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Abstract: Two new lindenane sesquiterpenes were obtained from the roots of Lindera myrrha. These
compounds were structurally elucidated by HRMS data, extensive NMR analyses, and comparison
between experimental and theoretical 13C-NMR data. Myrrhalindenane A is the first monomeric
seco-d lindenane displaying a non-rearranged, cyclohexanic C-ring. Myrrhalindenane B is the second
occurrence of an angular lindenane-sesquiterpene related to a C6-C7 lactonization.
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1. Introduction

Lindera is a core genus of the Litseeae tribe of the Lauraceae family [1]. Many Lindera plants
are of salient economical interest for soap and lubricant manufacturing (especially Lindera communis
and Lindera glauca) owing to their elevated fatty oil content, while others are used to produce
fragrances, species, and even building timber. As to ethnopharmacological claims, Lindera aggregata is
included in various preparations of the Chinese Pharmacopoeia for treating urinary system diseases
and inflammatory-related health hazards [2]. Other plants are also used in folk medicine such as
Lindera umbellate, which is endowed with antispasmodic properties and has beneficial effects on gastric
ulcers, cholera, and beriberi [3]. Fueled by the diverse interests lying in these plants, a wealth of
skeletons were reported to have occurred in this well-studied family, the most represented of which
include sesquiterpenes (mainly lindenanes, eudesmanes, and germacranes), and aporphine alkaloids,
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along with some typical α-methylene-γ-butyrolactones collectively known as butanolides, and a few
emblematic polysubstituted cyclopentanediones designated as lucidones [2]. Within this thoroughly
studied genus, Lindera myrrha (Lour.) Merr., a small shrub common in central Vietnam, long remained
unstudied. Conducted in 1994, the first phytochemical investigation dedicated to this species led to
the isolation of a suite of aporphine alkaloids, including a new noraporphine, oduocine; and a new
oxaporphine, oxoduocine [4]. A novel dihydroisocoumarin, lindermyrrhin, was further described
from L. myrrha [5], but as far as can be ascertained, its terpene content remained unstudied. With this
in mind, our study focused on the sesquiterpenes of L. myrrha roots, leading to the isolation of two
new structures: myrrhalindenanes A and B. The structures of the isolated compounds 1 and 2 were
elucidated by the interpretation of their spectroscopic data and by comparison with those described in
the literature.

2. Results and Discussion

Compounds 1 and 2 were isolated from the methanol extract of L. myrrha by repeated
chromatographic fractionations, including column chromatography, size-exclusive column
chromatography, and preparative TLC.

