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Intracerebral hemorrhage (ICH) is a fatal cerebrovascular disease with high morbidity and
mortality, for which no effective therapies are currently available. Brain tissue damage
caused by ICH is mediated by a newly identified form of non-apoptotic programmed cell
death, called ferroptosis. Ferroptosis is characterized by the iron-induced accumulation
of lipid reactive oxygen species (ROS), leading to intracellular oxidative stress. Lipid
ROS cause damage to nucleic acids, proteins, and cell membranes, eventually resulting
in ferroptosis. Numerous biological processes are involved in ferroptosis, including iron
metabolism, lipid peroxidation, and glutathione biosynthesis; therefore, iron chelators,
lipophilic antioxidants, and other specific inhibitors can suppress ferroptosis, suggesting
that these modulators are beneficial for treating brain injury due to ICH. Accumulating
evidence indicates that ferroptosis differs from other types of programmed cell death,
such as necroptosis, apoptosis, oxytosis, and pyroptosis, in terms of ultrastructural
characteristics, signaling pathways, and outcomes. Although several studies have
emphasized the importance of ferroptosis due to ICH, the detailed mechanism
underlying ferroptosis remains unclear. This review summarizes the available evidence
on the mechanism underlying ferroptosis and its relationship with other types of cell
death, with the aim to identify therapeutic targets and potential interventions for ICH.
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INTRODUCTION

Intracerebral hemorrhage (ICH) accounts for 10–15% of all stroke types, which is a catastrophic
event associated with high mortality and morbidity rates (Van Asch et al., 2010). Edema in a
bleeding brain after ICH contributes to secondary brain injury (SBI). Current ICH treatments
include dehydration treatment, antihypertensive therapy, platelet transfusion, and surgery.
However, these therapies have some limitations; for example, there is not sufficient evidence to
support the safety of platelet transfusion, and dehydration treatment causes a rapid decrease
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in blood pressure in a specific area (Morotti and Goldstein,
2016). Moreover, the mechanism underlying SBI after ICH
remains unclear. However, it is known that hemoglobin in a
hematoma after ICH can cause lipid peroxidation and form
hydroxyl radicals, which are highly neurotoxic, leading to damage
to the membranes, DNA, and proteins (Xi et al., 2006; Cao and
Dixon, 2016). As the key element of hemoglobin, iron also plays
an important role in SBI. Iron toxicity is mainly based on the
Fenton reaction. Through the Fenton reaction, iron forms a large
number of hydroxyl radicals, which trigger and aggravate the
oxidation of tissues, causing neuronal cell damage (Zhao et al.,
2011b; Auriat et al., 2012; He et al., 2020). Some preclinical
and clinical studies about ferroptosis in neurodegeneration and
stroke indicate that iron released from the hematoma can lead to
a newly identified form of programmed cell death, ferroptosis,
which may greatly contribute to SBI after ICH (Zhang Z.
et al., 2018; Djulbegovic and Uversky, 2019; Zhang et al., 2020).
Ferroptosis was first defined in 2012 (Dixon et al., 2012); it refers
to an oxidative and iron-dependent form of programmed cell
death that differs from other known types of programmed cell
death in terms of its morphological and biochemical features,
including the ultrastructural characteristics, signaling pathways,
and outcomes (Zille et al., 2017; Bobinger et al., 2018; Hirschhorn
and Stockwell, 2019). Ferroptosis is associated with iron and
amino acid metabolism together with lipid peroxidation, with
the iron-dependent accumulation of lipid peroxidation being the
key trigger (Dixon et al., 2014; Conrad et al., 2018; Fujii et al.,
2019; Hirschhorn and Stockwell, 2019). In this process, inhibition
of glutathione peroxidase 4 (GPX4) prevents the appropriate
reduction of lipid peroxides, resulting in increased generation of
reactive oxygen species (ROS), which in turn leads to oxidative
lipid damage, protein aggregation, and ultimately, neuronal cell
death (Gao et al., 2015; Bai et al., 2019).

Although the mechanism of ferroptosis is not entirely
understood, the use of iron chelators, ferroxidase, and other
mediators of ferroptosis may be effective as a potential
therapeutic approach for ICH. Strategies to inhibit or delay the
rate of iron accumulation, glutathione (GSH) depletion, and
lipid peroxidation are currently being tested in trials (Gao et al.,
2015; Wang et al., 2016; Conrad et al., 2018). Therefore, in this
review, we present the available evidence on the mechanisms
underlying ferroptosis to highlight candidate therapeutic targets
and potential interventions for ICH. We further discuss the
relationships between ferroptosis and other types of cell death.
This overview will not only provide a better understanding of the
clinical significance of ferroptosis but also promote the progress
of research regarding novel aspects, such as the development of
potential anti-ferroptotic strategies to prevent SBI after ICH.

