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Abstract
Potassium ions have widespread roles in cellular homeostasis and activation as a consequence 
of their large outward concentration gradient across the surface membrane and ability to 
rapidly move through K+-selective ion channels. In platelets, the predominant K+ channels 
include the voltage-gated K+ channel Kv1.3, and the intermediate conductance Ca2+-activated 
K+ channel KCa3.1, also known as the Gardos channel. Inwardly rectifying potassium GIRK 
channels and KCa1.1 large conductance Ca2+-activated K+ channels have also been reported in 
the platelet, although they remain to be demonstrated using electrophysiological techniques. 
Whole-cell patch clamp and fluorescent indicator measurements in the platelet or their pre-
cursor cell reveal that Kv1.3 sets the resting membrane potential and KCa3.1 can further 
hyperpolarize the cell during activation, thereby controlling Ca2+ influx. Kv1.3-/- mice exhibit 
an increased platelet count, which may result from an increased splenic megakaryocyte 
development and longer platelet lifespan. This review discusses the evidence in the literature 
that Kv1.3, KCa3.1. GIRK and KCa1.1 channels contribute to a number of platelet functional 
responses, particularly collagen-evoked adhesion, procoagulant activity and GPCR function. 
Putative roles for other K+ channels and known accessory proteins which to date have only 
been detected in transcriptomic or proteomic studies, are also discussed.
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Introduction

To date, approximately 20 functional ion channels have been 
clearly demonstrated in the platelet or its precursor cell, the 
megakaryocyte [1,2]. These include two potassium-selective ion 
channels, Kv1.3 and KCa3.1, which have been reasonably well 
characterized electrophysiologically (Table I) with proposals put 
forward for their biological function. In addition, a number of K+ 

channel-forming subunits or channel accessory proteins have been 
suggested to be present in the platelet through detection of mRNA 
transcripts, proteomics or antibody-based techniques (Table II). In 
this review, we summarize the evidence for various proteins that 
form or modulate K+-selective channels in the platelet and dis-
cuss their functional relevance. Excluded from this review are 
other proteins that contribute to membrane K+ permeability, such 
as nonselective ion channels (e.g. P2X1, ionotropic glutamate 
receptors, gap junction proteins) and transporters (e.g. Na+/K+ 

ATP-ase and the Na+/Ca2+/K+ exchanger).
A note on methodologies for assessing K+ channel activity 

in platelets including comparison with other myeloid cells
Due to their fragile nature and small size, the number of direct 

patch clamp studies of the mammalian platelet remains limited 
(reviewed in [1]). Megakaryocytes are often used as a substitute for 

electrophysiological studies, and there is good evidence to suggest that 
the mature precursor cell is essentially a “giant” nucleated platelet 
[17,18]. Nevertheless, caution should be taken, particularly in terms of 
the detailed properties of channel activation, due to the substantial 
morphological rearrangements that take place during thrombopoiesis. 
While patch clamp is considered the “gold standard” when assessing 
ion channel properties, the challenge of applying this approach in the 
platelet means that much of the literature has assessed channel pre-
sence and contribution using less direct techniques. These include 
voltage-sensitive dyes, Rb+ flux measurements (since K+ channels are 
normally also permeable to Rb+, which can be measured using 
a radioactive isotope or a nonradioactive assay), proteomics and anti-
body-based approaches such as immunohistochemistry [3,4,9,14,19]. 
It is also worthwhile using a comparative approach as platelets and 
other blood cells are derived from a common stem cell within the 
marrow and studies of ion channels in other myeloid cells are sub-
stantially more advanced. While there are clear differences in channel 
complements between blood cell types (e.g. erythrocytes express 
KCa3.1 but not Kv1.3 [20,21]), there are major similarities, particu-
larly regarding leukocyte K+ channels [20].