Compound 1 was isolated as a white, amorphous solid. Its molecular formula was determined to
be C15H18O4 from its HRESIMS ion at m/z 285.1090 [M + Na]+ (calculated for C15H18O4Na, 285.1097).
The 13C-NMR spectrum, along with HSQC data, exhibited 15 signals for carbons consisting of one
carbonyl, one carboxyl, two olefinic quaternaries, an oxygenated tertiary carbon, an olefinic methine, an
exo-methylene, three methines, and a quaternary carbon (Table 1). These functionalities accounted for 4
indices of H deficiency, defining the tricyclic scaffold of 1 (Figure 1). The 1H-1H correlation spectroscopy
spectrum of 1 showed a proton spin system of a 1,2-disubstituted cyclopropane ring (δH 1.46 (H-1);
δH 0.71/1.52 (H2-2); and δH 2.00 (H-3)) (Supplementary Materials). These structural features were
evocative of a lindenane-type sesquiterpene [6]. The cautious analysis of the 2D-NMR spectra revealed
a polycyclic framework embedded with a sterically congested cyclopentane, as deduced from the
HMBC correlations from the angular methyl group at δH 1.13 (H3-14) to the carbons resonating at
δC 31.1 (C-1), δC 76.5 (C-5), and δC 51.2 (C-9), and from the exo-methylene that was located at C-4
based on long-range heteronuclear crosspeaks between the olefinic protons at δH 4.99/5.17 (H2-15) to
C-3 (δC 23.4) and C-5 (δC 76.5). The chemical shift of the isolated diastereotopic methylene group at
δH 2.31/2.39 (each 1H, d, J = 15.5 Hz) hinted at it being vicinal to a carbonyl function. This tentative
assignment was supported by the HMBC crosspeak from H2-9 to the carbon resonating at δC 197.7
(C-8). Altogether, these spectroscopic data left no choice but to introduce a ∆6,7 moiety. The C-6
location of the olefinic proton was validated based on the HMBC correlations from H-6 to C-5, the
quaternary olefinic carbon resonating at δC 163.1 (C-7), and to C-8. In the end, the C-9 location of the
side chain was established owing to the HMBC correlations from the methine at δH 3.50 (H-11) to both
C-7 and C-8. This methine was deduced to have been substituted by a methyl and a carboxylic acid
group based on (i) the COSY crosspeak between this and the methyl protons at δH 1.13 (CH3-14), and
(ii) the HMBC correlation from these methyl protons to both C-7 and the carbon resonating at δC 174.0
(C-12). These spectroscopic features determined the planar structure of 1, namely myrrhalindenane A,
as indicated in Figure 2. The NOESY correlations between H2-2 and H3-14 determined their synfacial
orientation. Aside from the doubts regarding C-5 configuration, the absolute configuration assignment
of C-11 represented a vexing problem in its achiral environment. These spectroscopic features led us to
consider four different stereochemical arrangements, as indicated in Figure 3. DFT-NMR chemical
shift calculations and the subsequent DP4 probability method [7] were performed on these different
candidates. This DP4 application demonstrated the structural equivalence of 1 with diastereoisomer
1C with 88.8% probability (Figure 3).
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Table 1. 13C- and 1H-NMR spectroscopic data (125/500 MHz) for 1–2 in acetone-d6 (δ in ppm). 
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1 31.1  1.46, 1H, m  29.1  1.49, 1H, m 

2 13.3  1.52, 1H, m 
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 12.3  1.36, 1H, m 
0.70, 1H, m 

3 23.4  2.00, 1H, m  28.7  1.87, 1H, m 
4 155.9  -  80.1  - 
5 76.5  -  63.8  2.27, 1H, d, 12.0 
6 145.0  6.65, 1H, s  78.4  5.03, 1H, dq, 12.0, 2.0 
7 136.1  -  154.6  - 
8 197.7  -  197.7  - 
8 150.0  -  148.7  - 

9 51.2  
2.39, 1H, d, 15.5 
2.31, 1H, d, 15.5  56.5  

2.67, 1H, d, 16.0 
2.62, 1H, d, 16.0 

10 50.8  -  41.4  - 
11 38.9  3.50, 1H, q, 7.0  132.1  - 

Figure 1. Chemical structures of compounds 1 and 2.
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Table 1. 13C- and 1H-NMR spectroscopic data (125/500 MHz) for 1–2 in acetone-d6 (δ in ppm).

1 2

δC δH (J, Hz) δC δH (J, Hz)

1 31.1 1.46, 1H, m 29.1 1.49, 1H, m

2 13.3
1.52, 1H, m

12.3
1.36, 1H, m

0.71, 1H, m 0.70, 1H, m
3 23.4 2.00, 1H, m 28.7 1.87, 1H, m
4 155.9 - 80.1 -
5 76.5 - 63.8 2.27, 1H, d, 12.0
6 145 6.65, 1H, s 78.4 5.03, 1H, dq, 12.0, 2.0
7 136.1 - 154.6 -
8 197.7 - 197.7 -
8 150 - 148.7 -

9 51.2
2.39, 1H, d, 15.5

56.5
2.67, 1H, d, 16.0

2.31, 1H, d, 15.5 2.62, 1H, d, 16.0
10 50.8 - 41.4 -
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Table 1. Cont.