MECHANISMS UNDERLYING
FERROPTOSIS FOLLOWING ICH

Iron Metabolism
Iron is essential for excessive lipid peroxidation, which leads to
ferroptosis, particularly in ICH (Dixon et al., 2012). Therefore,
iron uptake, utilization, export, and storage can affect nearly all

ferroptosis processes. ICH occurs upon vessel rupture; thereafter,
blood enters the surrounding parts of the brain, causing an
intracerebral hematoma, which releases hemoglobin, heme, and
iron into the surrounding tissue (Li et al., 2019). Hemoglobin,
the most abundant protein in the blood, can act as a neurotoxin
released from lysed red blood cells after hematoma formation
(Xi et al., 2006). Two forms of iron are involved in this process:
ferric (Fe2+) and ferrous (Fe3+) iron. Fe2+ can transfer electrons
and has high solubility; thus, Fe2+-containing proteins serve as
cofactors and catalysts in several types of oxidation–reduction
reactions. In contrast, Fe3+ stores and transports iron and
is, therefore, much more stable than the active Fe2+ (Dixon
et al., 2012). Under physiological conditions, transferrin (Tf)
recognizes Fe3+ and binds two Fe3+ molecules to form diferric
Tf, which subsequently binds to the Tf receptor 1 (TfR1) with
high-affinity to form the Tf-Fe3+-TfR1 complex on the surface of
neurons. The Tf-Fe3+-TfR1 complex is then transported into cells
via endocytosis and then into endosomes, where iron is released
from the complex because of the acidic environment. Free Fe2+

is then reduced to Fe3+ and stored in the labile iron pool (LIP;
Hentze et al., 2010). The Fe2+ in the LIP reacts with hydrogen
peroxide, thereby forming hydroxyl radicals via the Fenton
reaction (Gao et al., 2015; Feng et al., 2020; He et al., 2020).
These highly toxic hydroxyl radicals attack the lipid membrane,
DNA, and proteins to cause lipid ROS production, disrupting
cellular function and leading to ferroptosis. Moreover, iron can
be exported from the cells by ferroportin, which contributes to
the reduction of the intracellular Fe2+ concentration. Therefore,
ferroportin may serve as a potential therapeutic target for ICH.
However, Li et al. (2019) showed that the hemoglobin content
and hematoma volume gradually decrease after ICH, and they
illustrated that the endogenous clearance system can be activated
and eliminates the hematoma after ICH. Several studies have
indicated that the decrease in hematoma volume might be related
with erythrophagocytosis (Cao et al., 2016; Ni et al., 2016;
Chang et al., 2020). Since intraparenchymal hematomas and
red blood cells are the major source of free iron in the ICH
brain, hematoma resolution and the clearance and phagocytosis
of red blood cells might reduce iron-induced ferroptosis. Further
studies are warranted to investigate these approaches to tackle
iron-induced ferroptosis.

Depletion of GSH
Glutathione biosynthesis is intricately linked to the regulation of
ferroptosis. As a physiological defense under normal conditions,
ROS can be maintained at a stable level via mitochondrial
oxidative phosphorylation and antioxidant mechanisms.
However, upon ICH, substantial amounts of ROS are produced,
which cause cell damage, ultimately leading to ferroptosis. This
event activates GSH in the brain as an antioxidant enzyme. Thus,
the inhibition of GSH synthesis is predicted to induce ferroptosis.
Intracellular glutamate is exchanged for cysteine, and system
Xc- transports cysteine into neurons at a 1:1 ratio. Cysteine,
glutamate, and glycine are used in GSH synthesis (Dixon
et al., 2014; Gao et al., 2015), whereas erastin can inhibit the
expression of system Xc-, causing GSH depletion and ultimately
leading to ROS accumulation (Dixon et al., 2012). Therefore,
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the concentration and balance of these amino acids can impact
ferroptosis. For example, high extracellular concentrations of
glutamate and low intracellular concentrations of cysteine inhibit
the function of system Xc- and induce ferroptosis. This may
explain the toxic effects of glutamate following its accumulation
at high levels in the nervous system.