KCa3.1

KCa3.1 (gene name KCNN4), also known as the Gardos channel 
and SK4, is a K+ selective ion channel activated by an increase in 
intracellular Ca2+. The channel is not activated by voltage at resting 
levels of Ca2+ and at elevated Ca2+ levels displays only minor 
increases in open probability in response to large depolarizations. 
It is often referred to as the intermediate conductance KCa channel 
due to the relative size of its single-channel conductance compared 
with other classes of Ca2+-activated K+ channel. Structurally, the 
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channel consists of four identical subunits with each subunit com-
prising six transmembrane domains and a pore-forming domain 
[22]. Patch clamp experiments suggest that platelets express only 
a small number of functional KCa3.1 channels, around 5–7 per 
platelet [10], which may explain why the channel was not detected 
during transcriptomic screening of the platelet ion channelome [2]. 
The channel was first characterized in erythrocytes where it plays an 
important role in volume regulation [23].

The presence of Ca2+-dependent K+ channels in platelets was 
originally suggested from suspension measurements of membrane 
potential using the fluorescent indicator diSC3(5) [9,11,12]. The 
Ca2+ ionophore A23187 evoked a large hyperpolarization (a shift 
to a more negative membrane potential) that required external Ca2 

+ and was blocked by quinine, charybdotoxin (CTX), but not by 
apamin or tetraethylammonium [9], which are characteristics of 
KCa3.1 rather than small or large conductance Ca2+-gated K+ 

channels. There is some evidence for small conductance, apamin- 
sensitive KCa channels from Rb+ flux experiments [19]; however, 
these were not observed in whole-cell patch clamp recordings 
[10]. Direct electrophysiological studies in the platelet concluded 

that the channels are not active at resting levels of intracellular 
Ca2+ and reversibly stimulated by physiological increases in Ca2 

+, including repetitive transient Ca2+ spikes. Activation of this 
channel will therefore lead to membrane hyperpolarization toward 
the K+ equilibrium potential (~-90 mV) during agonist-evoked 
calcium signaling [10]. This agrees with the Ca2+-dependent 
activation characteristics of the channel in erythrocytes and leu-
kocytes [24–26]. The threshold for stimulation by Ca2+ is 
approximately 200–300 nM, and maximal activation occurs at 
~1 μM [Ca2]i. This dependence upon physiologically relevant 
levels of cytosolic Ca2+ has allowed the KCa currents to be 
used extensively in whole-cell patch recordings of megakaryo-
cytes to investigate the mechanisms of Ca2+ oscillations [27].

Full platelet activation requires a sustained elevation of intra-
cellular calcium, resulting in the externalization of the negatively 
charged membrane phospholipid component phosphatidylserine 
(PS) from the inner leaflet of the platelet membrane. Scott syn-
drome patients have a mild bleeding phenotype and have been 
noted to be deficient in the scramblase mechanism that facilitates 
PS exposure in erythrocytes and platelets, and also in the ability 

Table I. Estimated channel densities per platelet: electrophysical and proteomic quantification.

Potassium Channel Protein 
name

Channel 
Gene 
name

Level of 
detection

Patch clamp 
configuration

Maximum 
current or 

conductance 
(physiological 

saline)

Single 
channel 

current or 
conductance 
(extracellular 

[K+])

Estimated channels 
per platelet 

(electrophysiological 
quantification)

Estimated 
copies 

per platelet 
(Proteomic 

quantification) 
[3] References

Voltage-gated potassium 
channel alpha subunit, 
Kv1.3

KCNA3 E P T Plt whole 
cell

~100 pA 
(+40 mV)

0.35 pA 
(−40 mV) 

9pS (5 mM 
K+)

≈285 <500 [2–8]

Intermediate conductance 
calcium-activated 
potassium channel protein 
4, KCa3.1, 
Gardos channel, SK4

KCNN4 E P Plt whole 
cell

Not measured 30pS 
(154 mM K+) 
5pS (5 mM 

K+)

5–7 n.d. [9–13]

E = electrophysiological investigation; P = proteomic or experimental study at protein level; T = transcriptomic level detection; n.d. = not determined 

Table II. Additional potassium channel and channel regulatory proteins reported in human platelets.

