Ac-227
Isotopic

purity (%)

fr12 98,086.32 1514.2 98.46
fr13 4304.06 68.1 98.43
Labeled-peptide 102,390.38 1582.3 98.46

HPLC fraction 12 (11–12 min, the most concentrated fraction)
and fraction 13 (12–13 min, the end of the collected peak) constitute
the full radiolabeled 225/227Ac-peptide content. Ac-225 was measured
by HPGe at day 2; Th-227 was evaluated at 100 d postradiolabeling,
reaching equilibrium with Ac-227.

HPLC, high-pressure liquid chromatography; HPGe, high-purity
germanium.
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resulting isotopic purity of actinium-225 (defined as the
percentage of 225Ac to all actinium isotopes present30) of the
isolated radiolabeled peptide is 98.46%.

The time elapsed between final 225/227Ac purification
from the accelerator bombarded material to the radiophar-
maceutical labeling was *7 d. This provides time for in-
growth of 227Ac daughters. The authors have modeled the
radionuclidic content using the Bateman equations, and
displayed activity over time for all isotopes with a half-life
greater than 9 d (Supplementary Fig. S5). The radionuclide
content at the day of radiolabeling consists predominantly
of 225Ac, as well as 227Ac and 227Th (which increases to
the day of injection). The result is a radionuclidic purity for
225Ac of 97.8% at day 2 postlabeling, if they only consider
therapeutic isotopes with a half-life greater than 9 d. These
data demonstrate the importance of timing both between
source purification and radiopharmaceutical administration,
as well as controlling the molecular contents of the prepared
material.

Discussion

Targeted radiotherapy is an emerging paradigm for the
treatment of refractory and disseminated disease. Recent
approvals by the European Medicines Agency and the US
Food and Drug Administration (FDA), including iodine-131
(131I) meta-iodobenzylguanidine, radium-223 (223Ra)
dichloride, and lutetium-177 (177Lu) octreotate, are poised
to be the beginning of a trend that will likely see radio-
therapies become commonplace in cancer care. These
treatments can be considered inherently more complex than
many nonionizing agents as issues of handling, time of
administration, disposal, and overlapping medical, pharma-
ceutical, and nuclear regulations must be considered. These
issues are relevant both in the preclinical research and de-
velopment space as well as in the sphere of clinical trans-
lation.

Actinium-225 has been evaluated as an a-particle-
emitting radionuclide for targeted radiotherapy applications
for over 20 years,8,30,31 with active clinical assessments
ongoing.31,32 The majority of the global supply for this
work is 229Th-generator-produced material, limited to 20–40
GBq per year.17,33,34 Meeting additional supply require-
ments has been a focus for alternative production methods
from the United States Department of Energy (DOE) and
others. Large-scale production by proton bombardment us-
ing thorium targets is a promising approach.24,35 At this
time, the DOE has submitted a provisional Drug Master File
to FDA for evaluation of 225Ac produced through this pro-
cess as an active ingredient in radiopharmaceutical drug
manufacture.

Special consideration for the coproduced 21.7 year half-
life 227Ac and its multiple a-particle-emitting progeny may
be required. This includes the radiochemical impact as well
as dosimetry and potential radiobiological effects of the
contaminants; the handling of long-lived radionuclide ma-
terials and wastes; and the long-term contamination of ra-
diochemical equipment and patient treatment spaces.36

The complex mixture of radionuclides present in both
starting material and in the final radiolabeled product when
using 225/227Ac sources is a potential confounder in radio-
pharmaceutical quality control and release. Gamma ray
spectroscopy can be used to detect isotopes from the 227Ac
decay chain (Fig. 2), a technique which may not be acces-
sible at all dispensing academic or tertiary medical centers.
The analytical studies undertaken in this work further sought
to define differences in peptide labeled with either 229Th
generator-produced or accelerator-produced material. The
conventional 229Th generator-produced 225Ac passed ra-
diochemical purity quality control levels (defined as >95%
as assessed by radio-iTLC) through multiple radiolabeling
runs.

Using 225/227Ac starting material for radiolabeling under
identical, automated conditions led to similarly high (>99%)
yield by TLC, but a lower radiochemical purity of 94.2% by
gamma counting. Further, their analysis of the radiopeptide
at late time points (100 d postradiolabeling) enables an ac-
curate assessment of the 227Ac content in the labeled ra-
diopharmaceutical. Using this information in concert with
the early (2 d postradiolabeling) gamma ray spectroscopy
data, they can state that 227Th is initially chelated by the
peptide. A limitation of this study is that these results are
derived from a single run with the 225/227Ac starting material,
which is produced at this time on an infrequent schedule.

However, the authors posit that this would not signifi-
cantly alter their results as multiple batches of this material
have had similar isotopic properties. Additional replicates
would strengthen the basis of these observations and these
results motivate further testing, and an assessment of the
analytical methods leveraged to determine radiopharma-
ceutical purity and labeling efficiency.