Lipid Peroxidation
Lipid peroxidation is the key process that directly activates
ferroptosis. It involves three pathways: (i) the non-enzymatic
pathway generates lipid ROS through the Fenton reaction using
iron (Bai et al., 2019; He et al., 2020); (ii) the oxygenation
and esterification of polyunsaturated fatty acids generate lipid
peroxides (Yang et al., 2016; Doll and Conrad, 2017; Stockwell,
2018; Das, 2019); and (iii) iron catalyzes lipid auto-oxidation.
Some studies have reported that exogenous arachidonic acid
(AA) and AA-OOH-phosphatidylethanolamine (PE) enhance
ferroptosis. The conversion of AA-OOH-PE to AA in cells
requires lipoxygenase enzymes. AA-OOH-PE is then reduced to
AA-OH-PE by GPX4. Ferroptosis occurs when the AA-OH-PE
levels are sufficiently high to surpass the cellular threshold (Kagan
et al., 2017). Under physiological conditions, toxic lipid peroxides
are reduced to non-toxic lipid alcohols by GPX4 to protect cells
against oxidative stress (Kagan et al., 2017; Zhang Z. et al., 2018;
Vuckovic et al., 2020). However, substantial accumulation of lipid
peroxides cannot be effectively eliminated by GPX4, and the
excess lipid peroxide damages membrane integrity, leading to cell
rupture and ferroptosis, which has been proven in proteomics
studies (Forcina and Dixon, 2019; Fujii et al., 2019). Therefore,
the processes that inhibit the reduction in lipid peroxide levels
and promote their formation result in the accumulation of lipid
peroxides and, ultimately, ferroptosis (Stoyanovsky et al., 2019).
However, the lipid autoxidation in ICH is not completely clear
and should be further examined (Qiu et al., 2020).

RELATIONSHIPS BETWEEN
FERROPTOSIS AND OTHER CELL
DEATH PATHWAYS

Table 1 shows an overview and comparison of different neuronal
cell death types: necroptosis, apoptosis, oxytosis, and pyroptosis.
Each type, along with its characteristics and mechanisms,
and their potential roles in brain damage after ICH, are
discussed below, and are compared with the corresponding
features of ferroptosis.

Ferroptosis and Necroptosis
Numerous reports have suggested that ferroptosis is always
accompanied by necroptosis. Necroptosis is activated during
inflammation (Oberst, 2016). The activation of necroptosis relies
on receptor-interacting kinase 1 (RIPK1), receptor-interacting
protein kinase 3 (RIPK3), and mixed lineage kinase domain-like
(MLKL; Dondelinger et al., 2014; Conrad et al., 2016). RIPK1
activates RIPK3 and thereby recruits MLKL at the cell membrane,
which causes membrane rupture and eventually triggers
necroptosis (Cook et al., 2014; Hildebrand et al., 2014). Some

studies have demonstrated that the ultrastructure of neurons
after ICH manifests as a morphotype, involving ferroptosis and
necroptosis. Ferroptosis is characterized by the loss of plasma
membrane integrity, disruption and swelling of organelles,
and shrunken mitochondria, whereas necroptosis does not
involve mitochondrial shrinkage, suggesting that shrunken
mitochondria are a characteristic change in ferroptosis after
ICH (Li et al., 2018). The major ultrastructural characteristics
of hemin-induced neuron death are related to ferroptosis and
not necroptosis. In contrast, molecular marker levels of both
ferroptosis (Fe3+ iron, GSH, and GPX4) and necroptosis (MLKL
and RIPK3) may increase after ICH; however, such studies
regarding ICH are lacking (Roderick et al., 2014; Lin et al.,
2016; Newton et al., 2016; Minagawa et al., 2020). NADPH
might be a link between ferroptosis and necroptosis (Hou et al.,
2019). When cells undergo necroptosis or ferroptosis, adjacent
cells are more prone to another form of cell death. Moreover,
necrostatin-1 was shown to exert its neuroprotective effects by
inhibiting the RIPK1 and RIPK3 signal pathways of necroptosis
and suppressing apoptosis and autophagy after ICH (Chang et al.,
2014; Cook et al., 2014; Su et al., 2015), highlighting its relevance
to necroptosis, apoptosis, and autophagy; however, this does
not clarify the specific link between ferroptosis and necroptosis,
which require further studies.