1 2

δC δH (J, Hz) δC δH (J, Hz)

11 38.9 3.50, 1H, q, 7.0 132.1 -
12 174 - 173.9 -
13 16.6 1.26, 3H, d, 7.0 9.8 1.92, 3H, s
14 18.3 1.13, 3H, s 21.9 1.11, 3H, s

15 109
5.17, 1H, s

68.2
3.67, 1H, d, 10.5

4.99, 1H, s 3.80, 1H, d, 10.5

Compound 2 was obtained as a white, amorphous solid. Its molecular formula, C15H18O5, was
established from the sodiated ion peak at m/z 301.1047 (calculated for C15H18O5Na), differing from
compound 1 by an additional oxygen atom. Notwithstanding their common lindenane core, the
NMR data revealed some salient structural differences between these compounds. The 13C-NMR
data revealed the lack of the exo-methylene moiety and the loss of the olefinic proton although a
tetrasubstituted double bond could be identified. In line with this latter point, the downfield 1H
chemical shift of the signal related to the methyl CH3-13 (δH 1.92 vs. 1.26), combined with the shielding
of the corresponding carbon (δC 9.8 vs. 16.6) were evocative of its location on a double bond [8].
Conversely, the 1H-NMR spectrum displayed further signals corresponding to a tertiary methine at δH

2.27 (1H, d, J = 12.5 Hz), coupled with an oxygenated methine at δH 5.03 (1H, d, J = 12.5 Hz). Likewise,
an additional set of oxygenated diastereotopic methylene at δH 3.80/3.67 could be identified, as well
as a new tertiary oxygenated methine at δC 80.1. Along with the unchanged carbonyl moieties at δC

197.7 and 173.9, these functionalities represented three indices of hydrogen deficiency, determining the
tetracyclic appendage of 2. The oxygenated methylene could be located at C-4 based on the long-range
heteronuclear correlations from these protons to C-3 (δC 28.7), C-4 (δC 80.1), and C-5 (δC 63.8). The joint
HMBC correlations from the methyl protons at δH 1.11 and of the diastereotopic methylene signals
at δH 2.62/2.67 (each 1H, d, J = 16 Hz) to the carbon resonating at δC 63.8, validated the occurrence
of a methine at this specific position (C-5). The chemical shift of C-4 (δC 80.1) defined the presence
of a hydroxy group on it. Such B-ring structures are recurrent within lindenane sesquiterpenes,
falling into the third subtype defined by Du [9]. The tetracyclic core of 2, and the unchanged chemical
shifts of both C-8 and C-9 left no possibility but to introduce an additional α-methyl-∆α,β-γ lactone
fused ring at C-6/C-7. This assumption was validated by the correlations from the olefinic-located
methyl at δH 2.27 to the quaternary carbons C-7 (δC 154.6) and C-11 (δC 132.1), to the carbonyl-type
carbon C-12 (δC 173.9), and from the oxymethine proton H-6 to C-11. These spectroscopic data were
fully consistent with those of formerly reported sesquiterpene lactones [10,11]. The antiperiplanar
orientation of H-5 and H-6 could be determined from the magnitude of the coupling constant value
(J = 11.5 Hz) [11]. Having in mind, i) the consensual trans arrangement of the hydrindane system in
lindenane sesquiterpenes, and ii) the antifacial orientations of H-5 and H-6, only left the configuration
of C-4 pending assignment [12,13]. A preferred configuration for C-4 prevails with a β-OH group
and an α-oxygenated methylene moiety, so that Du’s lindenane sesquiterpene subtypes define the
absolute configuration of this stereocenter [9]. Nevertheless, exceptions were reported throughout
literature [11,14,15], so assigning the configuration of these positions based solely on biosynthetic
considerations is not a relevant approach to reliably establish the configuration of such compounds.
To remedy this, DFT-NMR calculations and subsequent 13C-NMR data comparison of the two possible
epimers against the experimental data set, resulted in the prediction of diastereoisomer 2A with 100%
probability (Figure 4).
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Figure 4. Chemical structures of the four possible diastereoisomers of compound 2 along with their
respective DP4 probabilities.

