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Abstract

Salmonella enterica is a common cause of minor and large food borne outbreaks. To achieve successful and nearly ‘real-time’
monitoring and identification of outbreaks, reliable sub-typing is essential. Whole genome sequencing (WGS) shows great
promises for using as a routine epidemiological typing tool. Here we evaluate WGS for typing of S. Typhimurium including
different approaches for analyzing and comparing the data. A collection of 34 S. Typhimurium isolates was sequenced. This
consisted of 18 isolates from six outbreaks and 16 epidemiologically unrelated background strains. In addition, 8 S.
Enteritidis and 5 S. Derby were also sequenced and used for comparison. A number of different bioinformatics approaches
were applied on the data; including pan-genome tree, k-mer tree, nucleotide difference tree and SNP tree. The outcome of
each approach was evaluated in relation to the association of the isolates to specific outbreaks. The pan-genome tree
clustered 65% of the S. Typhimurium isolates according to the pre-defined epidemiology, the k-mer tree 88%, the
nucleotide difference tree 100% and the SNP tree 100% of the strains within S. Typhimurium. The resulting outcome of the
four phylogenetic analyses were also compared to PFGE reveling that WGS typing achieved the greater performance than
the traditional method. In conclusion, for S. Typhimurium, SNP analysis and nucleotide difference approach of WGS data
seem to be the superior methods for epidemiological typing compared to other phylogenetic analytic approaches that may
be used on WGS. These approaches were also superior to the more classical typing method, PFGE. Our study also indicates
that WGS alone is insufficient to determine whether strains are related or un-related to outbreaks. This still requires the
combination of epidemiological data and whole genome sequencing results.
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Introduction

Salmonella is a common cause of infectious disease in human and

animals. Salmonella is classically divided into species S.bongori and

S.enterica; the latter further divided into more than 2,500 different

serotypes [1,2]. It is, however, only a limited number of serovars

that are responsible for most infections and in Europe, the most

prevalent S.enterica serovars isolated from humans are Enteritidis

and Typhimurium, responsible for over 75% of the human cases

of salmonellosis [3]. Salmonella infections can occur as minor and

major foodborne outbreaks (major outbreak - an outbreak that

attracts intensive publicity). In order to elucidate the epidemiology

and implement the control programs, reliable and rapid sub-

typing is essential [4,5]. Today, different typing methods are

commonly used as a central part of the detection and investigation

of Salmonella outbreaks, for instance, serotyping, phage typing,

pulse-field gel electrophoresis (PFGE) and multilocus variable

number of tandem repeat analysis (MLVA) [6–8]. PFGE has been

the gold standard for epidemiological investigations of foodborne

bacterial pathogens including Salmonella [9]. A drawback of PFGE

is that it is unable to separate very closely related strains because

the low rate of genetic variation does not significantly impact the

electrophoretic mobility of a restriction fragment [6]. MLVA has

major benefits in epidemiological surveillance of some Salmonella

[10], but serotype specific protocols are needed for high

discrimination.

During recent years the cost of whole genome sequencing

(WGS) has decreased dramatically and the technology becomes

increasingly available for routine use around the world [4,11].

Moreover, the speed of sequencing is decreasing from several days

or weeks to perhaps hours for a bacterial genome in the near

future [12]. The combination of low cost and high speed of WGS,

opens an opportunity for WGS to become very useful and

practical in various bacterial infectious studies [13–15] including

the routine use in diagnostic and public health microbiology

[12,16]. WGS has also been successfully used for elucidating the

evolution of some Salmonella sub-types [15,17]. Nevertheless, prior

to implementing WGS in routine surveillance, it is essential to

evaluate it compared to traditional method and to determine

which analytic approaches that might be most useful for a given

bacterial species and sub-type.

This study was conducted to evaluate WGS for outbreak typing

of S.enterica. A collection of presumed epidemiologically related and

un-related S.enterica strains were sequenced and analyzed using

four different bioinformatics approaches. The outcome was

evaluated according to the pre-defined expected epidemiological
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data and also compared to results obtained using the conventional

typing method, PFGE.