Ferroptosis and Apoptosis
Apoptosis is one of the most well-studied forms of programmed
cell death. It includes two major pathways: extrinsic and
intrinsic pathways. The extrinsic pathway is triggered by cell
surface receptors, such as tumor necrosis factor (TNF) receptors
(Hasegawa et al., 2011; Fricker et al., 2018; Zhao et al., 2018).
The TNF receptors can be activated by caspase-1, which is
stimulated by the P2X7 receptor (Lee et al., 2016). Upon
binding to the TNF receptor, the Fas-associated death domain
protein will be recruited and will bind pro-caspase-8 molecules,
activating caspase-8 and allowing apoptosis to occur (Micheau
and Tschopp, 2003). The intrinsic pathway is activated by the
mitochondrial outer membrane permeabilization (MOMP) and
the B-cell lymphoma 2 (Bcl-2) family proteins. As a member
of Bcl-2 family, Bax can promote apoptosis by its expression
and activation (Haase et al., 2008). Furthermore, Zhang et al.
showed that the increased Bax/Bcl-2 ratio can promote apoptosis
(Zhang W. et al., 2018). Therefore, Bcl-2 can be considered as an
inhibitor of apoptosis. The ultrastructural features of an apoptotic
neural cell include chromatin condensation, nuclear shrinkage,
and DNA fragmentation (Castagna et al., 2016; Li et al., 2018).
Compared with other types of cell death, DNA fragmentation can
be considered as the distinguishing characteristic of apoptosis.
Therefore, the presence of DNA fragments indicates apoptosis,
which can occur at a later ICH phase (Kanter et al., 2016).
Ferroptosis is an iron-dependent form of programmed cell death,
but it is non-apoptotic, non-necroptotic, and non-autophagic.
Ferroptosis can also be inhibited by iron chelators and several
novel small molecules, such as ferrostatin-1 and liproxstatin-1,
but cannot be inhibited by specific inhibitors of apoptosis (e.g.,
zVAD; Thermozier et al., 2020) or necroptosis (e.g., necrostatin-1;
Chang et al., 2014; Chen X. et al., 2019).
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TABLE 1 | Comparison of different neuronal cell death types.

Types of cell death Activators Mediators Inhibitors Outcome

Ferroptosis Iron, extracellular glutamine Fe(II), ROS Iron chelators, ferroxidase, antioxidants Necrosis via lipid ROS

Necroptosis Inflammatory factors NLRP1/3, MKLK Necrostatin-1, caspase-8 Necrosis via MKLK

Apoptosis Inflammatory factors Caspase 3,6,7,8,9 Bcl-2,zVAD Phagocytosis

Oxytosis Glutamate System Xc- BID inhibitors Necrosis via glutamate

Pyroptosis Inflammatory factors Caspase-1, gasdermin D NLRP1 inflammasome inhibitors Inflammatory necrosis

Ferroptosis and Oxytosis
Oxytosis is induced by the glutamate-mediated inhibition of
system Xc-, which leads to the depletion of GSH; it represents
a distinct type of oxidative neuronal cell death after ICH
(Landshamer et al., 2008; Grohm et al., 2010). Depletion
of GSH causes excessive ROS production, which cannot be
eliminated, leading to ROS accumulation in neurons and,
ultimately, oxytosis (Tobaben et al., 2010; Reuther et al., 2014;
Jelinek et al., 2016). Oxytosis is highly similar to ferroptosis;
it has even been regarded as a component of ferroptosis
(Lewerenz et al., 2018; Gupta et al., 2020). A previous study
suggested that BID protein inhibitors can prevent erastin-
induced ferroptosis (Neitemeier et al., 2017), and that inhibitors
of ferroptosis, such as ferrostatin-1 and liproxstatin-1, can
block glutamate-induced oxytosis. The study further showed
that erastin-induced ferroptosis in neuronal cells is accompanied
by mitochondrial transactivation of BID, loss of mitochondrial
membrane potential, enhanced mitochondrial fragmentation,
and reduced ATP levels. These signs of mitochondrial death
are distinctive features of oxytosis (Lewerenz et al., 2018;
Takashima et al., 2019; Nagase et al., 2020). However, because
ferroptosis cannot be readily distinguished from oxytosis, the
relationship between ferroptosis and oxytosis remains unclear
and controversial. Therefore, further research is needed to clarify
the differences between these two types of cell death.

Ferroptosis and Pyroptosis
Pyroptosis is another type of neuronal cell death and is activated
by gasdermin D (GSDMD) and caspase-1 or caspase-11 in
mice (corresponding to caspase-1, caspase-4, and caspase-5,
respectively, in humans), consequently upregulating cytokines
[interleukin (IL)-1β, IL-18] and immune system activators (Ruehl
and Broz, 2015; Chen K.W. et al., 2019). Upon activation,
caspase-1, or caspase-11 (in mice) acts on GSDMD and
generates the N-terminal domain and C-terminal domain,
and the lipid-selective N-terminal domain acts on the cell
membrane by combining with phosphatidylinositol of the
lipid plasma membrane, which leads to cell lysis. Cytokines
such as IL-1β and IL-18 are secreted through the damaged
cell membrane, recruiting immune cells, and activating the
immune system, and ultimately resulting in pyroptosis (Shi
et al., 2015; Ding et al., 2016; Feng et al., 2018). Pyroptosis
is characterized by nuclear condensation coupled with cell
swelling and lipid membrane vacuole formation at the plasma
membrane, which eventually ruptures without exhibiting DNA
fragmentation (Li et al., 2018), making the process distinct
from ferroptosis. The activation of caspase-1 relies on the

