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Abstract: Plant cryobiology has primarily emerged from the classical fields of cryobiology and plant stress physiology. Cryopreservation 

tools are now available to geneticists for germplasm preservation and the field itself is advancing significantly through the use of molecu-

lar techniques. Long-term preservation of vegetatively propagated tissues can minimize the risks of long-term maintenance under tissue 

culture or field conditions. Cells can be successfully cryopreserved when the adverse affects of ice crystal formation are mitigated by the 

removal of water or procedures to limit ice formation and crystal growth. The addition of cryoprotectant solutions to hydrated cells may 

improve the survival of microdissected shoot tips or embryonic axes. Recent discoveries in the genetic pathways leading to cold acclima-

tion and freezing tolerance suggest the involvement of key cold-regulated genes in the acquisition of cold tolerance in plant tissues. 

Model systems of banana and Arabidopsis have revealed the involvement of genes and proteins in the glycolytic and other metabolic 

pathways, particularly processes involved in dehydration tolerance, osmoprotection, and membrane transport. Furthermore, successful re-

covery appears to be dependent upon the presence of antioxidant protection from reactive oxygen species. Characterization of specific 

genes and proteins will lead to significant advances in plant cryobiology research. 
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INTRODUCTION 

 The field of plant cryobiology seeks to understand the physio-
logical and molecular processes that allow plants to survive low 
temperatures. The focus of cryobiology is predominantly cryopre-
servation: the process and methods that permit long term survival of 
organisms at liquid nitrogen temperatures.  

 Once cryopreserved, materials remain safe and available for a 
low annual cost. Novel, mutant, or transformed cell lines that can 
no longer be maintained in laboratory settings can be cryopreserved 
to prevent their loss [1]. Clonal lines can be kept as base collections 
for expensive field plantings [2]. Large quantities of seeds or pollen 
can also be stored cryogenically as a reference collection for the 
available genetic diversity of a population or as a source for new 
alleles in the future [3].  

 Successful cryogenic storage is dependent upon having a reli-
able source of coolant as well as a good documentation system. 
Once achieved, propagules often have extended storage longevity 
compared to conventional storage regimes (refrigerator or freezer 
conditions). Genetic drift and mutations are minimized compared to 
when materials are maintained in an actively growing state for ex-
tended intervals [3]. 

 Long term storage reduces the frequency of regenerations of 
accessions in genebanks and facilitates the use of specific individu-
als in breeding programs. Availability and transportability of cryo-
preserved pollen allows breeders to have access to materials that 
might otherwise be unavailable. Cryopreservation of embryo cul-
tures lets breeding programs prolong the availability of juvenile 
materials while waiting for characterization of mature tree selec-
tions [4]. Cryotherapy has also been used to remove viruses from 
infected plants [5]. But, cryogenic storage does have its drawbacks: 
phenotypic characterization is challenging and it may take many 
years for a recovered propagule to reach reproductive maturity for 
use in a breeding program.  
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GENOMIC OPPORTUNITIES 

 Plant cryobiology is a research discipline that is beginning to 

enter into the genomics arena. Traditionally, the discipline has been 
considered an extension of the cold hardiness and drought tolerance 

fields, centered primarily on long term preservation of seeds, shoot 
tips, dormant buds, pollen, embryos, cell lines, and other propagule 

types. A greater application of genomics techniques can increase 
our understanding of plant cryobiology. By combining physiologi-

cal and genomic approaches, an array of methods are available to 
understand how cells are protected from freezing stress.  

 One of the key issues in plant cryobiology is understanding why 
some genotypes are less tolerant of preservation stresses than other 

genotypes. Widescale adoption of cryopreservation technologies 
will likely depend on identifying universal cryoprotection protocols 

for each propagule type. A characterization of the genetic response 
to diverse cryoprotectants will determine if methods that rely on 

rapid cellular desiccation, permeable cryoprotectants, freeze desic-
cation, or air desiccation all result in similar cellular responses. Do 

cells sense and respond to the stresses differentially? Alternatively, 
do cells ultimately respond to either desiccation and/or temperature 

extremes? Careful analyses of gene expression responses will re-
veal which stress is perceived by cellular machinery and the path-

ways that are activated.  

