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Abstract: Densazalin, a polycyclic alkaloid, was isolated from the marine sponge Haliclona densaspic-
ula collected in Korea. The complete structure of the compound was determined by spectroscopic
methods, including 1D and 2D nuclear magnetic resonance techniques, high-resolution mass spec-
trometry, and comparison of the calculated and measured electronic circular dichroism spectra.
Densazalin possesses a unique 5,11-diazatricyclo[7.3.1.02,7]tridecan-2,4,6-triene moiety, which is
connected by two linear carbon chains. This compound was derived from the biogenetic precursor
bis-1,3-dialkylpyridnium. Densazalin exhibited cytotoxic activity on two human tumor cell lines
(AGS and HepG2) in the Cell Counting Kit-8 (CCK-8) bioassay, with IC50 values ranging from 15.5 to
18.4 µM.
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1. Introduction

Marine sponges are prolific sources of natural products that show significant bioac-
tivity and possess noble chemical structures that have contributed to the discovery and
development of pharmaceutical drugs [1,2]. In sponges from the genus Haliclona, bioac-
tive secondary metabolites including sterols [3], cyclic peptides [4], macrolides [5], poly-
acetylenes [6], and alkaloids such as 1,3-alkylpyridines [7] have been identified.

In particular, structurally diverse polycyclic alkaloids with two heterocyclic nitrogens
have been clarified from Haplosclerid sponges [8]. Haplosclerid sponges, notably those
from the genera Haliclona, Xestospongia, and Amphimedon spp., are rich sources of struc-
turally complex and cytotoxic alkaloids derived from 3-alkylpyridines or their reduction
products [8].

A variety of alkaloids, such as halitoxin [9], manzamines [10], manzamine B and
C [11], haliclamines A and B [12], 1,2,3,4-tetrahydro-8-hydroxymanzamines [13], and
halicyclamine A, were identified from the genus Haliclona. The structure elucidation of
these alkaloids with complex skeletons has been extremely challenging. In 1992, a retro-
biosynthetic scheme for some of their complex frameworks was clarified by Baldwin and
Whitehead [14]. Halicyclamine A represents a tetracyclic alkaloid skeleton biogenetically
related to the xestocyclamine/ingenamine class of alkaloids [15].

The cyclic bis-1,3-dialkylpyridinium alkaloids, such as the sarains [16], manzamines [9],
densanins [17], and haliclonacyclamines [11], have been recognized as biogenetic pre-
cursors to unique polycyclic nitrogenous metabolites with diverse biological activities.
A variety of biological activities of Haliclona spp., including antimicrobial [18,19], an-
tibacterial [20], antifungal [21,22], hemagglutination [23,24], anti-cancer [25–28], and anti-
inflammatory activities [17,29], have been reported.
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In a previous study, our research team reported new macrocyclic pyrrole alkaloids,
densanins A and B, with potent anti-inflammatory activity, from Haliclona densaspicula [17].
In our continuing search for novel bioactive metabolites from marine species, the methano-
lic extract of H. densaspicula showed considerable cytotoxicity against human tumor cell
lines (AGS and HepG2) when subjected to the Cell Counting Kit-8(CCK-8) bioassay.
Bioassay-guided separation and chemical investigation of the extract using successive
column chromatographies over RP-18 silica gel and Sephadex LH-20, followed by semi-
preparative LC, led to the isolation of a new polycyclic alkaloid, densazalin (1), which
could be derived from a cyclic bis-1,3-dialkylpyridinium. The extract in the previous
study provided two alkaloids, densanins A and B, showing inhibition activity against
LPS-induced NO production in BV-2 microglial cells [17]. Here, we report the structure
determination of the new skeleton of 1 by the spectroscopic methods, quantum calculations
and strong cytotoxic activity.