accumulation of a type of protein complex known as the
inflammasome. Nucleotide-binding oligomerization domain-like
receptor 3 (NLRP3) protein binds to apoptosis-related speck-like
protein through its pyridine domain and recruits pro-caspase-1
via CARD–CARD interaction, forming NLRP3 inflammasomes
(Li et al., 2020). NLRP3 can also be activated by K+ efflux, which
is indirectly induced by caspase-11. In addition to recruiting
and activating caspase-1 via apoptosis-related speck-like protein,
inflammasomes can also bind with caspase-8 to induce cell
death. Some studies also found that other members of the
gasdermin family (e.g., GSDMA, GSDMB, and GSDMC) are
recruited to the plasma membrane to trigger membrane repair
upon gasdermin D activation and act on membrane-disrupting
cytotoxicity (Denes et al., 2015; Man and Kanneganti, 2015;
Shi et al., 2015; Chen et al., 2016). Therefore, pyroptosis has
attracted substantial attention as an ICH therapeutic target, and
inhibitors of NLRP3 were shown to have therapeutic efficiency.
The biochemical processes of ferroptosis are much simpler than
those of pyroptosis.

POTENTIAL INTERVENTIONS
TARGETING FERROPTOSIS AFTER ICH

The most promising anti-ICH drugs targeting ferroptosis are
summarized in Table 2. Ferroptosis is mainly activated by Fe2+

and ROS; thus, iron chelators and inhibitors of lipid ROS
generation can be regarded as candidate therapeutic targets for
ICH. Here, we focus on the potential targets, including iron
metabolism, GSH biosynthesis, and lipid ROS.

Inhibitors of Iron Metabolism
Iron Chelators
Because ferroptosis is characterized by the iron-induced
accumulation of lipid ROS, iron is essential for the accumulation
of lipid peroxides and the consequent execution of ferroptosis.
As inhibitors of iron metabolism, iron chelators deplete iron
by reducing the Fe2+ in LIP to prevent iron-dependent lipid
peroxidation (Doll and Conrad, 2017), reduce the lipid ROS,
and eventually inhibit ferroptosis. As a result, the potential
therapeutic use of iron chelators has attracted substantial
attention in recent years (De Domenico et al., 2009). Hu et al.
showed that deferoxamine (DFO) treatment decreased hemin
release from a hematoma, and demonstrated the potential role
of DFO in reducing iron deposition and brain injury in a piglet
model (Hu et al., 2019). However, a phase I clinical trial found
that DFO led to hypotension, pancytopenia, retinal toxicity,
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TABLE 2 | Promising anti-ICH drugs that target ferroptosis.

Drugs Target Impact on ferroptosis References

Deferoxamine (DFO) Iron Function as iron chelator, depletes iron and prevent
iron-dependent lipid peroxidation

Hu et al., 2019

Deferiprone (DFP) Iron Function as iron chelator, depletes ferric iron and prevent
iron-dependent lipid peroxidation

Garringer et al., 2016

Minocycline Iron Function as iron chelator, depletes iron and prevent
iron-dependent lipid peroxidation

Zhao et al., 2011a; Chang et al., 2017; Fouda
et al., 2017; Yang et al., 2019, 2020

Nitrilotriacetic Acid (NTA) Iron Function as iron chelator, depletes iron and prevent
iron-dependent lipid peroxidation

Kose et al., 2019

Ethylenediaminetetraacetic
Acid (EDTA)

Iron Function as iron chelator, depletes iron and prevent
iron-dependent lipid peroxidation

Kose et al., 2019

Clioquinol (CQ) Iron Function as iron chelator, depletes ferrous iron and prevent
iron-dependent lipid peroxidation

Wang et al., 2016

Cycliprox Iron Function as iron chelator, depletes iron and prevent
iron-dependent lipid peroxidation

Stockwell et al., 2017

VK-28 Iron Function as iron chelator, depletes iron and prevent
iron-dependent lipid peroxidation

Li et al., 2017

Ceruloplasmin Iron Function as ferroxidase, oxidizes toxic ferrous iron to less
toxic ferric iron

Liu et al., 2019

Ferrostatins-1 ROS Aggravates ROS generation and blocks lipid peroxidation Zilka et al., 2017

Liproxstatin-1 ROS Function as lipophilic antioxidants and blocks lipid
peroxidation

Zilka et al., 2017

GPX4 ROS Blocks lipid peroxidation Zhang Z. et al., 2018

Vitamin E ROS May inhibit lipoxygenases and blocks lipid peroxidation Hinman et al., 2018

Vitamin C ROS Inhibits lipid peroxidation Tang and Tang, 2019

Beta-carrotene ROS Blocks lipid peroxidation Kose et al., 2019

N-Acetylcysteine System Xc- Promotes cysteine import and cause GSH synthesis Karuppagounder et al., 2018

Dopamine GPX4 Function as neurotransmitter, blocks GPX4 degradation
and blocks lipid peroxidation

Tang and Tang, 2019

Selenium GPX4,
selenoproteins

Drives antioxidant GPX4 expression and blocks lipid
peroxidation, increase abundance of selenoproteins.