Methods

Bacterial Isolates and Molecular Typing
Salmonella strains were derived from the Danish laboratory-

based surveillance system of human gastrointestinal infections in

2000–2010. The procedures for isolation, identification, serotyp-

ing, antimicrobial susceptibility testing, PFGE and MLVA of the

isolates included in this study have been described previously

[9,18]. The S. Typhimurium collection consisted of 18 isolates

from 6 previously described outbreaks or clusters, primarily

defined by MLVA [9,10] and 16 strains that were expected to be

epidemiologically un-related to the outbreaks. The outbreaks were

selected to cover outbreaks that were restricted in time and

location [10] as well as some epidemiologically challenging

outbreaks (outbreak 1–3) that lasted several months [9]. The

isolates from each outbreak/cluster were selected to include some

of the known diversity within these (e.g. based on phage type,

MLVA, PFGE as well as the time span of the outbreak). The 16

background strains were selected, so at least two isolates belonged

to the same phage type as that of each of the 6 outbreaks. The set

of S. Enteritidis consisted of 5 isolates from a couple of outbreaks

and 3 background strains. The S. Derby collection comprised 3

isolates from a single outbreak and 2 background strains. Isolate

information was included in Table 1.

Whole Genome Sequencing
The total set of forty-seven Salmonella enterica genomes was

selected for multiplexed, paired-end sequencing on the Illumina

GAIIx genome analyzer (Illumina, Inc., San Diego, CA). The

procedures for DNA and library preparation including sequencing

in this study have been described previously and according to

Hendriksen et al [13]. The paired-end reads had read length at

101 bp. The genomic data have been deposited in the European

Nucleotide Archive (http://www.ebi.ac.uk/ena) under accession

no. ERP002633. The raw reads can be accessed online at http://

www.ebi.ac.uk/ena/data/view/ERP002633. De novo short read

assembly was performed on the set of raw reads using Velvet [19],

which is a part of the pipeline available on the Center for Genomic

Epidemiology (www.genomicepidemiology.org) [20,21]. The de

novo assembly produced contigs with average N50 = 232,749.

A number of publicly available Salmonella genomic data were

integrated to this study making total set of analyzed data rose to

271 genomes. A set of 39 S. Montevideo genomes was retrieved via

Bioproject 61937 with the accession numbers AESR00000000-

AESY00000000, AHIA00000000 and AHHT00000000 -

AHHW00000000 [17]. Nine S. Heidelberg genomes were

downloaded using the accession number AMBU00000000,

AMBV00000000, AMBW00000000, AMBX00000000,

AJGW00000000, AJGX00000000, AJGY00000000,

AJGZ00000000, and AJHA00000000 [22,23]. A set of 71 S.

Agona were received through EMBL genomic assemblies at www.

ebi.ac.uk/ena (PRJEB1064-1135) [24]. A number of 105 S.

Enteritidis genomes were retrieved via NCBI with the accession

number AHUJ00000000- AHUR00000000, ALEA00000000-

ALEZ00000000, ALFA00000000- ALFZ00000000, AL-

GA00000000-ALGZ00000000, ALHA00000000- ALHZ0000

0000 and ALIA00000000- ALID00000000 [25].

Pan-genome Tree
Pan-genome tree was constructed from the pan-genome matrix

that composed of genes and genomes (de novo assembled genomes

from this study) as rows and columns respectively. The matrix

contains profile of 09s and 19s represented as the absence and

presence of genes across genomes. The pan-genome tree was

computed on the basis of distance between pan-genome profiles

using a relative Manhattan distance. The tree can be formed by

hierarchical clustering by employing an average linkage, corre-

sponding to the Unweighted Pair-Group Method with Arithmetic

mean (UPGMA) algorithm. The stability of the branching was

illustrated via bootstrapping. This was implemented by re-

sampling genes i.e. rows of the pan-matrix, and re-clustering

these data. The bootstrap value for a split is the percentage of the

re-sampled trees having a similar node, i.e. with the same two sets

of leaves in the branches [26,27].

K-mer Tree
K-mer tree, alignment-free genome phylogeny, is constructed

from the contiguous sequences of k bases called k-mers [28]. K can

be any positive integer. In principle, sequences with high similarity

likely share k-mers [29,30]. Based on this idea, the de novo

assembled genomes were split into short sequences with the size of

k (k-mers). If the k-mer size is tiny, the alignment specificity of k-

mers will be low. If the k-mers are too large, they will be seldom

aligned. K-mers were aligned against all the genomes. The

number of hits or the frequency of k-mers across genomes was

constructed as a matrix. The matrix consists of k-mers and

genomes (rows and columns respectively) with the frequency of

k-mers hits as a profile. The hierarchical clustering was performed

in order to build the k-mer tree.

Nucleotide Difference Tree (ND Tree)
We used the well-studied S. Typhimurium str. LT2 as a

reference genome (National Center for Biotechnology Informa-

tion, accession: AE006468, length of 4,857,432 bp). The reference

genome was split into k-mers of length 17 and stored in a hash

table. Each read with a length of at least 50 was split into 17-mers

overlapping by 16. K-mers from the read and its reverse

complement were mapped until an ungapped alignment with a

score of at least 50 was found using a match score of 1 and a

mismatch score of 23.

