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Background: The pathogenesis of inflammatory bowel disease (IBD) is linked

to an intricate association of environmental, microbial, and host-related factors.

Polysaccharide affects host immunity by regulating the composition and metabolism

of gut microbiota is the common mechanism of disease resistance. However, the

efficacy and mechanism of Schisandra chinensis polysaccharide (SCP) in the treatment

of inflammatory bowel disease have not been studied.

Objective: To explore the effect and mechanism of SCP on dextran sodium sulfate

(DSS) - induced ulcerative colitis (UC) in mice.

Materials/Methods: In this study, we established a mouse model of UC, and used

SCP for treatment intervention. The biochemical indexes related to inflammation were

determined by ELISA kit, and the therapeutic effect of SCP on UC was clarified. Then,

16S rDNA sequencing was used to study the effect of SCP on the composition and

diversity of gut microbiota. At the same time, GC-MS was used to determine the

content of short chain fatty acids in intestinal contents. Finally, the relationship among

gut microbiota, short chain fatty acids and inflammatory factors was analyzed, and to

comprehensively explain the effect and mechanism of SCP on UC.

Results: The results showed that SCP could significantly improve the physiological state

of UC mice and regulate the level of inflammatory factors to normal levels. Meanwhile,

SCP could significantly regulate the imbalance of gut microbiota and increase the content

of SCFAs. In addition, the results of the correlation between gut microbiota and SCFAs

showed that butyric acid, isobutyric acid and valeric acid had the highest correlation with

gut microbiota.
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Conclusion: In conclusion, this research showed that SCP can inhibit inflammatory

bowel disease by regulating the composition and metabolism of gut microbiota, and

indicating that SCP may be used as adjuvant therapy for IBD patients.

Keywords: Schisandra chinensis, polysaccharide, ulcerative colitis, gut microbiota, short chain fatty acid,

inflammation

INTRODUCTION

Inflammatory bowel disease (IBD) mainly includes Ulcerative
colitis (UC) and Crohn’s disease (CD). It is a chronic recurrent
disease characterized by intestinal inflammation and epithelial
injury. It is difficult to cure and poses a serious threat to human
health (Van Der Veen et al., 2009). In recent years, the incidence
of IBD has been increasing year by year and has gradually
evolved into a global disease. In addition, epidemiological data
show that the duration and severity of chronic colitis is an
important risk factor for colon cancer associated with colitis
(Torres et al., 2013). The main pathological mechanism of IBD
is not clear yet. There are many causes of IBD, such as genetic
factors and environmental factors, which may lead to innate and
adaptive mucosal immune responses. In recent years, intestinal
flora imbalance has been recognized as the main pathological
mechanism of IBD (Swidsinski et al., 2008).

More and more studies have shown that dietary fiber (DF),
such as polysaccharides, can affect the composition of gut
microbiota (Zhang et al., 2017; Cai et al., 2019). Dietary
fiber provides an important energy source for the bacterial
activity of intestinal microflora and can directly or indirectly
affect the intestinal mucosal immune response. Intestinal
microorganisms also play an important role in maintaining
colonic homeostasis and local and systemic immunity (Rakoff-
nahoum and Medzhitov, 2006; Li et al., 2008). Several studies
have shown that filamentous bacilli closely adhered to intestinal
epithelium can induce Th17 reaction and increase the number
of Treg cells in the colon (Gaboriau-Routhiau et al., 2009).
Simultaneously, single colonization of Bacillus fragilis can
promote the proliferation of Treg cells and induce IL-10
production. Both of them can inhibit chemical-induced colitis
(Round and Mazmanian, 2010). This suggests that microbial
flora is driving the host immune response and reducing disease
susceptibility. The correlation analysis of microbial flora and
biochemical factors showed that the relative abundance of
protective bacteria such as butyric acid bacteria, spirulina,
lactic acid bacteria and bifid bacteria was positively correlated
with anti-inflammatory cytokines such as IL-10, while the
relative abundance of Prevotella, rumen coccus, Bacteroides and
Escherichia were positively correlated with pro-inflammatory
cytokines such as IL-23, TNF-α, IL-1β, IL-6, and IFN-γ
(Pokusaeva et al., 2011).

In addition, short chain fatty acid (SCFA), such as acetate,
propionate and butyrate, produced by microbial fermentation
of polysaccharides, helps regulate intestinal homeostasis and
may regulate gene expression through epigenetic regulation,
thus reducing the production of pro-inflammatory factors
in human adipose tissue. Clostridium coccoides is the main