At this time, no standardized methods of analysis or
release for clinical use of 225Ac-constructs have been put
forward. Techniques developed from clinical development
efforts have relied predominantly on TLC of radioconjugate
material from 229Th generator-produced sources.8,32,37 Here,
the francium-221 (221Fr) and 213Bi daughters of 225Ac pre-
senting reasonable distinctive gamma rays (218 and 440 keV)
readable using NaI detection or by gas ionization. The au-
thors’ analyses of the 225/227Ac material show that such sys-
tems are less well suited to deal with multiple a-emitting
radionuclides with similar emitted energies. Accelerator-
produced material present higher challenges of detection

Table 3. 227
Ac Content Calculated Per Administered

225

Ac-Radiopharamceutical at 8 D Postsource

Production, 2 D Postradiolabeling, for a Patient Mass of 80 kg and a Radiochemical Yield of >95%

Radiopharmaceuticals
Dosing

(kBq/kg)
Admin. 225Ac
(MBq/Cycle)

227Ac
(MBq/Cycle)

Clinical trial
identifier

225Ac-HuM195 150 12 0.214 NCT02575963
225Ac-PSMA617 100 8 0.144 NCT04597411
225Ac-Peptide £325 £26 £0.470 —
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due to the multiple overlapping a-emitting daughters
227Th (236, 254 keV), 223Ra (145, 154, 270 keV), 211Pb
(404 keV), and 211Bi (356 keV), limiting the capacity to
clearly visualize and compute radiocontaminants.

In brief, the more complex mixture of isotopes present in
the accelerator-produced material brings challenges for ra-
diochemical analysis postlabeling. Radiopharmaceuticals
produced using 225/227Ac sources may have to take this
into account for pharmacy release criteria. Implied in this
statement is that QC evaluation of the radiochemical and
-nuclidic purity, along with the isotopic purity, may require
systematic specific considerations for this material for each
produced batch, including HPLC coupled with radiotracing
and HPGe for release.

These data underline that purity considerations are driven
by both the time of radiolabeling following the processing of
the bombarded material, and the time between radiolabeling
and administration. Experimentally derived expiration dates
for the material may be required for radiopharmacy vali-
dation and release. Previous experience with radionuclide
impurities can provide some guidance. Indium-111 (2.8 d)
production results in a long-lived isomer, 114mIn (49.5 d).
The contaminant produces a highly abundant high-energy
beta particle that can significantly contribute to blood dose
for leukocyte-labeled 111/114mIn.38,39 As such, the material
should be used as quickly as possible. The beta-particle-
emitting lutetium-177 (6.65 d) produced via the 176Lu (n, c)
177Lu reaction will contain 177mLu (160 d).

In the treatment setting, the detectable 177mLu may have only
a minor contribution to imaging and therapy.40,41 Literature,
regulatory and manufacturer direction, also exists for the han-
dling and consideration of impurities in yttrium-90, including
strontium-90 and yttrium-88, and generator breakthrough for
strontium-82,85/rubidium-82, germanium-68/gallium-68, and
molybdenum-99/technetium-99m among others.42,43

Standing-out against the historical considerations of
impurities present in the radiopharmaceutical formulations
above is the nature of the impurities for the 225/227Ac ma-
terial. These include high-energy alpha- and beta-particle
emitters, concatenated decay of isotopes with long half-
lives. Radiopharmaceutical evaluation incorporating ac-
curate information of the 225/227Ac, 227Th, and 223Ra and
daughters in a formulation is thus necessary to fully evalu-
ate the pharmacokinetic and dosimetric aspects of any drug.
The authors have calculated the activity of 227Ac expected
for a drug administration using the radiochemical yields
and purity from the present work and administered activity
levels of 225Ac in ongoing and proposed trials (Table 3).
It should be noted that different radiolabeling chemistries
have been used (a 2-step DOTA chelation at 65�C for the
HuM195 antibody, and direct PSMA-617 chelation at 95�C)
and different times of processing which will change the
radionuclidic and isotopic purity of the final products.31,32

Consideration of the localization, residency time, stabil-
ity, and potential redistribution of the mixture of complexed
and free radionuclides is likely to be distinct for each
agent. Thus, the attendant radiotherapy and dosimetric im-
pact could be evaluated on an individual compounding basis
considering yield and timing for each patient. This may be
considered onerous compared to current nuclear medicine
therapy workflows; however, this is standard of practice for
radiation oncology procedures for the deposition of ioniz-

ing radiation through either external beam or brachytherapy
interventions.43

In conclusion, this work observed and evaluated potential
radiopharmacy quality control and release issues of 225/227Ac
in a drug formulation. Standard measures from radio-iTLC
and gamma counting of HPLC fractions were performed
with generator- and accelerator-produced actinium-labeled
peptide. Difference in results between radio-iTLC and gamma
counting may be attributed to chemical and radiological
properties of the complex radionuclide mixture. The prep-
aration and injection times of therapies using this starting
material will be important considerations in the context of
radiopharmacy. These are in addition to the careful regu-
latory guidance required on the application, disposal, and
licensing aspects, which will be necessary to a safe frame-
work to both treat patients and to work with these long-lived
contaminants.
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