When all reads had been mapped, the significance of the base

call at each position was evaluated by calculating the number of

reads X having the most common nucleotide at that position, and

the number of reads Y supporting other nucleotides. A Z-score

was calculated as Z = (X2Y)/sqrt(X+Y). The value of 1.96 was

used as a threshold for Z corresponding to a p-value of 0.001. It

was further required that X.10*Y.

Each pair of sequences was compared and the number of

nucleotide differences in positions called in all sequences was

counted. We obtained similar results by using a more strict

threshold of z = 3.29, but then counting nucleotide differences at

all positions called by both of the strains to be compared (data not

shown). A matrix with these numbers was given as input to a

UPGMA algorithm implemented in the neighbor program

(http://evolution.genetics.washington.edu/phylip.html) in order

to construct the tree. The ND tree approach was implemented

as a pipeline tool on the Center for Genomic Epidemiology

(http://www.cge.cbs.dtu.dk/services/NDtree/).

Identification of Core Genes
The set of 2,882 Salmonella core genes was downloaded from

supplementary data of a previous publication [2]. This set of core

genes (conserved genes) was estimated based on 73 publicly

available Salmonella genomes using a previously published cluster-

ing method, which employs single-linkage clustering on top of
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Table 1. Epidemiological information for the 47 Salmonella genomes used in this study (source: human).

ID Serotype
Received
date

Outbreak/
Background

Outbreak
no.

Phage
type STTR9 STTR5 STTR6 STTR10 STTR3

MLVA
pattern Accession

0803T57157 Typhimurium 3/11/08 .1600 cases
(Outbreak)

Outbreak 1 U292 2 11 13 9 212 JPX.0822.DK ERR277220

0808S61603 Typhimurium 8/6/08 .1600 cases
(Outbreak)

Outbreak 1 U292 2 11 11 9 212 JPX.0411.DK ERR277226

0902R11254 Typhimurium 2/10/09 .1600 cases
(Outbreak)

Outbreak 1 U292 2 11 13 9 212 JPX.0822.DK ERR277229

000419417 Typhimurium 4/7/00 Background – U292 2 11 13 9 212 JPX.0822.DK ERR274480

0207T641 Typhimurium 7/16/02 Background – U292 2 10 16 9 212 JPX.0779.DK ERR277205

0808F31478 Typhimurium 8/27/08 .200 cases
(Outbreak)

Outbreak 2 DT135 2 15 7 10 212 JPX.0855.DK ERR277223

0903R11327 Typhimurium 3/10/09 .200 cases
(Outbreak)

Outbreak 2 DT135 2 15 7 10 212 JPX.0855.DK ERR277222

0508R6811 Typhimurium 8/24/05 Background – DT135 2 11 5 10 212 JPX.0273.DK ERR277218

0811R10987 Typhimurium 11/28/08 Background – DT135 3 18 NA 20 311 JPX.1023.DK ERR277224

0808R10031 Typhimurium 8/7/08 Background – DT135 2 11 11 9 212 JPX.0411.DK ERR277225

0804R9234 Typhimurium 4/4/08 , 100 cases
(Outbreak)

Outbreak 3 DT3 3 20 7 6 212 JPX.0767.DK ERR277221

0810R10649 Typhimurium 10/2/08 , 100 cases
(Outbreak)

Outbreak 3 DT3 3 20 7 6 212 JPX.0767.DK ERR277227

0901M16079 Typhimurium 1/27/09 , 100 cases
(Outbreak)

Outbreak 3 U292 3 20 7 6 212 JPX.0767.DK ERR277228

0905W16624 Typhimurium 5/15/09 , 100 cases
(Outbreak)

Outbreak 3 DT3 3 14 7 6 212 JPX.1118.DK ERR277230

0110T17035 Typhimurium 10/30/01 Background – DT3 2 11 11 9 212 JPX.0411.DK ERR277203

0505F37633 Typhimurium 5/13/05 Background – DT3 4 15 8 22 111 JPX.0227.DK ERR277213

0508R6701 Typhimurium 8/10/05 50 cases.
Source:
restaurant

Outbreak 4 DT104 3 11 18 17 311 JPX.0253.DK ERR277214

0508R6707 Typhimurium 8/5/05 50 cases.
Source:
restaurant

Outbreak 4 NT 3 11 18 17 311 JPX.0253.DK ERR277216

0508R6762 Typhimurium 8/23/05 50 cases.
Source:
restaurant

Outbreak 4 DT104 3 11 18 17 311 JPX.0253.DK ERR277217

0210H31581 Typhimurium 10/24/02 Background – DT104 3 14 19 21 311 JPX.1563.DK ERR277206