producer of SCFA, and can ferment polysaccharides to produce
butyrate as the main energy source of colon cells. It has been
proved that Clostridium coccoides can protect the colon from
inflammatory damage (Donohoe et al., 2011; Brown et al., 2012).
According to relevant studies, starch-embedded microspheres
(containing polysaccharides) can regulate the content of SCFA
and reduce the abundance of potentially harmful bacteria in
vitro fermentation of fecal microorganisms in IBD patients,
such as Bacteroides vulgatus and Veillonella. The specific
mechanisms may include: starch-embedded microspheres show
slow fermentation characteristics, which is conducive to
increasing beneficial fermentation in the distal colon. The
production of SCFA helps to maintain a relatively low colon
pH, prevent potential harmful bacterial growth and reduce the
activity of co-carcinogens such as glucuronidase, glycosidase
and 7-α hydroxylase, produce butyrate as the main energy
source of colon epithelial cells, and inhibit immune inflammation
and downstream products by inhibiting the activation of
transcription factor NF-κB as an anti-inflammatory agent. Such
as pro-inflammatory cytokines IL-12 and TNF, and up-regulate
the production of anti-inflammatory cytokine IL-10 (Rose et al.,
2010). These studies have shown that polysaccharides can affect
intestinal microorganisms and their metabolites, but the specific
mechanism still needs to be further explored.

The fruit of Schisandra chinensis (Turcz.) Baill in the family
of Magnoliaceae has been used as an herbal drug in traditional
Chinese medicine for a long time (Liu, 1989). In particular, these
fruits were widely used as health foods and medical products in
the treatment and prevention of some chronic diseases, including
gastrointestinal diseases, liver diseases and tumors (Choi et al.,
2006; Panossian and Wikman, 2008). At present, a large number
of studies have carried out qualitative and quantitative analysis
of lignans and other components in Schisandra chinensis by mass
spectrometry (Liu et al., 2017; Song et al., 2019; Su et al., 2020).
However, the research on Polysaccharides in Schisandra chinensis
is very limited and not deep enough. The polysaccharide is an
important material base of Schisandra chinensis for anti-tumor
and immune enhancement. Themain goal of the present research
is to investigate whether the anti-UC effect of SCP is related to the
modulation of gut microbiota.

MATERIALS AND METHODS

Extraction, Purification, and
Physiochemical Analysis of SCP
Four hundred grams of the drying sample of Schisandra
chinensis was added to the 3-fold amount of petroleum
ether (1,200mL) and then refluxed for 4 h. Then the
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petroleum ether was removed. After degreased, Schisandra
chinensis was added to 8 times the weight of pure water
(3,200mL), which then was refluxed twice, 3 h for each time,
and mixed together and filtered. The filtered extract was
concentrated to 400ml, after which the anhydrous ethanol
was added until the extract reached 80% concentration
and kept overnight. Finally, the crude polysaccharide
of Schisandra chinensis was gained after centrifugation
and filtration.

The crude polysaccharide of Schisandra chinensis was
dissolved in 400mL of pure water, then chloroform and n-
butanol were added in proportion (water solution: chloroform:
n-butanol = 25:5:1). The mixture was shaken sharply.
Then it was allowed to stand and centrifuged, so that the
impurities such as protein were removed. The remaining
water phase was the polysaccharide solution. This process was
repeated for five times. Finally, the refined polysaccharide of
Schisandra chinensis (SCP, 21.6 g) was obtained by merging the
water phases.

Five mg of refined polysaccharide was precisely weighed and
dissolved in 1.0mL trifluoroacetic acid (TFA, 2.0 mol/L). Then,
200 µL of the TFA solution was absorbed accurately and add the
10ml plugged test tube. The tube was hydrolyzed in water bath
at 100◦C for 6 h and 200 µL methanol was added after cooling
to room temperature. The process was repeated until the excess
TFA is completely removed. Then 50 µL of NaOH solution (0.3
mol/L) was added to the tube to dissolve the residue completely,
after which 50 µl of 1-phenyl-3-methyl-5-pyrazolone (PMP)
solution (0.3 mol/L, dissolved in methanol) was added. The tube
was placed at 70◦C in a water bath for 100min. After the reaction
for 10min, cooling to room temperature, 50 µl of hydrochloric
acid (0.3 mol/L) was added in order to neutralize reaction,
and water was added to replenish the solution to 1.0mL. To
discard chloroform layer, extraction of chloroform was repeated
in equal volume for 3 times. Then after extracting 700 µl of water
phase at 50◦c, the solution was decompressed and concentrated.
Finally, 600 µL of water was added to fully dissolve the residue,
after which the solution was filtered by 0.45µm microporous
membrane and stored in refrigerator at 4◦C.

Mice and Ulcerative Colitis Model
A total of 24 male C57BL/6 mice (20 ± 2 g, aged ∼8–10 weeks)
were purchased from Shanghai Sipper-BK Lab Animal Co. Ltd.
The mice were kept at constant conditions (24 ± 1◦C and 60%
humidity), which possess free tap water and rodent food at 12 h
light/dark arrangement.