 Seeds and dormant buds can acquire an endogenous tolerance 
to desiccation and cryogenic temperature stresses. Dormant buds 

from temperate species collected mid-winter are more amenable to 
cryopreservation than those collected prior to acquiring cold toler-

ance or those which lose their cold-hardiness in the springtime [6]. 
This acclimation process is dependent upon maturation, climatic 

conditions, daylength, and genotype. Temperate species in tissue 
culture can often be acclimated to cold and improve cryopreserva-

tion success [7, 8]. It is presumed that an understanding of the ac-
climation process will provide insights into how propagules can be 

exogenously treated to tolerate cryogenic stresses. 

 The process of propagule recovery is poorly understood. Do 

cells acquire adequate protection from undesirable chemical effects 
(such as free radicals) that are generated during recovery? Is it pos-
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sible to minimize production of free radicals while promoting cellu-

lar repair? Comparison of gene expression patterns will provide key 
information as to the timing and nature of the recovery pathways in 

systems that survive or fail to survive cryopreservation.  

 Molecular marker technologies have already been applied to 
cryopreserved plant materials to ascertain if recovered explants are 
true-to-type. Generally, there is consensus that plant genotypes 
remain stable after cryopreservation when a single genotype is the 
conservation target [9-13]. Key discoveries have revealed that DNA 
methylation patterns may be affected by cryoprotectant and/or liq-
uid nitrogen exposure [14, 15]. Variation in DNA methylation pat-
terns may cause the apparent genomic modifications when methyla-
tion sensitive marker systems are employed [16]. In addition, phe-
notypic variation may result from other procedures, such as tissue 
culture, that are often used in cryopreservation methods [17].  

COLD AND DESICCATION STRESS 

 Both dehydration and low temperature affect water relations 
within the cell. Lethal ice forms when hydrated cells are cooled 
below their freezing point. Thus, for successful cryopreservation, 
cells must be desiccated to prevent ice propagation. Cells must also 
have intact membranes and stable proteins to tolerate the desicca-
tion and cold stresses. The rich literatures of cold and desiccation 
tolerance have revealed that extraordinarily similar response path-
ways are triggered by these different stresses.  

 It is not surprising that the regulatory mechanisms for desicca-
tion and cold tolerance partially overlap. These stresses invoke 
second messengers such as calcium, reactive oxygen species, and 
inositol phosphates within minutes of stress signal perception [18]. 
The cascades resulting from these signal molecules result in the 
expression of transcription factors that affect the gene expression of 
hundreds of stress response genes.  

 Microarray chip methods have identified 299 drought inducible, 
54 cold inducible, and 245 abscisic acid (ABA) inducible genes in 
Arabidopsis [19, 20]. Of the drought inducible genes, more than 
half were also induced by ABA, but only 105 of the drought induc-
ible genes were induced by cold. Classes of drought inducible genes 
included: chaperones, LEA (Late Embryogenesis Abundant), os-
motin, antifreeze, mRNA binding, osmolyte biosynthesis, water 
channel proteins, sugar and proline transporters, proteases, and 
detoxification enzymes. Recently, small RNAs specific to abiotic 
stresses have also been identified [21]. In this review, gene expres-
sion patterns in response to desiccation and cold stress literature 
will be briefly summarized since those subjects warrant reviews of 
their own.  

Cold Stress 

 Cold treatments cause abrupt changes in the structure of cellular 
lipids and cytoplasm. Ice forms in hydrated cells and the plasma 
membrane undergoes an undesirable phase change that is induced 
by low temperatures. Formation of extracellular ice removes 
freezable cellular water, but also invokes a desiccation stress.  

 Cold acclimation treatments can increase the levels of unsatu-

rated fatty acids, alter lipid and protein composition, change the 

lipid/protein ratio, and increase the proportion of phospholipids to 

stabilize membranes and prevent phase changes [22, 23]. Lipopro-

teins and ERD14 (Early Response to Dehydration protein 14) in-

crease during cold acclimation and are believed to encourage the 

formation of exocytotic extrusions instead of endocytotic vesicles 

during freeze induced osmotic contraction [22, 24, 25]. This proc-

ess is facilitated by a change in gene expression patterns for the 

responsible proteins. Other cold-regulated proteins, such as cryo-
protectin, protect membranes from freeze-thaw damage [26]. Cells 

also respond to cold acclimation treatments by producing proteins 

that affect the accumulation of osmolytes such as proline, betaine, 

polyols, and sugars [27]. These osmolytes may decrease the cellular 

freezing temperature through freezing point depression, but this 

does not provide adequate protection from cryogenic temperatures. 