0510R6956 Typhimurium 10/19/05 Background – DT104 3 12 9 25 311 JPX.1580.DK ERR277219

0408R5930 Typhimurium 8/26/04 Outbreak Outbreak 5 DT12 4 4 14 7 211 JPX.0056.DK ERR277210

0408R5960 Typhimurium 8/24/04 Outbreak Outbreak 5 DT12 4 4 14 7 211 JPX.0056.DK ERR277211

0409R5985 Typhimurium 9/8/04 Outbreak Outbreak 5 DT12 4 4 14 7 211 JPX.0056.DK ERR277212

0112F33212 Typhimurium 12/21/01 Background – DT12 4 13 13 8 211 JPX.0108.DK ERR277204

0406R5753 Typhimurium 6/30/04 Background – DT12 4 17 12 7 211 JPX.0052.DK ERR277207

0407M287 Typhimurium 7/5/04 Background – DT12 4 17 12 7 211 JPX.0052.DK ERR277208

0407W47858 Typhimurium 7/7/04 Background – DT12 4 17 12 7 211 JPX.0052.DK ERR277209

0508R6706 Typhimurium 8/3/05 Background – DT12 4 14 9 10 211 JPX.0167.DK ERR277215

1004F19825 O:4,12; H:i: – 4/18/10 Outbreak Outbreak 6 DT120 3 12 10 NA 211 JPX.0005.DK ERR277232

1005R12913 Typhimurium 5/31/10 Outbreak Outbreak 6 DT120 3 12 10 NA 211 JPX.0005.DK ERR277233

1006R12965 Typhimurium 6/16/10 Outbreak Outbreak 6 DT120 3 12 10 NA 211 JPX.0005.DK ERR277234

0909R12120 Typhimurium 9/15/09 Background – DT120 3 12 9 NA 211 JPX.0007.DK ERR277231

1007T38029 O:4,5,12; H:i: – 7/12/10 Background – DT120 3 14 7 NA 211 JPX.0974.DK ERR277235

0905R11565 Enteritidis 5/18/09 Outbreak Enteritidis 1 PT8 – – – – – JEG.0001.DK ERR277236

0905R11609 Enteritidis 5/26/09 Outbreak Enteritidis 1 PT8 – – – – – JEG.0004.DK ERR277237

0909R12091 Enteritidis 9/4/09 Outbreak Enteritidis 1 PT8 – – – – – JEG.0001.DK ERR277238

0910R12287 Enteritidis 10/23/09 Background – PT8 – – – – – JEG.0073.DK ERR248795
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BLASTP alignments [31,32]. Any genes having at least 50 percent

identity and 50 percent of aligned longest sequence’s length (50/50

rule) were considered as a gene cluster [31,33]. The gene clusters

that were found in all genomes were collected as a core gene.

SNP Tree
Single nucleotide polymorphisms (SNPs) were identified using a

genobox pipeline available on the Center for Genomic Epidemi-

ology (www.genomicepidemiology.org) [34]. The pipeline consists

of various freely available programs. Basically, the paired-end

reads from each isolates were aligned against the reference

genome, S. Typhimurium str. LT2, using Burrows-Wheeler

Aligner (BWA) [35]. The average depth coverage was 74.

SAMtools [36] ‘mpileup’ command and bedtools [37] were used

to determine and filter SNPs. The qualified SNPs were selected

once they met the following criteria: (1) a minimum coverage

(number of reads mapped to reference positions) of 20; (2) a

minimum distance of 20 bps between each SNP; (3) a minimum

quality score for each SNP at 30; and (4) all indels were excluded.

The qualified SNPs found within Salmonella core genes were

ultimately used to make SNP tree because SNPs within the non-

core reflect the high proportion of mobile or extra-chromosomal

elements, including prophage and genomic islands [14,38].

SNP tree was not only constructed from raw reads but also from

contigs or assembled genomes. We used the software package

called MUMmer version 3.23 [39]. An application named

Nucmer (which is a part of MUMmer) was introduced to align

each of contigs to the reference genome. SNPs were determined

from the resulting alignments with another MUMmer application

called ‘‘show-snps’’ (with options ‘‘-CIlrT’’). The final set of SNPs

was filtered using the following criteria; (1) a minimum distance of

20 bps between each SNP; (2) all indels were excluded.