Alim et al., 2019

Zileuton 5-LOX Inhibits cytosolic ROS production as 5-LOX inhibitor and
blocks lipid peroxidation.

Liu et al., 2015

Ferroptosis Suppressor
Protein 1 (FSP1)

CoQ10 reduce CoQ10 to generate a lipophilic RTA that halts the
propagation of lipid peroxides

Bersuker et al., 2019

and neurotoxicity (Selim et al., 2011). Li et al. (2017) further
identified VK-28 as an iron chelator with similar effects to
those of DFO in a rat model. However, compared with DFO,
VK-28 improves neurobehavioral performance by polarizing the
microglia to an M2-like phenotype, which reduces brain water
content, decreases white matter injury, and eventually reduces
the overall mortality due to ICH. Selim et al. (2019) showed
that DFO was ineffective in improving the clinical outcome
on day 90 in ICH patients of the phase II clinical trials. In this
context, VK-28 appears to be more effective and safer than DFO.
Another iron chelator, deferiprone (DFP), showed efficacy to
some extent in humans and experimental neurodegenerative and
neurodevelopmental conditions (Garringer et al., 2016; Carboni
et al., 2017; Tian et al., 2017; Shao et al., 2020), but a phase II
clinical study shows that it caused injury to the surrounding
tissue (Klopstock et al., 2019). Therefore, the clinical application
of DFO is limited. Wang et al. (2016) found that in rat models,
DFP could reduce iron contents after ICH, but it was found
to be ineffective against brain edema and lipid ROS and failed
to improve the outcome. Furthermore, some studies found
that minocycline functions as an iron chelator and can reduce

iron-induced neuronal cell death (Zhao et al., 2011a; Chang et al.,
2017; Fouda et al., 2017; Yang et al., 2019, 2020). Minocycline
is being investigated in the phase II clinical trials of Zhao et al.
(2011a), which shows that minocycline inhibited iron overload,
reduced iron neurotoxicity and iron-induced brain injury after
ICH, which can be regarded as a new treatment option of ICH.
Yang et al. (2020) shows that minocycline reduced the brain
edema and hematoma volume, prevented iron accumulation,
and protected brain from iron-induced injury in ICH minipig
models. Several other iron chelators, including nitrilotriacetic
acid, ethylenediaminetetraacetic acid, and clioquinol, are
effective for treating ICH, as demonstrated in animal models
(Wang et al., 2016; Kose et al., 2019). Since iron chelators are
mainstream drugs of ferroptosis after ICH, the outcomes of using
iron chelators in clinical and preclinical studies are summarized
in Table 3.

Ferroxidase
Ferroxidase is another type of iron metabolism inhibitor.
Ferroxidase can oxidize toxic Fe2+ iron to the less toxic Fe3+

iron and reduce the Fe2+ in LIP, reduce lipid ROS, and inhibit
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TABLE 3 | Outcomes of some major iron chelators used in ICH in the clinical and preclinical studies.

Iron chelator Type of trial Development Phase Outcomes References

Deferoxamine Preclinical trials Preclinical Decreased hemin release from the hematoma and reduced iron deposition
and the severity of brain injury in animal models.

Hu et al., 2019

Clinical trials Phase I and II, under
investigation

Effective to a certain extent, but lead to hypotension, pancytopenia, retinal
toxicity, and neurotoxicity, and would be ineffective to significantly improve
the good clinical outcome at day 90 in ICH patients.

Hu et al., 2019; Selim
et al., 2019

Deferiprone Preclinical trials Preclinical Reduced iron deposition, but invalid to brain edema and lipid ROS, and
failed to improve the outcome in rat models.

Wang et al., 2016

Clinical trials Phase II Effective to some extent in humans and experimental neurodegenerative
and neurodevelopmental conditions, but can cause injury to the
surrounding tissue.

Klopstock et al., 2019

Minocycline Preclinical trials Preclinical Reduced the hematoma volume and brain edema, prevented iron
accumulation, and protected brain from injury after ICH in rat models.

Zhao et al., 2011a;
Yang et al., 2019

Clinical trials Phase II, under
investigation

Reduced iron overload and iron-induced brain injury after ICH. Chang et al., 2017;
Fouda et al., 2017;
Yang et al., 2020

VK-28 Preclinical trials Preclinical Improved neurobehavioral performance, reduced brain water content,
decreased white matter injury.