2. Results and Discussion

Densazalin (1) was found to have the molecular formula of C32H47N2
+ [M+] from

its positive HR-ESITOF mass spectrum and its 13C NMR spectrum, indicating 11 degrees
of unsaturation. The UV and IR spectra displayed absorption peaks at 230, 270 nm and
2360, 1595 cm−1, respectively, of which 270 nm and 1595 cm−1 signals indicated a pyridine
functional group. The 1H NMR spectrum was characterized by the absence of methyl
signals, as well as severely overlapped signals in the upfield region which corresponded to
an aliphatic chain, while downfield-shifted protons indicated an aromatic group. Based on
the 13C NMR and HSQC spectra, 1 consisted of 18 methylenes containing 4 nitrogen-bearing
carbons (δC 59.2, 60.3, 62.8, 66.0), 11 methines, and 3 non-protonated carbons (δC 38.2, 144.5,
163.6) (Table 1). 1 possessed a 1,3,4-trisubstituted pyridinium ring, which was deduced by
the aromatic protons at δH 7.92 (H-3), 8.65 (H-4), and 8.59 (H-6), and the two downfield-
shifted carbons at δC 141.5 (C-4) and 145.1 (C-6) with large one-bond heteronuclear coupling
constants, 1JCH = 194 and 189 Hz, respectively. These were corroborated by the HMBC
cross-peaks of the two protons (H-4 and H-6) with the nitrogen-bearing methylene carbon at
δC 62.8 (C-1′). Together with the pyridinium ring, three additional double bonds accounted
for seven out of the 11 degrees of unsaturation, which suggested the presence of four
rings in 1.

Detailed interpretation of 1D and 2D NMR (COSY, TOCSY, HSQC, and HMBC, in
Figures S5–S8) spectra established that 1 was composed of a 5,11-diazatricyclo[7.3.1.02,7]tridecan-
2,4,6-triene moiety [30] and two independent linear carbon chains A and B, as shown in
Figure 1. Based on the three-carbon connectivity from the COSY correlations of H-12/H-1
and H-1/H-13, the structure of the 5,11-diazatricyclo[7.3.1.02,7]tridecan-2,4,6-triene was
identified by the HMBC correlations between H-12b and the nitrogen-bearing carbon (C-10),
and the two protons (H-10a and H-13b) and the quaternary carbon (C-9), with additional
HMBC correlations of H-8/C-9, C-8/C-7, H-12a/C-2, and H-13a/C-2. HMBC cross-peaks
of H-8/C-10, H-8/C-13, H-8/C-6, H-8/C-2, H-3/C-7, H-6/C-4, H-6/C-2, and H-4/C-2
supported this partial structure. One of the two independent carbon chains was assigned as
∆1,4,7-undecatriene by the sequential COSY and TOCSY correlations between the relatively
well-resolved proton signals in the chain. The remaining 10 methylene carbons constituted
the other chain, which was assigned as the n-decan functional group. The three partial
structures could be assembled on the basis of the HMBC correlations. C-1′ and C-10′ at
the end of chain A were linked to N-5 and C-9 of the diazatricyclic ring, respectively, as
evidenced by the key HMBC correlations of H-4/C-1′, H-6/C-1′, and H-8/C-10′. Very
similarly, C-1′′ and C-11′′ at the terminus of chain B were connected to N-11 and C-8 on the
diazatricyclic ring, respectively, from the HMBC correlations of H-1′′/C-10, H-1′′/C-12,
and H-11′′/C-8. Accordingly, the positively charged gross structure of 1 was completed,
being consistent with the molecular formula.
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Table 1. 1H (500 MHz) and 13C NMR (125 MHz) data for compound 1 in CD3OD (δ in ppm, J values
in parentheses).

no. δC δH, mult (J Hz)