For each genome, the final qualified SNPs for each genome

were concatenated to a single alignment relatively to the position

of the reference genome by an in-house perl script. If SNP is not

found in the reference genome or the base coverage is less than a

minimum setting (20 coverage), it is interpreted as not being a

variation and the corresponding base in the reference is expected

[34,40]. Subsequently, multiple alignments were employed by

MUSCLE from MEGA5 [41]. SNP tree was constructed by

MEGA5 using maximum parsimony method [41]. Bootstrapping

is frequently used to exhibit the reliability of the branching in a

tree. From each sequence, n nucleotides are randomly chosen with

replacements. These constitute a new set of sequences. A tree is

then reconstructed and the tree topology is compared to that of the

original one. This procedure of resampling the sites and the

subsequent tree reconstruction is repeated 1000 times, and the

percentage of times each interior branch is given is noted as

bootstrap-value.

Results

The evaluation data consisted of a set of 34 genomes and a set of

47 genomes. The former set contained 34 S. Typhimurium strains

which 18 isolates were epidemiologically related outbreak strains

from 6 different outbreaks, whereas 16 isolates were un-related

strains (background or sporadic isolates). The latter set comprised

34 S. Typhimurium from the previous set, 8 S. Enteritidis of which

5 isolates were outbreak related strains from a couple of outbreaks

and 3 were background strains and 5 S. Derby of which 3 isolates

were outbreak related strains from the same outbreak and 2

isolates were background strains (Table 1).

The performance of typing methods was measured by

percentage of concordance. The 100% concordance means all

outbreak-related strains from a particular outbreak clustered

together and separated from any background isolates.

Traditional Salmonella Typing
Pulsed-field gel electrophoresis has been used as a standard

procedure for epidemiological outbreak investigations of Salmonella

[6]. Nonetheless, PFGE gave less discrimination power than WGS

typing when applied to closely related strains, e.g strains with the

same phage type. Some strains from different outbreaks were

grouped together and some outbreak strains were mixed with

background isolates (Figure S1).

Whole-genome Salmonella Typing
Pan-genome tree. The pan genome tree is the phylogenetic

tree based on the profile of presence and absence of genes across

genomes [2,26,27]. For the set of 34 genomes, the tree failed to

cluster the outbreak strains into the corresponding groups of six

different outbreak sources (Figure 1A). The tree only gave the

reliable cluster for S. Derby outbreak strains (Figure 2A).

Additionally, some different outbreak strains were mixed together.

This method showed 65% and 64% concordance for the set of 34

and 47 genomes respectively. This is relatively low compared to

Table 1. Cont.

ID Serotype
Received
date

Outbreak/
Background

Outbreak
no.

Phage
type STTR9 STTR5 STTR6 STTR10 STTR3

MLVA
pattern Accession

0909R12018 Enteritidis 9/1/09 Outbreak Enteritidis 2 PT13a – – – – – JEG.0007.DK ERR277239

0910R12234 Enteritidis 10/8/09 Outbreak Enteritidis 2 PT13a – – – – – JEG.0007.DK ERR277240

0905R11615 Enteritidis 5/29/09 Background – PT13a – – – – – JEG.0024.DK ERR277242

0907R11860 Enteritidis 7/29/09 Background – PT13a – – – – – JEG.0021.DK ERR277243

0807H16988 Derby 7/10/08 Outbreak Derby
outbreak

– – – – – – – ERR277244

0810W40256 Derby 10/15/08 Outbreak Derby
outbreak

– – – – – – – ERR277245

0903F3864 Derby 3/11/09 Outbreak Derby
outbreak

– – – – – – – ERR277246

0807T13477 Derby 7/17/08 Background – – – – – – – – ERR277247

0810F45685 Derby 10/29/08 Background – – – – – – – – ERR277248

doi:10.1371/journal.pone.0087991.t001
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the performance from other approaches (Table 2). However, the

pan-genome tree revealed high performance for clustering strains

according to their phage type (Figure S2).

K-mer tree. K-mer tree was constructed from the frequency

profile of k-mers across the selected genomes. The size of k is a

sensitive factor for the performance of k-mer tree. A number of

various k were evaluated on the set of 34 S. Typhimurium. Figure 3

showed an increase in the percentage of concordance with

increasing k value. There was a rise in the concordance to a level

of 88% concordance at k = 30. The percentage remained at this

level when k.30 suggesting that this range of k achieved the

highest performance of k-mer tree. Therefore, we chose k = 35 to

build the final k-mer tree.