All the mice were allowed to acclimate for a period of 10
days before randomly divided into four groups with 8 mice each.
Group I: The mice served as normal control (treated intragastric
a ministration with normal saline for 3 weeks); Group II: The
mice served as model received dextran sodium sulfate (DSS, MW
36,000–50,000; MP Biomedical) (10 mL/kg/body weight, daily);
Group III: The mice received salazosulfapyridine (SASP) which
is also the positive control group (200 mg/kg body weight, daily);
Groups IV: The rat received SCP (8.0 g/kg body weight, daily,
dissolved in pure water).

Histological Examination of the Colon
The colon tissue about 0.5 cm long was cut, fixed with 10%
neutral formalin, embedded in paraffin, sectioned, dewaxed
and stained with hematoxylin and eosin (H & E). The
changes of ulcer and inflammatory cell infiltration were
observed under microscope. The histopathological score
criteria of mice colon is as follows: 0: No obvious injury
was found, 1: Damage to the epithelium of the colon, 2:
Colonic mucosal ulcer, inflammatory cell infiltration of lamina
propria, submucosal edema, 3: Transmural inflammation
and ulcer, deformation, necrosis and exfoliation of colonic
epithelium, 4: Transmural inflammation and ulcer, with
normal mucosa, 5: Transmural inflammation and ulcer without
normal mucosa.

Cytokine Measurement of Colon
The activities of myeloperoxidase (MPO), reduced glutathione
(GSH), nitrate (NO), superoxide dismutase (SOD), reactive
oxygen species (ROS) and malondialdehyde (MDA) in colon
were estimated spectrophotometrically using commercial
ELISA kits.

In addition, the concentrations of TNF-α, IFN-γ, IL-1β, IL-4,
IL-6, IL-10, IL-13, IL-17, and IL-23 inflammatory factors in colon
tissues were assessed using commercial ELISA kits (Thermo
Fisher, USA) in accordance with the manufacturer’s instructions.

Western Blot Analyses
The effect of SCP on the protein expression of IL-1β, IL-10,
IL-23, TNF-α, and IFN-γ in the colon of DSS induced colitis
mice was studied. The specific experimental methods are in the
Supplementary Material.

Microbial Diversity Analysis
We sequenced the 16S rRNA of 34 samples of intestinal
contents of mice. The specific methods of DNA extraction,
PCR amplification and sequencing data processing are in the
Supplementary Material.

Bioinformatics Analysis
Microbial differences analysis, alpha & beta-diversity analysis,
correlation analysis, and co-occurrence network analysis were
performed using I-sanger (Majorbio Bio-Pharm Technology
Co. Ltd. Shanghai, China. www.i-sanger.com). The community
diversity was evaluated by ace, sobs and shannon indices. A
heat map based on the relative abundance of classification
level of microbiota and genera were generated using R
packages 2.15 in I-sanger. In addition, PCoA analysis based
on species abundance was used to analyze the species
composition and structure of intestinal flora in each group
of mice.

SCFAs Quantification
Standard solution preparation: acetic acid, propionic acid,
butyric acid, isobutyric acid, valeric acid and isovaleric acid were
precisely weighed and added into a 5ml volumetric flask, and
0.005M NaOH solution was added to the calibration. Standard
mother liquor of 8.830, 5.820, 3.260, 1.586, 1.408, and 1.296
mg/mL was prepared, respectively.
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Standard curve sample preparation: The mixed standard
solution was obtained by eddy mixing of acetic acid, propionic
acid, butyric acid, isobutyric acid, valeric acid and isovaleric
acid with 300 µL, respectively. The mixed standard solution
was diluted to the required concentration with 0.005M NaOH
solution. Furthermore, the mixed standard solution with 600
µL concentration was extracted and added into the EP
tube containing 10 µL d3-caproic acid internal standard
(630µg/mL), respectively.

Pretreatment and Derivatization of Fecal Samples: The feces
(100mg) of each mouse was weighed and placed into a 2mL
centrifuge tube, and then 1mL of 0.05M NaOH aqueous
solution was added, after which the mixture was homogenate
for 10min, centrifuge at 13, 200 rpm for 20min at 4◦C and
whirled for 1min and centrifuged (12,000 rpm/min, 20min)
at 4◦C. Then 600 µL of the supernatant was absorbed and
mixed in an EP tube containing 10 µL d3-caproic acid
(630µg/mL, internal standard). The above-mentioned fecal
sample solution containing internal standard was added to
a 10mL glass centrifuge tube and 300 µL ultra-pure water
was added to mix in a whirlpool. And then 500 µL 1-
propanol/pyridine (3:2, v/v) and 100 µL propyl chloroformate
were consecutively added. The mixture was swirled for
10 s and then ultrasonic for 1min. After derivatization, the
derivatives were extracted by adding 300 µL n-hexane. After
1min of the scroll, centrifugation was carried out at 2,000
rpm for 10min, and 200 µL of the upper solution was
absorbed. Then 200 µL n-hexane was added to the glass
centrifugal tube and the operation was repeated. Finally, the
supernatant solution extracted twice was mixed evenly and
centrifuged, and 200µL of supernatant solution was absorbed for
injection analysis.