Compounds 1 and 2 were found to be unstable on storage. After three days at room temperature,
both had undergone ca. 70% decomposition to yield a mixture of products. The minute amounts of
compound precluded any further repurification attempt. In these conditions, the recorded ECD spectra
provided no clear-cut match, irrespective of the absolute configuration used in TDDFT. This observation
is in line with precedents having outlined the inherent instability of lindenane ring system [16,17],
which was occasionally reported in the course of former phytochemical investigations [18]. Despite
the lack of spectroscopic evidence, the consensual β-orientation of both the methyl and cyclopropyl
functions not only in Lindera species [2], but also within the Chloranthaceae plants that produce a
much higher number of these sesquiterpenes [19,20], gave strong support to the preferred absolute
configuration depicted in Figure 1.

The determined A/B ring substitution pattern of myrrhalindenane A is common among lindenane
sesquiterpenes, falling into the lindenane sesquiterpenoid subtype I, as defined by Du and co-workers [9].
Conversely, the occurrence of oxygenated substituents at C-5 is rather uncommon among lindenane
sesquiterpenes, since this position is often substituted by an α-disposed hydrogen atom, or is
unsaturated due to either a ∆4,5 or a ∆5,6 function [13]. A few structures were however reported to
contain an oxygenated substituent at C-5 such as sarcandralactone A, which revealed a 5β-OH group [21]
or the dimeric sarcandrolide F that exhibits a 5β-OOH group [22]. The side chain located at C-7 can
be assumed to arise from the hydrolysis of a 2-methyl-2-butyrolactone or a 2-methylbutyrolactone D
ring related to the canonical lindenane skeleton. Only a few seco-d lindenanes have been reported to
date. Some such compounds were formerly described in the Lindera species as strychnilactone [23],
lindenanolide G [24], and linderagalactones B and C [25]. Nevertheless, all these structures undergo
later rearrangement to afford a α-pyrone C-ring, therefore differing from the currently reported
carbon skeleton. These compounds also differ from 1 by the constant occurrence of a ∆7,11 moiety.
Remarkably, a wealth of seco d-lindenanes were reported within lindenane sesquiterpenoid [4 + 2]
dimers, especially from the Sarcandra species, e.g., sarcandrolides [22,26]; and various Chloranthus
plant species such as shizukaol species [27–29], chlorahololides [30,31], spicachloranthins E and F [32],
and chlorajaponilides [33], among many others. The biosynthesis of dimeric lindenane sesquiterpenes
is deemed to proceed via a Diels–Alder reaction with ∆4,15 and ∆5,6 representing the diene reactive
unit [34]. Furyldiene lindenanes and, more generally speaking, molecules displaying these structural
features rendering them prone to undergoing Diels–Alder addition, seem to be too unstable to be
isolable [9]. This inherent reactivity towards dimerization most likely accounts for 1 being the first
reported seco d-lindenane monomer, which can be readily related to its ∆6,7 function that prevents it
from dimerizing. Lindermyrrhin B (2) is the second example of a 3/5/6/5 tetracyclic lindenane-type
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sesquiterpene lactone formed at C-6 and C-7, with the first such occurrence being reported from
Xanthium sibericum (Asteraceae) [11].

3. Materials and Methods

3.1. General

The NMR spectra were measured on a Bruker Avance III (500 MHz for 1H-NMR and 125 MHz for
13C-NMR, Bruker, Bremen, Germany) spectrometer with TMS as internal standard. Chemical shifts
are expressed in ppm with reference to the residual protonated solvent signals (acetone-d6 with δH

2.05, δC 206.26, and 29.84) or the internal TMS (0.00). The HR–ESI–MS were recorded on a HR–ESI–MS
Bruker microOTOF Q-II (Bremen, Germany). TLC was carried out on precoated silica gel 60 F254 or
silica gel 60 RP-18 F254S (Merck, Darmstadt, Germany), and spots were visualized by spraying with
10% H2SO4 solution followed by heating. Gravity column chromatography was performed with silica
gel 60 (0.040–0.063 mm, Himedia, Mumbai, India).