Figure 1B showed that k-mer tree gave higher resolution and

more reliable tree than the pan-genome tree. However, some

outbreak-related isolates were mixed up with the background

strains (Figure 1B). Interestingly, the expanded tree in Figure 2B

was capable to place the S. Enteritidis outbreak strains into two

distinct clusters according to their outbreak groups. The tree also

succeeded with clustering S. Derby outbreak strains. Nevertheless,

the k-mer tree exhibited 88% and 89% concordance for the set of

34 and 47 isolates respectively (Table 2). The time consuming of

k-mer tree was only 5.2 minutes per genome (including the time

for assemble process). This is the fastest method compared to the

others.

Nucleotide difference tree. As a baseline, we implemented

a simple approach, the nucleotide difference tree (ND tree), which

based on nucleotide difference between a pair of read mapped

reference genomes. For the set of 34 S. Typhimurium, the ND tree

classified outbreak-related strains into six obvious clusters

(Figure 1C) with 100% concordance (Table 2). Thus, the typing

ability of the ND tree was superior to the pan-genome tree and the

k-mer tree. For the set of 47 genomes, the performance of the ND

tree was slightly reduced (Figure 2C). The percentage of

concordance decreased from 100 to 91% (Table 2).

SNP tree. SNP tree was computed from concatenated

qualified SNPs identified from mapping raw reads to core genes

of the reference genome [14,38]. From figure 1D, the SNP tree

clustered S. Typhimurium outbreak-related strains into six clusters

with 100% concordance (Table 2) and furthermore differentiated

them accurately from the background isolates. For the set of 47

genomes, SNP tree was able to categorized S. Derby isolates but

unable to ultimately classify the S. Enteritidis strains (Figure 2D).

The percentage of concordance was dropped from 100 to 91%

(Table 2). This is due to the choice of reference genome, SNP tree

and ND tree were able to cluster S. Enteritidis outbreak strains

Figure 1. WGS typing results for the set of 34 genomes. (A) pan-genome tree, (B) K-mer tree, (C) nucleotide difference tree and (D) SNP tree.
The tested set consists of outbreak-related strains displayed with color label and non-related outbreak strains shown without coloring. The outbreak
strains were labeled according to the six different outbreak sources.
doi:10.1371/journal.pone.0087991.g001
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concordantly by applying publicly available S. Enteritis str.

P125109 as a reference genome (data not shown). On average,

4.69 Mb of reference genome was covered by S. Typhimurium

genomes meanwhile the reference genome was mapped with

4.63 Mb and 4.60 Mb when adding S. Enteritis and S. Derby.

The performance of SNP tree from raw reads was slightly

higher than the one from contigs but constructing the SNP tree

from contigs was faster (Table 2). In addition, the identified SNPs

were distributed thoroughly across core genes of the reference

genome (Figure 4) suggesting that the mutation occurred randomly

through the core genes.

Figure 5 revealed that minimum and maximum number of SNP

difference within the outbreak strains were significantly less than

those numbers between outbreak-related isolates and background

isolates. The number of SNP difference between isolates within

outbreaks ranged from 2 to 12 except the outbreak 5 (DT12)

where the maximum number was relatively high (3–30 SNPs).

Besides, the number of days within outbreak strains was unrelated

Figure 2. WGS typing results for the set of 47 genomes. (A) pan-genome tree, (B) K-mer tree, (C) nucleotide difference tree and (D) SNP tree.
The labeled color was displayed the same as Figure 1.
doi:10.1371/journal.pone.0087991.g002

Table 2. Evaluation results.

WGS typing methods Percentage of concordance
Time (Minutes per
genome)

Reference based
method Type of input

34 isolates 47 isolates

Pan-genome tree 65 64 13 Reference free Contigs

K-mer tree 88 89 5.2 Reference free Contigs

Nucleotide difference tree 100 91 15 Reference-based Raw reads

SNP tree (raw reads) 100 91 20 Reference-based Raw reads

SNP tree (contigs) 100 89 5.5 Reference-based Contigs

doi:10.1371/journal.pone.0087991.t002

Outbreak Detection of S. enterica
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Figure 3. Percentage of concordance of k-mer tree on various size of k. This evaluation was conducted on the set of 34 S. Typhimurium.
doi:10.1371/journal.pone.0087991.g003

Figure 4. Distribution of SNPs across Salmonella core genes. Black bars represent number of SNPs at each core gene. Red and green small
circles are core genes in the form of DNA and protein sequences respectively. The seven black dots represent house-keeping genes for MLST analysis
of Salmonella.
doi:10.1371/journal.pone.0087991.g004
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to the number of SNP difference (Figure S3) and this relation

seems to be random.