In addition, all assays were performed using the Trace 1310-
TSQ 8000 Evo GC-MS System (Thermo, USA). The separation
of each compound was achieved using a Thermo TG-5MS
capillary column (0.25mm × 30m, 0.25µm). The initial oven
temperature was 0◦C, and then increased to 50◦C by 25◦C/min,
70◦C by 10◦C/min, 85◦C by 3◦C/min, 110◦C by 5◦C/min and
finally 290◦C by 30◦C/min, which was thenmaintained for 8min.
The temperature of the ion source and injection port was set at
230◦C and 290◦C, respectively. The injected volume was 1 µL.
The flow rate of heliumwas 1.2mL/minwith a 20:1 split ratio. For
mass spectroscopy, electron bombardment ionization (EI) source
was selected and the electron energy was 70 ev. A full scan and a
sim scanningmode were adopted, the scanning range was 30–600
m/z. Carrier gas: high purity helium (purity > 99.999%).

Statistical Analysis
Statistical analysis was performed using SPSS 19.0 (IBM,
Armonk, New York), and all data were expressed as the
mean ± standard deviation (SD). Comparisons between groups
were analyzed using one-way ANOVA, and mapping with the
GraphPad Prism R© version 5.0 (GraphPad Software, San Diego,
CA, USA). A level of probability of p < 0.05 was set as
statistically significant.

RESULTS

Yield and Physiochemical Characterization
of SCP
SCP was obtained with a yield of 5.4% (w/w), a total carbohydrate
content of which is 94.9%. SCP was composed of D-glucosamine,
rhamnose, glucose, D-galactose, D-xylose and D-arabinose,
with a molar ratio of 7.5: 1.4: 2.5: 79: 7.1: 2.5, respectively
(Supplementary Material).

Behavioral Expression
After the mice were induced by DSS, most of the mice showed
physiological discomfort in varying degrees, such as mental
malaise, diarrhea symptoms, and even bloody stool symptoms.
The diarrhea, fecal occult blood and fecal blood symptoms were
significantly improved when SASP and SCP polysaccharide were
given. Weight loss is one of the most important indexes for
the evaluation of DSS induced colitis. At the beginning of the
experiment design, there were 8 mice in each group, but with
the progress of the experiment, the DSS model mice would die,
resulting in the difference in the number of mice between groups
at the end of the laboratory. At the end of the experiment, the
number ofmice in each groupwas 8 in theNC group, 5 in theDSS
group, 6 in the SASP group and 6 in the SCP group. The results
(Figure 1) showed that the weight of model group (DSS induced
colitis mice) was significantly lower than that of normal control
group (P < 0.01). After SASP and SCP were given, the weight of
colitis mice increased to a certain extent, especially SCP group
(P < 0.05). In addition, in the process of modeling, researchers
found that the weight of colitis mice began to decline from the
third day. After giving drugs on the 7th day, the weight of colitis
mice began to rise significantly from the 12th day (P < 0.05).

Histopathological Analysis of Colon
Tissues
The histopathological changes in the colon in each group are
shown in Figure 2. The results showed that in the NC group, the
colonic mucosa epitheliumwas arranged in order, the crypt gland
was obviously complete, the goblet cells were abundant, and there
was no inflammatory cell infiltration; in the DSS model group,
the colonic mucosa epithelium was ulcerated, the crypt structure
was partially disappeared or deformed, the goblet cells were lost,
and a large number of inflammatory cells were infiltrated. After
SASP and SCP were given during the model period, the degree
of colon damage in the model group was significantly lower than
that in the model group, which indicated that SASP and SCP had
a certain alleviation and protection effect on the occurrence of
colitis, especially SCP.

Changes of Inflammatory Cytokines
To evaluate the effects of SCP on inflammation, the colon levels of
MPO, GSH, NO, SOD, ROS and MDA, TNF-α, IFN-γ, IL-1β, IL-
4, IL-6, IL-10, IL-13, IL-17, and IL-23 were measured. Compared
to mice of the NC group, the levels of MPO, NO, ROS, MDA,
TNF-α, IL-1β, IL-6, IL-10, IL-13, IL-17, and IL-23 in mice of the
DSS group were significantly increased (p < 0.01), whereas the
levels of GSH, SOD, IFN-γ, and IL-4 were decreased (p < 0.01)
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FIGURE 1 | Effects of SCP on body weight. NC, control group; M, DSS group; SASP, positive drug group; SCP, S. chinensis polysaccharide group. The values are

expressed as means ± S.D.

(Figures 3, 4). Compared to mice of the DSS group, SCP and
SASP significantly decreased the levels of MPO, NO, ROS, MDA,
TNF-α, IL-6, IL-13, IL-17, and IL-23, and increased the GSH,
SOD, IFN-γ and IL-4 levels. However, there were no significant
differences in the level of IL-1β and IL-10 (p > 0.05). Even SASP
can increase the level of IL-10. Another quite valuable finding
from the above results is that the SCP group is evenmore effective
than the SASP group.