However, some sugars, such as sucrose, may also interact with 

membranes and other proteins (such as tocopherol) to improve 

membrane stability during freezing [28].  

 Genomic evaluations of cold acclimated and exposed plants 
have revealed complex response pathways. The DREB1 proteins 

are transcriptional activators of over 300 genes in the CBF cold 

response pathway [29]. Transcription factors CBF1, CBF2, and 

CBF3 (or DREB1b, DREB1c, and DREB1a) are induced within an 

hour after exposure to 4
o
C [29]. The cold stress response is medi-

ated by these transcription factors interacting with the cis-acting 

elements DRE/CRT regulatory elements in promoters of key genes 

[20]. The CBF/DREB transcription factors also affects expression 

of genes such as COR15a (protection of proteins against freeze-

inactivation), RD29a, and those that encode LEA proteins [29]. 

Desiccation Stress 

 Desiccation tolerant seeds and pollen undergo extreme dehydra-
tion as part of the developmental maturation process. Orthodox 

seeds can lose most of their moisture during maturation, resulting in 
moisture contents of around 8%. At low moisture content, the cyto-

plasm enters a glassy state where molecular movement is minimal 
[30]. Glasses maintain the structural and functional integrity of 

macromolecules and prevent membrane fusion to limit the extreme 
deformation imposed by desiccation [31]. 

 Vegetative cells can also tolerate desiccation. Tonoplast and 

plasma membrane specific aquaporins, water channels across mem-

branes, may play critical roles in water movement during both des-

iccation and rehydration. Desiccation stresses may cause the plasma 

membrane to lose surface area. Sugars and other polyhydric solutes 

are believed to protect protein and membrane structures during 

desiccation, though the mode of action remains poorly understood 

[31, 32].  

 LEA proteins accumulate in seeds when desiccation tolerance is 

acquired during seed maturation. LEA proteins are hydrophilic and 
remain soluble at boiling temperatures (e.g. [33]). They may also 

have protein and membrane stabilization properties [34]. Dehydrins 

are a class of LEA proteins that are induced by ABA and are sug-

gested to inhibit the denaturation of macromolecules (e.g. [35]). 

A. ABA Independent Pathways 

 The genetic response to drought or desiccation has been identi-
fied in several model systems. ABA independent pathways ulti-

mately affect the pathways that regulate osmotic equilibrium and 
detoxification [36].  

 The DRE/CRT cis-acting element associates with the desicca-
tion-specific DREB2 transcription factor, found in the ABA inde-

pendent pathway response to drought stress [37, 38]. ERD1 is an-
other key gene involved in the ABA independent stress-response. 

The NAC group of transcription factors binds to the elements 
within the ERD1 gene promoter [39, 40]. Another NAC transcrip-

tion factor, RD26, is dehydration responsive. RD26-regulated genes 
may play a role in the detoxification of reactive oxygen species 

[41].  

B. ABA Dependent Pathways 

 Exogenous ABA induces genes that are also activated by dehy-
dration. In Arabidopsis, several hundred genes were induced by 

exogenous ABA treatment [42]. An exogenous ABA treatment also 
improves cryopreservation success for some, but not all, species 

[43-46].  
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 Endogenous ABA is essential for some drought stress-
responses [47], including the production of LEA proteins [48]. LEA 
proteins are thought to improve the macromolecular stability of 
seeds due to their stronger hydrogen bonding strength [48]. Most 
LEA proteins have either low temperature response elements or 
ABRE in their promoters [49]. The ABF/AREB transcription fac-
tors are basic leucine zipper types that bind to the ABRE elements 
and activate stress gene expression. Genes AREB1 and AREB2 are 
ABA responsive [18].  

 MAP kinases also play a role in the regulation of stress re-
sponses by affecting protein phosphorylation and dephosphoryla-
tion states [41]. MAP kinases can be induced by cold, salt, drought, 
ABA and reactive oxygen species. The MAPK cascades improve 
reactive oxygen species scavenging capacity.  

 An alternative ABA dependent pathway involves the MYC and 
MYB transcription factors that bind to MYB and MYC recognition 
sequences and activate the drought inducible RD22 gene [18].  