3.2. Plant Material

The roots of Lindera myrrha were collected from Cu Chi District, Ho Chi Minh City, in July 2016.
The botanical sample was authenticated by Dr. Pham Van Ngot, Department of Botany, Faculty of
Biology, Ho Chi Minh University of Pedagogy. A voucher specimen (No UP-B05) was deposited in the
herbarium of the Department of Organic Chemistry, Faculty of Chemistry, Ho Chi Minh University
of Education.

3.3. Extraction and Isolation

Roots of Lindera myrrha (7.5 kg) were extracted by maceration with MeOH (3 × 20 L) at ambient
temperature for 4 h each. The filtrated solution was evaporated to dryness under reduced pressure to
obtain a crude extract (420 g). This extract was subsequently reextracted using solvents of increasing
polarities, n-hexane-EtOAc (1:1) (HA, 72.1 g), and EtOAc (EA, 125.8 g). The latter was applied to
normal phase silica gel CC, and isocratically eluted with a solvent system of n-hexane-EtOAc-acetone
(1:1:1) to afford fraction EA1 (8.1 g). Continuous elution of the column with EtOAc-acetone (1:1),
EtOAc-MeOH (8:2), and EtOAc-MeOH (5:5) afforded four fractions, namely EA2 (4.2 g), EA3 (13.6 g),
EA4 (7.8 g), and EA5 (40.4 g), respectively.

Fraction EA1 (8.1 g) was rechromatographed on column chromatography, to be isocratically eluted
with a CHCl3-EtOAc-acetone-AcOH (100:40:25:1) solvent system to afford subfractions EA1.1 (2.03 g),
EA1.2 (2.53 g), EA1.3 (1.22 g), and EA1.4 (1.8 g). Among these, subfraction EA1.3 was submitted to
Sephadex LH-20 column chromatography, eluted with MeOH to afford three sub-fractions EA1.3.1
(0.7 g), EA1.3.2 (0.3 g), and EA1.3.3 (0.2 g). Fraction EA1.3.2 was further purified by preparative TLC
using n-hexane-CHCl3-EtOAc-acetone-AcOH (1:1:2:2:0.02) as eluent to afford compounds 1 (3.1 mg)
and 2 (1.1 mg).

Myrrhalindenane A (1). White amorphous solid. 1H- and 13C-NMR (see Table 1); HRESIMS m/z 285.1090
[M + Na]+ (calculated for C15H18O4Na, 285.1103).

Myrrhalindenane B (2). White amorphous solid. 1H- and 13C-NMR (see Table 1); HRESIMS m/z 301.1047
[M + Na]+ (calculated for C15H18O5Na, 301.1052).

3.4. Computational Details

All DFT calculations were carried out using Gaussian 09 software package [35]. The stable
conformations were optimized at B3LYP/6-311++G(2d,2p) level of theory, as confirmed by the absence
of imaginary frequencies at the same level. Theoretical 13C-NMR chemical shifts were deduced from the
isotropic magnetic shielding tensors by using gauge-independent atomic orbital (GIAO) methodology
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at B3LYP/6-311+G(d,p) [36–38]. The DP4 probabilities were performed using online implementation
available from http://www-jmg.ch.cam.ac.uk/tools/nmr/DP4/ [7].

4. Conclusions

The investigation of the so-far unstudied terpenic content of Lindera myrrha afforded two novel
monomeric lindenanes. Despite the elevated number of such metabolites formerly reported to occur in
Lauraceae and Chloranthaceae, these two compounds display unusual structural features. Among
these, the combination of a native cyclohexanic C ring and of a seco-d cycle, unprecedented within
monomeric lindenanes reported so far, is particularly worth being stressed out.

Supplementary Materials: The following are available online. 1H- and 13C-NMR spectra, HMBC spectra,
and HRMS spectra for 1 and 2; atomic coordinates of the lowest-energy conformers of the four candidate
diastereoisomers of 1 and 2.
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