The Proteins Expression of TNF-α, IFN-γ,
IL-1β, IL-10, and IL-23
We further examined the expression of inflammatory factors,
including TNF-α, IFN-γ, IL-1β, IL-10, and IL-23, in the colon
of each group by western blot analysis. As shown in Figure 5,
the expressions of TNF-α, IFN-γ, IL-1β, IL-10, and IL-23 were
markedly decreased in the mice of the DSS group, as compared
with the NC group (p < 0.01; except for IL-10, p < 0.05). All
treatment groups (SCP and SASP) could reduce the expression
of the above proteins in varying degrees, that is, inhibit the
inflammatory response of mice. Also, the SCP administration
markedly inhibited the inflammatory response than SASP.

Composition and Diversity of the Gut
Microbiota
α and β Diversity Analysis of the Gut Microbiota
The intestinal microbial diversity of mice was analyzed by the
Illumina MiSeq System. The rarefaction curves and estimators
are shown in Figure 6A. The rarefaction curves indicated that
the sequencing depth of gut microbiota in each sample is fully
captured and could be used for further analysis. The classification
of species was calculated using the Sobs index, the community
richness using the Ace and Shannon index (Figures 6B–D).
The results showed that the community richness in SCP group

significantly decreased as compared to DSS group (P < 0.05),
however, the Shannon richness index of SCP was closer, albeit
not significantly, to the NC group than the DSS group (p > 0.05).
These indicate that increased inflammatory injury of colon in UC
mice results in decreasedmicroflora community richness, but has
no influence on the community diversity. These results revealed
that the richness and diversity of the gut microbiota inmice of the
DSS group were significantly reduced compared with those of the
NC group. These results also indicated that after the intervention
of SCP, the species number, abundance and coverage of intestinal
flora were improved. SCP has a significant regulatory effect on the
intestinal flora of colitis mice, which may be one of the important
mechanisms of its anti-ulcerative colitis.

Principal coordinate analysis (PCoA) was used to evaluate the
clustering of the gut microbiota in each group (Figure 6E). A plot
of the PCoA scores showed that the DSS group had a significant
shift along the PC1 compared with NC and SCP groups. SCP
group showed a slight structural shift along the PC2. The location
of the SCP group was closer to NC as compared to the DSS
group. PCoA indicated a significant difference in the bacterial
community between SCP group and DSS group.

Composition Analysis of the Gut Microbiota
The microbiota composition in different groups was further
investigated. The relative abundance of the gut microbiota
classification units was presented as a stacking histogram
(Figure 7). At the phylum level, all the groups mainly
composed of Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteria (Figure 7A). Although DSS treatment induced a
significant decrease in the relative abundance of Bacteroidetes,
Proteobacteria, and Actinobacteria, there was a dramatic increase
in Firmicutes. SCP improved gut dysbiosis. After SCP treatment,
the relative abundance of Firmicutes, Proteobacteria, and
Bacteroidetes returned to their respective normal levels. There
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FIGURE 2 | (A–E) Histopathological observation of the Colon. NC, control group; M, DSS group; SASP, positive drug group; SCP, S. chinensis polysaccharide group.
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FIGURE 3 | Levels of inflammatory cytokines. NC, control group; M, DSS group; SASP, positive drug group; SCP, S. chinensis polysaccharide group. Data are

expressed as means ± S.D. *p < 0.05, **p < 0.01, ***p < 0.001.

was no significant difference in the main components between
SCP and DSS groups at the phylum level. At the genus level
(Figure 7B), DSS treatment induced a significant decrease in
the relative abundance of norank_f_Bacteroidales_S24-7_group,
Desulfovibrio and Alistipes, there was a dramatic increase in
Lactobacillus, Turicibacter and Clostridium_sensu_stricto-1.

The proportion of norank_f_Bacteroidales_S24-7_group,
Desulfovibrio and Alistipes significantly increased and
significantly decreased Lactobacillus, Turicibacter abundance
after SCP treatment. In addition, at the taxonomic level of
phylum and genus, we also counted the species abundance
of each sample, and studied the community composition
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FIGURE 4 | Levels of inflammatory cytokines. NC, control group; M, DSS group; SASP, positive drug group; SCP, S. chinensis polysaccharide group. Data are

expressed as means ± S.D. *p < 0.05, **p < 0.01, ***p < 0.001.

intuitively through the visualization method of the Heatmap
(Figures 7C,D). The results showed that SCP and NC groups
could be clustered well at phylum and genus levels, and could be
significantly separated from DSS groups. This revealed that the
intestinal flora composition of mice treated with SCP was closer
to that of NC group.