1 38.4, CH 3.35, m
2 163.6, C
3 128.6, CH 7.92, d(6.1)
4 141.5, CH 8.65, d(6.1)
6 145.1, CH 8.59, s
7 144.5, C
8 46.4, CH 3.77, d(8.8)
9 38.2, C
10 66.0, CH2

a 1.59, d(11.3); b 2.87, brd(11.3)
12 60.3, CH2

a 2.39, dd(11.6, 3.2); b 3.06, d(11.6)
13 35.6, CH2

a 1.58, dd(13.2, 2.7); b 2.02, brd(13.2)
1′ 62.8, CH2

a 4.54, td(12.5, 3.2); b 4.72, dt(12.5, 3.9)
2′ 30.9, CH2

a 1.72, m; b 2.15, m
3′ 26.2, CH2

a 1.24, m; b 1.44, m
4′ 29.5, CH2

a 0.07, m; b 1.07, m
5′ 29.1, CH2

a 1.17, m; b 1.25, m
6′ 30.3, CH2 1.12, m
7′ 31.0, CH2 1.19, m
8′ 30.5, CH2 1.24, m
9′ 23.1, CH2

a 1.36, m; b 1.67, m
10′ 35.9, CH2

a 1.23, m; b 1.57, m
1′′ 59.2, CH2

a 2.19, m; b 2.28, dd(7.6, 3.7)
2′′ 27.9, CH2 1.41, dd(7.6, 3.4)
3′′ 27.4, CH2

a 1.67, m; b 2.17, m
4′′ 132.4, CH 5.29, td(10.9, 5.1)
5′′ 128.9, CH 5.48, m
6′′ 26.3, CH2

a 2.65, m; b 2.96, m
7′′ 130.9, CH 5.41, dt(11.3, 6.1)
8′′ 128.0, CH 5.54, m
9′′ 30.6, CH2 2.92, m

10′′ 134.9, CH 6.10, dt(15.9, 6.1)
11′′ 131.8, CH 5.94, dd(15.9, 9.1)

a: upfield-shifted chemical shifts; b: downfield shifted chemical shifts.
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The structure of densazalin, containing three chiral centers and three double bonds,
was configured by analysis of the NOESY spectrum and the proton coupling constants.
NOE correlations of H-1/H-12b and H-1/H-13 established that H-1 is in an equatorial
position of the tetradehydropyran ring, and the perpendicular placement of the pyridinium
ring to the tetrahydropyran ring was supported by the NOE correlations between H-3
and H-12b. Based on this configuration, the NOE cross-peaks of H-6/H-8 and H-8/H-13b
led to the configuration of C-8 and C-9 as R* and R* forms, respectively (Figure 2). This
configuration allowed us to observe the NOE between H-11” and H-3”b at a long distance.
Moreover, the abnormal upfield shift of H-4’a was caused by the location of this proton



Molecules 2021, 26, 3164 4 of 9

above the pyridinium ring. The geometries of the double bonds in chain A were assigned as
4Z, 6Z, and 10E by the NOE correlations of H-2”/H-5”, H-6”/H-9” and the large coupling
constant (J = 15.9 Hz) between H-10” and H-11”. The absolute stereochemistry of 1 was
elucidated by the comparison of the quantum chemically calculated electronic circular
dichroism (ECD) with the measured spectrum, as shown in Figure 3. After generating the
input structure of 1 as determined by the NOE correlation studies, a conformational search
was performed using molecular mechanics with MMFF, and eight conformers with low
energies were determined within a 12 kJ/mol threshold. Geometry optimization of each
conformer was performed at the B3LYP/6-31G(d) level, and then their single-point energies
were calculated at the B3LYP/6-311G+(2d,p) level to obtain their respective Boltzmann
populations at 298 K (Supplementary Materials Table S1). The calculations of the ECD
spectra for all populated conformers were performed at the B3LYP/6-31G(d,p) level [31].
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A plausible biosynthesis of 1 would be similar to that suggested for the formation
of the halicyclamine structure from a 1,3-dialkaylpyridinium [15] (Figure 4): the two
pyridiniums rings formed a xestocyclamine skeleton by Diels–Alder cyclization [32], and
subsequent cleavage of the C-7/C-10 bond, formation of the C-8/C-9 bond, and reduction
lead to a diazatricyclic ring.
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Densazalin showed cytotoxicity against the AGS and HepG2 cell lines by CCK-8 assay
at above a concentration of 10 µM (Figure 5). IC50 values for 1 were measured as 15.5 and
18.4 µM for the AGS and HepG2 cell lines, respectively. This value indicates moderate
cytotoxicity compared to that of several marine alkaloids. For example, deoxytopsentin
isolated from the marine sponge Spongsorites sp. shows 4.0 µM for AGS and 10.2 µM for
HepG2 [33].
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3. Materials and Methods
3.1. Instrumentation