Recovery 

  Survival after desiccation is dependent upon cellular protection 
from the stress of water loss as well as the availability of functional 
repair mechanisms after rehydration. Desiccation tolerant seeds and 
pollen generally survive rehydration; whereas it is much more chal-
lenging to successfully regenerate less tolerant propagule types. 
Recovery is dependent upon having enough cells survive for suc-
cessful propagule regeneration. In shoot tip systems, many of the 
larger cells in regions surrounding the meristem become extremely 
plasmolyzed and do not survive cryopreservation [50].  

 The presence of reactive oxygen species within cells after stress 
can damage cells and generate lipid peroxides, aldehydic products 
and protein carbonyls [48, 51]. High antioxidant status is associated 
with tolerance to cryopreservation. Cryo-tolerant Ribes accessions 
exhibited higher hydroxyl radical activity, antioxidant status, phe-
nolic accumulation and anthocyanin pigments than Ribes accessions 
that were cryo-sensitive [52]. The reactive oxygen species gene 
network includes over 150 genes [53]. Reactive oxygen species can 
be scavenged by enzymes that are induced by both cold and drought 
stresses. Heat shock proteins can also be activated by reactive oxy-
gen species [54]. The cytoprotective properties of heat shock pro-
teins help maintain proteins in functional conformations and pre-
vent aggregation [54].  

EXPERIMENTAL SYSTEMS 

 Many plant cryobiologists have focused on finding methods to 
conserve horticultural species that are vegetatively propagated since 
seed storage does not maintain the genotype of interest. Recently, a 
cryopreservation protocol has been published for Arabidopsis T87 
suspension cells to facilitate conservation of transgenic lines. 
Arabidopsis can also be a good model to identify the gene expres-
sion responses to cryogenic stress [55]. Arabidopsis shoot tips are 
easy to produce and readily survive diverse cryo-exposure protocols 
[56]. In 2006, Towill et al. published methods for the cryopreserva-
tion of Arabidopsis shoot tips using three of the more common 
shoot tip cryoprotection protocols. Cryoprotectants serve to both 
dehydrate and promote the glassy state within cells [57]. Published 
Arabidopsis methods employed the cryoprotectants Plant Vitrifica-
tion Solution 2 (PVS2; 30% glycerol, 15% ethylene glycol, 15% 
DMSO, 15% sucrose; [58]), Plant Vitrification Solution 3 (PVS3; 
50% sucrose, 50% glycerol, [59]) and PGD (10% polyethylene 
glycol, 10% glucose, 10% dimethyl sulfoxide; [7]). Once treated 
with vitrification-type cryoprotectants PVS2 and PVS3, shoot tips 
can often be rapidly cooled to LN temperatures and stored for ex-
tended lengths of time. Shoot tips are either cooled within cryopro-
tectant droplets (Fig. 1) or in solution-filled cryovials. In contrast, 
PGD-treated shoot tips are slowly cooled within cryovials to -30 or 
-35o

C prior to LN exposure.  

 Cryoprotectants vary in their toxicity as well as their protective 

mechanisms [60, 61], thus providing an experimental system by 

which the conservation of stress response pathways across methods 

can be compared. Basu [62] identified some candidate genes, such 

as a calcium ion binding protein, that were upregulated in response 

to PVS3 exposure using the Arabidopsis system. Comparisons of 
gene expression patterns during cryoprotectant treatment, liquid 

nitrogen exposure, and recovery of Arabidopsis shoot tips using 

cDNA microarrays have revealed suites of genes up- and down-

regulated in shoot tips that survive cryopreservation (Volk et al. in 

prep.).  

 Musa shoot tips from multiple species are amenable to vitrifica-

tion methods [63, 64]. Since little genomic information is available 

for Musa, proteomics approaches have proved advantageous [65-

67]. Meristem-specific proteins expressed in response to high su-

crose pretreatments include those involved in glycolysis and main-
taining cell wall integrity [68]. A website has been established for 

Musa proteomics efforts (http://www.pdata.ua.ac.be/musa/ mod-

ules/listview/?table=spot). These high sucrose treatments serve to 

decrease Musa meristem water content and increase the intracellu-

lar sucrose concentration [69].  