Li et al., 2017

Clioquinol Preclinical trials Preclinical Improved the neurological outcome, attenuated brain edema, and ROS
production in rat models.

Wang et al., 2016

Ceruloplasmin Preclinical trials Preclinical Reduced the severity of brain injury in rat models. Liu et al., 2019

FIGURE 1 | Mechanisms and modulators of ferroptosis after ICH. Arrows indicate promotion, blunt- ended lines indicate inhibition, and the drugs in a green box are
ferroptosis inhibitors. ICH, intracerebral hemorrhage; RBC, red blood cell; Tf, transferrin; TfR, transferrin receptor; AA, arachidonic acid; PE,
phosphatidylethanolamine; PUFAs, plasma membrane polyunsaturated fatty acids; CoQ 10, coenzyme Q10; DFO, deferoxamine; DFP, deferiprone; NTA,
nitrilotriacetic acid; EDTA, ethylenediaminetetraacetic acid; CQ, clioquinol; CP, ceruloplasmin; H2O2, hydrogen peroxide; OH, hydroxyl radical; Fer-1, ferrostatin-1;
GPX4, glutathione peroxidase 4; Vit E, vitamin E; Vit C, vitamin C; FSP-1, ferroptosis suppressor protein 1; GSH, glutathione; GSSG, oxidized glutathione; Hb,
hemoglobin; Lip-1, liproxstatin-1; NAC, N-acetylcysteine; LOX, lipoxygenase; and ROS, reactive oxygen species.
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FIGURE 2 | Mechanisms of other types of cell death after ICH. ICH, intracerebral hemorrhage; GSH, glutathione; ROS, reactive oxygen species; TNF, tumor necrosis
factor; MOMP, mitochondrial outer membrane permeabilization; P2X7R, P2X7 receptor; NLRP3, nucleotide-binding oligomerization domain-like receptor 3; GSDMD,
gasdermin D; RIPK, receptor-interacting protein kinase; MLKL, mixed lineage kinase domain-like; and IS, immune system.

ferroptosis. In a series of studies, Liu et al. (2019) showed that
ceruloplasmin is an essential ferroxidase, with the potential to
reduce the severity of brain injury due to ferroptosis after ICH
in a rat model. Although numerous previous studies showed that
ceruloplasmin deficiency is associated with Alzheimer’s disease,
Parkinson’s disease, and other neurodegenerative diseases in
patients and rat models (Jiang et al., 2015; Stelten et al., 2019;
Diouf et al., 2020; Liu et al., 2020; Shang et al., 2020), little
is known about the therapeutic function of ceruloplasmin in
ferroptosis after ICH. Moreover, clinical studies on ferroxidase
in ICH patients are limited. Thus, additional studies are required
to identify the specific types and roles of ferroxidase.

Promoters of GSH Biosynthesis
Glutamate and cysteine are important regulators of ferroptosis.
As intracellular glutamate is pumped out of the cell and
exchanged for extracellular cysteine by system Xc- to synthesize
GSH and inhibit ferroptosis (Dixon et al., 2012, 2014); increasing
cysteine concentration is a potential therapeutic strategy for ICH.
N-acetylcysteine (NAC) is a cysteine prodrug that increases the
accumulation of cysteine in neurons. Karuppagounder et al.
(2018) showed that NAC has therapeutic effects as a precursor

for GSH, which acts on system Xc- to promote cysteine
transfer into neuronal cells and targets lipid-derived reactive
electrophilic species resulting from increased arachidonate
5-lipoxygenase, along with GSH-dependent enzymes (e.g.,
GSH S-transferases). Simultaneously, exogenous infusion of
a clinically approved protective lipid species, prostaglandin
E2, reduces the NAC concentration required to stimulate
protection and functional recovery in vitro and in vivo
in mice (Zhao et al., 2015; Karuppagounder et al., 2018).
Although nearly all of these studies used safe doses of NAC,
the dose required to induce a therapeutic effect is unclear.
Thus, further studies are required to determine the precise
dose of NAC required for the efficient control of brain
injury after ICH.

Inhibitors of Lipid ROS Generation
Reactive oxygen species production is the immediate cause
of ferroptosis after ICH; thus, inhibiting ROS production is
important to prevent ferroptosis in neurons after ICH (Ursini
and Maiorino, 2020). During lipid oxidation, GPX4 is the
primary enzyme that prevents ferroptosis (Stockwell et al.,
2017; Seibt et al., 2019). Many studies have shown that ROS
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inhibitors (e.g., ferrostatins-1, liproxstatin-1, vitamin E, vitamin
C, and beta-carotene), along with GPX4 and its promoters
(e.g., dopamine and selenium), are effective in preventing
ferroptosis in animal models (Imai et al., 2017; Stockwell, 2018;
Bai et al., 2019; Chen X. et al., 2019; Tang and Tang, 2019;
Stockwell and Jiang, 2020).