The changes in the relative abundance of each phylum and
genus among groups were further compared (Figures 7E,F).
At phylum levels, the genera with a higher ratio of
abundance were Firmicutes and Verrucomicrobia in the
DSS group. Compared to the DSS group, SCP increased
the relative abundance of Bacteroidetes, Actinobacteria,
and reduced the relative abundance of Firmicutes and
Verrucomicrobia. At genus levels, compared to the NC
group, the abundance of norank_f_Bacteroidales_S24-7_group,

Desulfovibrio, Alistipes, Enterorhabdus and Pseudomonas in
DSS group were decreased significantly, and the abundance
of Tericibacter, Akkermansia, Ruminococcaceae_UCG-
14 and Clostridium_sensu_stricto_1 in DSS group were
increased significantly. Compared to the DSS group, SCP
can regulate the above gut microbiota to the level close to the
NC group.

Linear discriminate analysis (LDA) effect size (LEfSe) is a
statistical tool designed to find biomarkers from metagenome
data with default parameters to identify potential discriminating
taxa between two groups. An LDA score of 2.5 was used for
identifying bacterial groups with statistical significance. When
the DSS group was compared with the NC group, 38 taxa with
significant differences were found in DSS group, and 35 taxa
showed significant abundance in NC group (Figures 8A,B). The
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FIGURE 5 | Expression level of key proteins. NC, control group; M, DSS group; SASP, positive drug group; SCP, S. chinensis polysaccharide group. Data are

expressed as means ± S.D. *p < 0.05, **p < 0.01, ***p < 0.001.

clade graph showed that the difference contribution degree of
Verrucomicrobia in DSS group was higher at the phylum level,
and the difference contribution degree of Actinobacteria and
Saccharibacteria in NC group was higher at the phylum level.
The species and abundance of different species in DSS group

were significantly higher than those in NC group. When the
SCP group was compared with the DSS group, 28 taxa with
significant differences were found in DSS group, and 29 taxa
showed significant abundance in SCP group (Figures 8C,D).
The results showed that the difference contribution degree
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FIGURE 6 | α and β Diversity analysis of the gut microbiota. (A) Rarefaction curves. (B) Sobs analysis. (C) Ace index. (D) Shannon index. (E) PCoA score plot. NC,

control group; M, DSS group; SCP, S. chinensis polysaccharide group. Values are expressed as means ± S.D. Graph bars marked with different letters represent

statistically significant results (p < 0.05) based on ANOVA with Duncan’s range tests, whereas bars marked with identical letters represent no statistically significant

differences.

of Fimicutes and Verrucomicrobia in DSS group was higher
at the phylum level, and the difference contribution degree
of Bacteroidetes and Saccharibacteria in SCP group was
higher at the phylum level. Furthermore, the difference
contribution degree of Clostridium_sensu_stricto_1, Roseburia,
Akkermansia, Faecalibaculum, Eubacterium_nodatum_group
etc. in DSS group was higher at the genus level, and the
difference contribution degree of norank_f_Bacteroidales_S24-
7_group, Tyzzerella, norank_c_Cyanobacteria, Enteromabdus,
Alloprevotella etc. in SCP group was higher at the
genus level.

Results from LEfSe showed that there were 73 taxa that
could distinguish the DSS group from the NC group, and
57 taxa that could distinguish SCP group from DSS group

with the LDA score > 2.5. In SCP group, the abundances of
Alloprevotella genus from Bacteroidetes phylum (P = 0.005062),
Saccharibacteria phylum (P = 0.005712), Bacteroidetes
phylum (P = 0.004075), and Bacteroidales_S24_7_group
family (P = 0.01762) from Bacteroidetes phylum increased
significantly as compared to DSS group. But the abundances
of Anaerotruncus genus (P = 0.006170) from Firmicutes
phylum and Firmicutes (P = 0.02846) phylum were higher in
DSS group.

Analysis of Fecal SCFAs
The content of acetic acid, propionic acid, butyric acid, isobutyric
acid, valeric acid and isovaleric acid was investigated to evaluate
the effects of SCP on microbial metabolites (Figure 9). After the
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FIGURE 7 | Composition of the gut microbiota. (A) Phylum level. (B) Genus level. (C) Heat map analysis at phylum level. (D) Heat map analysis at genus level. (E) Main

different composition at phylum level. (F) Main different composition at genus level. NC, control group; M, DSS group; SCP, S. chinensis polysaccharide group.
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FIGURE 8 | (A–D) Cladograms indicating the polygenetic distribution of bacterial lineages associated with the different groups. Indicators between inner and outer

mangrove sediments with LDA score larger than 2.5. LEfSe provided the features that are differential bacterial taxa ranking according to the effect size. Different color

nodes represent the microbial groups that are significantly enriched in corresponding groups and have significant influence on the differences between groups. The light

yellow node indicates the microbial groups that have no significant difference in different groups or have no significant influence on the differences between groups.

mice were treated withDSS, the content of propionic acid, butyric
acid, isobutyric acid, and valeric acid significantly decreased in

the colonic contents in mice of the DSS group compared with

those of the NC group (p< 0.05). The SCFAs levels in mice of the

SCP group recovered at different levels, especially the propionic

acid, butyric acid and valeric acid levels (p < 0.001). However,
the recovery of the SCFA level after SASP administration was not

significant, except isobutyric acid and valeric acid.