 Progress in genomic research in other kingdoms may reveal 

fundamental stress responses of cells to extreme conditions. Insects 

and microbes have adapted to polar environments [70]. Reptiles and 

amphibians survive harsh Canadian winters with distinct, yet simi-

lar responses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Plant shoot tips (1 mm diameter) were immersed in droplets of 

PVS2 cryoprotectant solution on a foil strip, cooled to -196oC and photo-

graphed. Transparent nature of droplet suggests that ice did not form during 

the cooling process. Photo courtesy of Stephen Ausmus, USDA-ARS.  
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 Desiccation and cold response pathways are interrelated in in-
sects. Cold acclimated microarthopods (Cryoptopygus antarcticus) 
from Antarctic regions upregulate structural and cuticle proteins. 
Furthermore, expression of genes involved in moulting supports a 
role of moulting in cold tolerance [71]. Arctic springtails (Onychiu-
rus arcticus) have also served as model to study desiccation and 
cold tolerance in insects [72]. As in plants, springtails increase the 
proportion of unsaturated to saturated fatty acids in lipid mem-
branes. The sugar trehalose also serves to stabilize membranes pre-
sumably by interacting with phospholipids in a water-replacement 
like mechanism [72]. Sequenced EST libraries from O. arcticus in 
various states of desiccation identified clones representing genes 
that fall into classes of aquaporins, dehydrins, heat shock proteins 
and those relating to antioxidant production (glutathione, catalase, 
hydrogen peroxidase) that were upregulated [73]. Subtractive tech-
niques revealed recovery genes such as heat shock proteins, mem-
brane proteins, and those involved in metabolic pathways [72].  

 The Storey laboratory at Carleton University has made remark-
able progress identifying genomic responses in cold-tolerant verte-
brates. Frogs and reptiles overwinter in a frozen state and use ice 
nucleators to initiate the freezing process extracellularly and use 
antifreeze proteins to inhibit recrystallization during freezing. High 
osmolyte contents limit cell volume reduction, membrane stabiliz-
ers such as trehalose and proline prevent lipid biolayer compres-
sion, and physiological adaptations regulate the cessation and 
reactivation of breathing and the heart [74]. Novel genes with low 
copy number transcripts were identified using microarrays and 
tracked responses by groups of genes [75]. Freeze tolerance and 
anoxia exposure microarrays both revealed genes involved in iron 
binding, antioxidant defense, and serine protease inhibitors [76]. 
Genes that affect the production of low molecular weight osmolytes 
and provide antifreeze protection are upregulated [76]. In addition, 
protection mechanisms such as heat shock proteins, glutathione 
peroxidase, and glutathione S transferase, and peroxiredoxin are 
activated [76].  

 Successful cryoprotection in both animals and plants is depend-
ent upon minimizing freezeable water within cells and the mainte-
nance of sufficient cell volumes [74, 77]. Cold tolerant living sys-
tems can often sequester excess water extracellularly to limit ice 
formation in the cytoplasm [77]. Cold tolerant animals and plants 
both exhibit forms of cold acclimation, with protective changes 
occurring internally on a seasonal basis [6, 76]. Freeze avoiding 
insects make glycerol as an internal cryoprotectant [76, 77]; 
whereas in plants, glycerol is frequently added in the form of cryo-
protectant solutions to help protect cells during cryopreservation. 
Membrane fluidity is key to survival of cold conditions. Short chain 
and unsaturated fatty acids maintain membrane fluid states promote 
chilling tolerance across diverse species [22, 23, 77]. Furthermore, 
either high antioxidant levels or an efficient method of removing 
reactive oxygen species are key to successful recovery after cryo-
exposure in both the plant and animal kingdoms [52, 76, 77].  

 It is clear that similar mechanisms have evolved in diverse 
kingdoms that enable organisms to tolerate extreme temperatures 
and desiccation. Cells have reduced biochemical reaction rates, 
increased cellular viscosities, alterations in membrane lipids and 
changes in protein conformation in response to extremely cold con-
ditions [77]. By minimizing ice nucleation and promoting glassy 
states, cells can survive extreme stresses. Their survival is depend-
ent upon producing proteins and chaperones that will protect 
against potentially dangerous reactive oxygen species.  

CONCLUSIONS  

 Prevention of cellular ice formation and maintenance of intact 
membranes are critical for successful plant cryopreservation. Identi-
fication of the genomic responses to cold and desiccation stresses 
during the cryopreservation process will reveal how propagules 

respond to diverse cryoprotectants, extreme temperatures, and re-
cover. Understanding plant acclimation is key to determining en-
dogenous responses and more information about the recovery proc-
ess is needed. Comparing the genetic responses to tolerance and 
longevity within and among plant species and propagules will guide 
conservation scientists in their quest to design improved preserva-
tion strategies.  
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