Comparison with Published Studies
Four publicly available Salmonella outbreak dataset were

integrated and analyzed by SNP approach. These data comprised

of background and outbreak-related strains except S. Heidelberg

that contained only outbreak strains. An average number of SNP

difference or pairwise SNP distance between strains within

outbreaks and between outbreak-related strains and background

strains were summarized in Figure 6. S. Montevideo and S.

Enteritidis supported our finding that a SNP distance within

outbreak strains was less than that between outbreak and

background strains. Interestingly, S. Agona showed the higher

number of SNP difference within outbreak strains and these

numbers from two sub-outbreak clusters were higher than the SNP

distance between background and outbreak strains. The number

of SNP differences between strains within an outbreak is likely to

vary for each serotype making it difficult to find the threshold for

the case definition of an outbreak.

We reproduced SNP tree and k-mer tree based on 271 genomes

from publicly available Salmonella genomes together with the

genomes under study (Figure S4A and S4B). It was not possible to

reproduce the tree by ND tree because most of the published data

are assembled genomes and the ND tree was invented primarily

for raw reads. The reproduced trees from SNP and k-mer formed

distinct clusters according to serotypes. However, combining

different serovar strains, k-mer and SNP trees illustrated the

similar tree topology of S. Typhimurium cluster as they showed in

Figure 1B and 1D respectively. Nonetheless, the reproduced SNP

tree exhibited less resolution than the tree constructed from the

strains with identical serovar as in Figure 1D.

Discussions

The objective of this study was to determine the strengths and

drawbacks of WGS using different analytic approaches compared

to traditional typing method, PFGE, for retrospectively outbreak

typing of Salmonella. A set of thirty-four human S. Typhimurium

strains from six different outbreaks together with background

strains plus eight S. Enteritidis isolates from two outbreaks and five

S. Derby strains from a single outbreak were used as test sets. A

number of recent studies have already used WGS for epidemio-

logical typing of single outbreaks [13,14,17]. However, these

studies have only used SNP analysis and not other analytic

procedures. We evaluated different of analytical approaches on the

WGS data set and compared to PFGE typing - the gold standard

Figure 5. Minimum and maximum number of SNP difference. Green shaded bars show the minimum and maximum number of SNP
difference between isolates within outbreaks and red shaded bars represent the number of SNP difference between outbreak-related isolates and
background isolates.
doi:10.1371/journal.pone.0087991.g005
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method for epidemiological studies. In our study, WGS based

typing using SNP tree and ND tree was able to compete with

PFGE for outbreak clustering.

The performance of the four selected WGS based typing

methods was validated based on the outbreak related Salmonella

enterica strains. Pan-genome tree failed to perform accurate clusters

as the variation in protein level among the outbreak strains was not

appropriate for outbreak typing, although the pan-genome tree

showed meaningful clusters corresponding to phage types. This

could be due to the content of prophages. The k-mer tree gave the

expected clustering but was still unable to employ the complete

outbreak typing. Interestingly, the k-mer tree revealed a better

clustering when combining Salmonella strains from different

serovars. This is most likely because the k-mer tree is independent

from the reference genome. Another advantage of k-mer analysis

is that the frequencies-based approach is much faster. Thus, it is

expected to be applicable for both closely and more distantly

related strains with very short time consumption for analysis. On

the other hand, a deficiency is the loss of information as the huge

amount of DNA sequence data is condensed into a vector of k-mer

counts. Furthermore, The order of k-mers in compared sequences

is neglected [30]. The nucleotide difference tree (ND tree)

identified the number of nucleotide difference between a pair of

raw read mapped reference genomes rather than identify the

difference as SNP. This method gave the results similarly to the

SNP tree. Additionally, it is important to note that SNP not being

found in the reference genome is considered as not being a

variation and the corresponding nucleotide from the reference is

expected. This might not always be the right choice. The ND tree

does not face this problem, as it does not require the concatenated

sequence for alignment. ND tree was found to be somewhat

sensitive to its setting. In initial calculations the mismatch score

was set to 21, and in this tree all S. Enterititis and S. Derby strains

became identical (data not showed). The final results used a

mismatch score as 23, which is also the default in the short read

alignment program, BWA.