Optical rotation was measured in a cell with 5 cm path length on a JASCO P-1010
polarimeter (Jasco, Easton, MD, USA) with MeOH as blank. IR and UV spectra were
recorded on a JASCO FT-IR 4100 spectrometer (Jasco, Easton, MD, USA) and a Varian
Cary 50 UV–visible spectrophotometer (Agilent, Santa Clara, CA, USA), respectively.
High-resolution (HR) electrospray ionization (ESI) mass data were obtained using a SCIEX
X500R mass spectrometer (SCIEX, Framingham, MA, USA). All nuclear magnetic resonance
(NMR) spectra were recorded on a Varian VNMRS 500 NMR spectrometer (Varian, Palo
Alto, CA, USA) operating at 500 MHz (1H) and 125 MHz (13C). All 1D and 2D NMR
spectra were measured in methanol-d4 solvent at 25 ◦C and referenced at 3.3 ppm (1H)
and 49.0 ppm (13C) for the solvent peak. The parameters used for 2D NMR spectra were as
follows; The gradient COSY spectrum was collected with a spectral width of 4600 Hz in a
1024(t1) × 2048 (t2) matrix applying a pulse gradient of 1 ms duration with a strength of
10 G/m and processed with a sine-bell function. The gradient HSQC data were obtained in
a 128 (t1)× 1024 (t2) matrix with 1JCH = 140 Hz and processed in a 256 (t1)× 1024 (t2) matrix
by a linear prediction method for a higher resolution. The gradient HMBC experiment was
optimized for a long-range coupling constant of 8 Hz. The NOESY experiment was carried
out with a mixing time of 250 ms. Semi-preparative liquid chromatography (Prep-LC) was
performed on an Agilent 1200 pump (Agilent, Santa Clara, CA, USA) equipped with a
DAD detector. Isolation of compounds was performed with an RP C18 silica gel 60 (Merck,
Darmstadt, Germany) or Sephadex LH-20 (Pharmacia, Uppsala, Sweden).

3.2. Material

A specimen of Haliclona densaspicula (voucher number 08K-11) was collected by scuba
divers off Keomun Island, South Korea, in 2008. The sponge was massive and easily broken
like bread. The surface was smooth and had several oscules. When living, the color was
brown. In this study, the aliquot extracted in 2012 was used.

3.3. Extraction and Isolation

The methanolic extract H. densaspicula was partitioned between dichloromethane
(DCM) and distilled water. The organic fraction was repartitioned into n-hexane and
15% aqueous MeOH. The aqueous MeOH fraction (ca 4.5 g) was subjected to reversed-
phase silica gel flash column chromatography, eluting with solvents of decreasing polarity
(MeOH:H2O = 5:5→ 6:4→ 7:3→ 8:2→ 9:1→ 100% MeOH→ 100% acetone) to give seven
fractions (MR1~MR7). A Cell Counting Kit-8 (CCK-8) bioassay was performed for each
fraction to select a fraction with potent cytotoxicity using human tumor cell lines, AGS
and HepG2.

The active fraction, the MR5 fraction (430 mg), was chromatographed on an LH-20
column and eluted with 100% MeOH to yield five fractions (M1~M5). Subfraction M3
(115 mg) was separated by semi-preparative reversed-phase HPLC with a UV detector,
using a YMC ODS-A column (250 mm × 10 mm i.d., 5 µm) with a solvent system of
MeCN and H2O [2 (MeCN): 8 (H2O) → 10: 0] in a flow rate of 2 mL/min to yield two
mixed fractions. Densazalin (1) (2.3 mg) was purified by reversed-phase HPLC using a
phenomenex C6-phenyl column (250 mm × 10 mm i.d., 5 µm), eluting with a solvent
system of 60% MeOH and 40% H2O. The compound was produced at a retention time of
50 min.