For example, the ROS inhibitors ferrostatin-1 and vitamin
C aggravate ROS generation and block lipid peroxidation, and
vitamin E may inhibit lipoxygenases (Zilka et al., 2017; Hinman
et al., 2018; Chen B. et al., 2019). Dopamine and selenium are
GPX4 inducers. Dopamine functions as a neurotransmitter to
block GPX4 degradation, whereas selenium drives the expression
of GPX4 to increase the abundance of selenoproteins (Alim et al.,
2019; Tang and Tang, 2019), and both GPX4 inducers eventually
block lipid peroxidation. Moreover, inhibitors targeting 5-
lipoxygenase (e.g., zileuton) inhibit AA from oxidizing to AA-
OOH-PE, suppress cytosolic ROS production, and block lipid
peroxidation (Liu et al., 2015). Several recent reports have
also indicated that ferroptosis suppressor protein 1, a GSH-
independent ferroptosis suppressor, is recruited to the plasma
membrane, where it reduces coenzyme Q10 to produce lipophilic
free radicals and capture antioxidants via oxidoreductase, thereby
preventing the production of lipid peroxides (Bersuker et al.,
2019; Doll et al., 2019; Chen and Xie, 2020; Hadian, 2020).
Another regulator of potential therapeutic significance is nuclear
factor erythroid 2-related factor 2 (Dodson et al., 2019; Anandhan
et al., 2020; Song and Long, 2020), which regulates hundreds
of genes, including several genes directly or indirectly involved
in modulating ferroptosis. Therefore, nuclear factor erythroid 2-
related factor 2 regulates not only lipid metabolism, but also GSH
and iron metabolism, and continues its mitochondrial function
(Abdalkader et al., 2018).

CONCLUSION

The mechanisms underlying ferroptosis and its potential
modulators after ICH are reviewed and are schematically
summarized in Table 2 and Figure 1. The mechanisms of other
types of programmed cell death are summarized in Figure 2. As
a newly recognized form of programmed cell death, ferroptosis
has attracted substantial attention for the development of new
strategies to treat ICH and prevent SBI. Since 2012, rapid
improvements have been made in elucidating the mechanism
underlying ferroptosis and its regulation. Ferroptosis involves
intracellular iron accumulation, GSH depletion, and lipid
peroxidation. Thus, in theory, ferroptosis can be suppressed by
iron chelators (e.g., DFO and DPF), lipophilic antioxidants (e.g.,
ferrostatin, liproxstatin, and vitamin E), and GSH biosynthesis

promoters (e.g., NAC). Because iron plays a critical role in
activating ferroptosis after ICH, iron chelators are regarded as
mainstream drugs. However, several studies have indicated that
DFO and DFP failed to improve the outcome of ICH, and the
roles of iron and lipid autoxidation in ICH are not completely
clear and should be further examined. Moreover, hematoma
resolution and the clearance and phagocytosis of red blood
cells might also reduce iron-induced ferroptosis, and they might
therefore be considered potential therapeutic targets, warranting
further clinical studies.

Currently, several molecules are known to regulate ferroptosis
by directly or indirectly targeting iron metabolism, GSH
biosynthesis, and lipid peroxidation. Some of these regulators
(e.g., BID and NADPH) have also been implicated in other
types of programmed cell death. For example, BID is involved
in ferroptosis and oxytosis, and NADPH links ferroptosis and
necroptosis. Moreover, these various forms of cell death are
not independent but are rather intricately connected, forming a
network to mediate cell damage after ICH. Therefore, ferroptosis
is always accompanied by other types of programmed cell death.
Accordingly, an important objective for further research on
ferroptosis is to identify the signaling pathways, executors of
iron-dependent ROS metabolism, and ultrastructural features of
each type of programmed cell death. Thus, ferroptosis can be
distinguished from the other types of cell death and improved
therapeutic effects against each type of cell death can be achieved.

However, several issues remain to be addressed. First, it
is essential to determine whether the regulation of ferroptosis
is influenced by different types of brain cells, physiological
conditions, individual lifestyles, and other factors. Second, more
clinical trials should be conducted to test the effects of ferroptosis
inhibitors, which represent the most promising strategy to
prevent SBI after ICH. Thus, further studies and clinical trials are
expected to improve the understanding of ferroptosis and aid the
development of new strategies for effective treatment of ICH.
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