Correlation Between Gut Microbiota and
SCFAs
To determine whether there is a potential association between
the alteration of the gut microbiota and host metabolism, we
analyzed the correlation between the relative abundance of
the gut microbiota and the SCFAs using Spearman correlation
analysis (Figure 10). At the Phylum level, acetic acid, propionic
acid, butyric acid, isobutyric acid and isovaleric acid all
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FIGURE 9 | Concentrations of SCFAs in mice colonic contents. NC, control group; M, DSS group; SASP, positive drug group; SCP, S. chinensis polysaccharide

group. Data are expressed as means ± S.D. * 0.01 < p ≤ 0.05, ** 0.001 < p ≤ 0.01, *** p ≤ 0.001.

had a significant positive correlation with Bacteroidetes (p <
0.05). There was a significant positive correlation between
valeric acid and Bacteroidetes (p < 0.01). And propionic acid,
butyric acid, valeric acid and isovaleric acid all had significant
positive correlation with Actinobacteria (p < 0.05). There was
a significant positive correlation between isobutyric acid and

Actinobacteria (p < 0.01). In addition, butyric acid, isobutyric
acid and valeric acid all had significant positive correlation
with Saccharibacteria (p < 0.05). At Genus level, SCFAs
main had significant positive correlation with Alloprevotella,
Anaerotruncus, Bifidobacterium, Candidatus_Saccharimonas,
Enterorhabdus, Rikenellaceae_RC9_gut_group and
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FIGURE 10 | (A,B) Correlation between gut microbiota and SCFAs parameters. * 0.01 < p ≤ 0.05, ** 0.001 < p ≤ 0.01, *** p ≤ 0.001.

norank_f_Bacteroidales_S24-7_group (p < 0.05), and main had
significant inverse correlation with Clostridium_sensu_stricto_1,
Faecalibaculum and Ruminococcaceae_UCG-014 (p < 0.05).
The statistical results showed that butyric acid, isobutyric
acid and valeric acid had the highest correlation with
gut microbiota.

DISCUSSION

Ulcerative colitis is a chronic recurrent disease characterized
by intestinal inflammation and epithelial injury (Van Der
Veen et al., 2009). In this study, we successfully established
a UC mouse model. As a result, the intestinal microbial
structure was destroyed, the level of inflammatory cytokines
increased, the intestinal microbial environment was unbalanced,
and the concentration of SCFAs in the intestinal contents
decreased. More and more evidence shows that the complex
interaction between TCM and the intestinal micro-ecosystem
is essential during the treatment of TCM (Xu et al., 2017). In
this study, Schisandra chinensis polysaccharide improved the
composition and diversity of the gut microbiota by treating
UC mice.

The changes of cytokines are also related to the treatment
of SCP, such as interleukin and tumor necrosis factor play
an important role in the immune system. As communicators
between immune cells, they can reflect the host’s inflammation.
IL-1β, IL-4, and TNF-α levels were negatively correlated with

cereal fiber intake (Chuang et al., 2011). Tn cells differentiate
into Th1 cells induced by IL-12. Th1 cells specifically express
T-bet and secrete IFN - γ. IFN - γ is associated with the
pathogenesis of organ-specific autoimmune diseases (Hirahara
and Nakayama, 2016). Tn cells are differentiated into Th2 cells
by the action of IL-4 to protect the body from pathogens. Th2
cells can also be regulated by the transcription factor GATA-
3 and secrete IL-4, IL-5, IL-13 and other effector cytokines
to regulate allergic reaction (Choy et al., 2015). Cytokines
such as IL-6, IL-23, TGF - β and IL-1 β induce TN cells
to differentiate into Th17 cells, mediate the inflammatory
response, eliminate bacteria and fungi outside the cells, and
are closely related to the occurrence and development of
autoimmune diseases. Tregs cells were induced by TGF - β

alone to promote tissue repair. Tregs cells express forked head
transcription factor Foxp3 and secrete IL-10, which can inhibit
the inflammatory response (Joller et al., 2014). In this study,
mice of the DSS group showed increased levels of IL-1β, IL-
6, IL-10, IL-13, IL-17, IL-23, and TNF-α, but decreased levels
of IFN - γ and IL-4, suggesting that UC associated with
these changes in inflammatory cytokines. Compared to the
DSS group, SCP significantly increased the IFN - γ and IL-
4 levels; but decreased IL-6, IL-10, IL-17, IL-23, and TNF-α
levels significantly. SCP might possess anti-inflammatory ability,
which explains why the recovery in the cytokine levels was
closer to the NC group. Intestinal disorders are manifestations
of a variety of diseases, especially metabolic syndromes such
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as obesity, diabetes, hypertension, and hyperlipidemia (Thomas
et al., 2017). It has been reported that Schisandra chinensis
polysaccharides can improve antibiotic-related diarrhea in rats by
reducing the relative abundance of Blautia, Enterobacteriaceae,
and Lachnospiraceae-UCG-008. But at the genus level, the relative
abundance of Rumenococcus-1, Rumenococcus-UCG-014 and
Erysipelatoclostridium were reduced (Qi et al., 2019). In this
study, the gut microbiota richness and diversity of the NC group
and the DSS group were significantly different. The Sobs, Ace
and Shannon richness index results showed that the recovered
gut microbiota richness of SCP was closer to NC mice. The
composition analysis of the gut microbiota indicated that mice
of SCP group basically eliminated the dysbacteriosis caused
by DSS.