Densazalin (1). Yellow oil. [α]-18.2 (c 0.04, MeOH). UV (MeOH) λmax (log ε): 203
(4.5), 230 (4.1), 270 (3.7) nm. IR (film) νmax: 2938, 2360, 1595 cm−1. 1H (500 MHz) and 13C
(125 MHz) NMR data, see Table 1. HR-ESITOF MS (positive-ion mode) m/z: 459.3716 [M]+

(calculated for C32H47N2
+, 459.3734).
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3.4. Cell Culture and Cytotoxicity Assay

The in vitro cytotoxicity was measured using a Cell Counting Kit-8 (CCK-8) (DO-
JINDO, Kumamoto, Japan) on AGS cells (human gastric adenocarcinoma cell line), with
HepG2 cells (human hepatocellular carcinoma cell line) as a vehicle group. Cell lines were
obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA) and
were cultured at 37 ◦C in a 5% CO2 incubator (Thermo, Waltham, MA, USA). DMEM
supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin was used.

Each cell line was seeded onto 96-well plates at 1 × 105 cells per well and cultured
overnight for use in the experiments. The cells were cultured for 24 h in medium containing
various concentrations of denazalin (1) for use in the experiments. Next, 10 µL CCK-8
was added to the cells and incubated for 2 h, and optical density was measured at 450 nm
using a Cytation 3 microplate reader (Biotek, Winooski, VT, USA). The cytotoxicity was
calculated as % relative to the vehicle group. Dose–response curves were established for
the sample and the minimum concentration sufficient to reduce the cell viability by 50%
(IC50) was calculated.

3.5. Statistical Analysis

SPSS 25 software was used for statistical analysis. All experiments described were
performed at least three times or more. Data were expressed as the mean ± SD. Signifi-
cant differences between the means of two groups were determined by a Student’s t-test.
A p value less than 0.05 was considered as statistically different.

3.6. Calculation of ECD Spectrum of 1

The configurational structure of densazalin determined by NMR spectroscopy was
used as an input for a conformational search of 1. The conformational search was performed
by Spartan 18 software (Wavefunction Inc., Irvine, CA, USA), which calculates using
molecular mechanics. Eight conformers with low energies were selected within a 12 kJ/mol
threshold. Each conformer was optimized by the DFT method at the B3LYP/6-31G(d) level
using the Gaussian 16 program (Gaussian. Inc., Wallingford, CT, USA). Following this
procedure, the ECD spectrum of each conformer was calculated by the TD-DFT method
at the B3LYP/6-31G(d,p) level with the PCM model in methanol solvent. The weights
of the conformers by Boltzmann distribution were obtained from the calculation of the
single-point energies of eight conformers at the B3LYP/6-311G+(2d,p) level.

4. Conclusions

The structure of a new compound isolated from the marine sponge H. densaspicular,
densazalin (1), was completely determined by spectroscopic methods and quantum me-
chanical calculations. 1 was deduced to be derived from a cyclic bis-1,3-dialkylpyridinium
species, similar to densanins A and B isolated from the same extract. According to our
best knowledge, the 5,11-diazatricyclo[7.3.1.02,7]tridecan-2,4,6-triene moiety in 1 has been
synthesized [30], but this is the first report of its occurrence in a natural product. With
regard to bioactivity, 1 showed toxicity against two tumor cells lines; these anticancer
effects are similar to others reported for cytotoxicity evaluations of the alkaloid compounds
from the genus Haliclona [34,35]. Finally, densazalin, with its high toxicity against the AGS
and HepG2 cell lines, may be especially promising for developing an effective drug against
melanoma and ovarian cancer in this regard.

Supplementary Materials: The following are available online, Figure S1: Marine sponge Haliclona
densaspicular, Figure S2: Optimized low-energy conformers, Figures S3–S9: 1D and 2D NMR spectra
of 1, Table S1: Relative energies and Boltzmann weights.
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