Ultimately, SNP and ND trees were equally superior methods

for clustering outbreak related isolates of S. Typhimurium

(Figure 1C and 1D). As mentioned above, ND tree was sensitive

to the parameter settings, while SNP tree failed to categorize

strains with different serovars because this method depends heavily

on the reference genome and this has to be closely related to the

strains investigated for example the reference genome should be at

least the same serovar as the strains under study. Using an

inappropriate reference genome will cause exceed number of

SNPs which affects the final SNP tree for instance the decreasing

of the percentage concordance when adding strains with different

serovars from the reference genome (Table 2, SNP tree with a set

of 47 genomes). In addition, SNP tree constructed from contigs

exhibited slightly less concordance than the one from the raw

reads. In term of speed, the SNP tree from contigs can be achieved

very fast (almost as fast as k-mer tree). It might be an alternative

choice of using SNP tree for real-time typing.

We found that the numbers of SNP difference between isolates

within outbreaks were very small and ranged from 2 to 12 with an

exception for the outbreak 5 (DT12) where the number ranged

from 3 to 30 SNP differences. Comparing to publicly available

Salmonella genomes, the SNP distance between strains within

outbreaks was possibly ranged from 4 to 249 depending on

serotype suggesting that finding a general threshold to define an

outbreak for all Salmonella might not be possible. However, these

numbers may be useful as an indicator of expected SNP distance

in a particular serovar or a sub-outbreak cluster within serovar.

Nevertheless, by using a small number of isolates from specific

Figure 6. The pairwise SNPs distance. This is the average number of SNP difference between strains within outbreaks and between outbreak-
related strains and background strains from the four published dataset.
doi:10.1371/journal.pone.0087991.g006
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outbreaks, this reduced sampling may be introduce some of other

variables affecting the predictions. It may take dozens of isolates to

determine the actual scope or threshold of an outbreak.

Recent studies support SNP tree as an outbreak surveillance

tool such as S. Montevideo outbreak in United States [17,42], S.

Enteritidis shell egg outbreak in US in 2010 [25], S. Agona [24]

and a 2011 multistate outbreak in the US of S. Heidelberg [22,23].

Nonetheless, the SNP detection and validation need to be

improved, and this method needs to be further evaluated in other

bacterial pathogens to elucidate the usefulness of using SNP tree.

Perhaps, for further pathogens, other approaches might be the

most superior beside SNP analysis. In addition, it is especially a

need to determine the importance of using different sequencing

platforms, different analytic procedures and different reference

strains for creating the SNP trees. Moreover, the robustness of this

analytical approach for cluster detection in a routine setting has to

be evaluated. The fact that the tree topology may give less

resolution when new strains are added might cause some problems

in the interpretation in a routine setting and over time.

In our study, we were unable to find an association between

time (days) of isolation and number of SNP difference between

isolates belonging to the same outbreak. This contrasts studies of

methicillin-resistant Staphylococcus aureus (MRSA) spreading be-

tween humans in hospital community, where the time and number

of SNPs are correlated [14]. This might be due to the

dissimilarities in the epidemiology of these bacterial pathogens.

MRSA transfers from human to human within a hospital, whereas

Salmonella has its natural reservoir in various sources, animals and

human. Thus, the transmission route of Salmonella to human is

indirect and even though two strains are isolated with a given time

interval this might not entirely reflect the number of generations

that they differ. Nonetheless, this observation is in agreement with

that was reported by Okoro et al [43]. They show that the number

of days (23–486 days) between isolation of index and recurrent

isolates of S. Typhimurium from infected patients had no obvious

impact on the numbers of SNP differences accumulated, and

suggest the existence of groups of isolates that comprise single

clonal haplotypes with virtually no genetic change over time.

The strains included in this study were selected based on

detailed epidemiological information as estimated to belong or not

belonging to the same outbreak. Since the true epidemiology is not

known, it cannot be excluded that strains not being part of an

outbreak have been falsely included or that true outbreak strains

have been falsely categorized as non-outbreak related. Based on

the detailed epidemiological information available and carefully

selection of isolates, we do believe that the reference material

reflects the true epidemiology and that the methods SNP and ND

are superior to the currently used methods for epidemiological

typing such as PFGE. However, only time and routine

implementation of the new WGS technologies in routine

investigations will provide the value of WGS as supporting

outbreak detection and control.

It is also important to note that WGS is as all other typing tools

to support for decision making and should always be used in

combination with epidemiological and/or clinical information.

For example, the different phylogenetic trees shown in this study

were not meaningful without any support from epidemiological

information (the color dots in the trees). Thus, it is essential to

combine epidemiological data and whole genome sequencing

results.

In conclusion, this study suggests that WGS and analysis using

SNP and/or nucleotide difference approaches are superior

methodologies for epidemiological typing of S. Typhimurium

isolates and might be very successfully applied for outbreak

detection. For the very fast but rough result, k-mer tree might meet

this requirement with constructing the tree in high speed and

giving high accuracy in clade level.
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