SCFAs are important metabolites in the gut microbial
environment. They are also closely involved in immune, anti-
tumor and anti-inflammatory activities (Cousens et al., 1979;
Frost et al., 2014; Fernández et al., 2016; Li et al., 2018). A
change in metabolite levels can reflect the homeostasis of the
gut microbiota. The latest research shows that SCFAs can not
only effectively reduce the incidence of enteritis, cardiovascular
disease, colon cancer, obesity and diabetes, but also play an
important role in maintaining the balance of energy metabolism
(mainly glucose metabolism) and increasing insulin tolerance
(Delzenne and Cani, 2005; Delzenne et al., 2011). It has been
reported that propionate and butyrate can activate intestinal
gluconeogenesis through the “gut-brain axis” neural network,
maintain body weight balance and regulate normal blood glucose
level (De Vadder et al., 2014). During UC, the production of
SCFAs suddenly decreased. We found that SCP significantly
improved the content of propionic acid, butyric acid and
valeric acid in the colon of treated mice, especially the butyric
acid. Butyric acid plays an important role in maintaining the
stability of intestinal microecology. It can provide energy for
host intestinal epithelial cells, especially in colon and cecum
(Vinolo Marco et al., 2011). On the other hand, butyric acid can
improve the structure of bacterial population, improve intestinal
immunity and maintain intestinal homeostasis (Furusawa et al.,
2013; Dong et al., 2016). Some studies have shown that butyrate
can activate peroxisome proliferator activated receptor - γ (PPAR
- γ) in colon cells, inhibit the expression of NOS2, reduce the
level of nitrate, and consume oxygen by promoting β - oxidation
of colon cells, thus avoiding the growth and proliferation of
pathogenic bacteria (Byndloss et al., 2017). Gut microbiota
and its metabolites are very important for the host’s immune
regulation. As an important immune regulatory molecule, they
can regulate the production, transfer and function of immune
cells (Goncalves et al., 2018). It was found that butyric acid
can also activate GPR to affect the activation of inflammatory
factors such as IL-1 and IL-6, inhibit the expression of other
inflammatory factors, and promote the secretion of intestinal
antimicrobial peptides and the apoptosis of T cells (Aguilar et al.,
2014; Ran et al., 2018). Two biological activities of butyric acid
in the colon (inhibition of proliferation of colonic epithelial stem
cells and inflammation) are related to the inhibition of histone
deacetylase activity (Verma et al., 2018). In addition, butyric acid,
as a histone deacetylase inhibitor, enhances the intestinal mucosal

immune response in the proliferation and differentiation of
T and B lymphocytes (Park et al., 2015; Kim et al., 2016),
which may be related to butyric acid driving the differentiation
and function of macrophages, increasing the expression of
antimicrobial peptides and enhancing the bacteriostatic ability
after bacteriostatic ability after inhibiting histone deacetylase-
3 (Schulthess et al., 2019).

In present study, SCP is prepared by boiling in water,
and it may not be the most effective method for extracting
polysaccharide from Schisandra chinensis. The emerging
potential methods of pretreatment and extraction of active
components with ammonia and hydrogen peroxide (Zhao et al.,
2017a, 2020a,b) and pre-soaking (Zhao et al., 2017b; Qiao et al.,
2018) may bring unexpected insights into the material basis of
Schisandra chinensis. In addition, Schisandra chinensis contains
water, and the determination of water content may be performed
before extraction (Zhang et al., 2019), which contributes to
accurate determination of polysaccharide in future research.

In conclusion, we found SCP had beneficial effects on mice
with UC by recovering the gut structure, adjusting the cytokine
levels, improving the diversity and composition of the gut
microbiota and increasing the production of SCFAs. Compared
to mice of the DSS group, SCP ameliorated the colon levels of
IFN-γ, TNF-α, IL-1β, IL-10, IL-23, IL-4, IL-17, IL-13, and IL-6,
adjusted the relative abundance of norank_f_Bacteroidales_S24-
7_group, Desulfovibrio, Alistipes, Lactobacillus, Turicibacter,
Firmicutes, Proteobacteria and Bacteroidetes at the genus and
phylum level and significantly increased the content of acetic
acid, propionic acid, butyric acid and total SCFAs. Our results
indicated that SCP might serve as a potential natural product to
treat UC.
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