Potassium Channel-Associated 
Regulatory Protein name

Channel 
Gene 
name

Pore-forming protein or 
Regulatory protein

Level of 
detection

Estimated copies per platelet 
(Proteomic quantification) [3]

References

G-protein-activated inward rectifier 
potassium channel 
GIRK 1 (Kir3.1) 
GIRK 2 (Kir3.2) 
GIRK 4 (Kir3.4)

KCNJ3 
KCNJ6 
KCNJ5

Pore-forming 
Pore-forming 
Pore-forming

P 
P 
P

n.d. 
n.d. 
n.d.

[14] 
[14] 
[14]

Potassium channel subfamily K member 
6, TWIK-2 KCNK6 Pore-forming P T 840 [2,3,7,8,15]

Calcium-activated potassium channel 
subunit alpha-1, KCa1.1 KCNMA1 Pore-forming P T n.d. [2,8,16]

Calcium-activated potassium channel 
Subunit beta-1 
Subunit beta-2 
Subunit beta-3

KCNMB1 
KCNMB2 
KCNMB3

Regulatory protein 
Regulatory protein 
Regulatory protein

T 
T 
T

n.d. 
n.d. 
n.d.

[2, 2, 2, 8]

Voltage-gated potassium channel 
Subunit beta-1 
Subunit beta-2

KCNAB1 
KCNAB2

Regulatory protein 
Regulatory protein

T 
P T

n.d. 
1300

[2, 2, 3, 6]

Potassium voltage-gated channel 
subfamily E member 3, MiRP2 KCNE3 Regulatory protein T n.d. [2,6,8]

Potassium channel regulatory 
protein KCNRG Regulatory protein T n.d. [2,8]

P = proteomic or experimental study at protein level; T = transcriptomic level; n.d. = not determined 
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to produce platelet microparticles from the platelet surface mem-
brane [28]. This defect in platelet procoagulant response may be 
due in part to reduced Gardos channel function, since the 
impaired procoagulant response in Scott patients following plate-
let activation with combined collagen and thrombin application 
was almost completely restored to normal levels by the K+ 

ionophore valinomycin [13]. Interestingly, valinomycin will insert 
into both intracellular and surface membranes [29] and could 
exert its observed effect at least in part by affecting mitochondrial 
membrane potential which has a key influence on procoagulant 
activity. Whether KCa3.1 is also present in platelet organellar 
membranes is unknown. Experiments in SK4-/- transgenic mice 
suggest that the Gardos channel also plays a role in stromal cell- 
derived factor 1 (SDF-1)-dependent platelet migration [30]. 
A further potential role for KCa3.1 in platelets and megakaryo-
cytes is the regulation of cell volume, as proposed in the human 
megakaryocytic cell line DAMI [31].

Kv1.3

Kv1.3 (gene name KCNA3) is a voltage-gated K+ channel belong-
ing to the Shaker-related subfamily. Structurally, it consists of 
four pore-forming homologous subunits, each consisting of six 
transmembrane alpha-helices, which also include the K+ selective 
pore and a voltage sensing domain [32]. Depolarization of the 
plasma membrane causes structural rearrangement of the voltage 
sensing domain, resulting in the opening of the conduction 
pathway.

Kv1.3 was originally reported in T lymphocytes, where the 
channel plays a role in mitogenesis [33]. Whole-cell patch clamp 
recordings have estimated between 200–300 Kv1.3 channels per 
cell. Since then, Kv1.3 has been detected in a wide range of 
electrically excitable and nonexcitable cell types [34–37]. 
Currents typical of this channel were first observed more than 
30 years ago in platelets from a number of mammalian species 
[4,5] and later shown to be carried by Kv1.3 using 
a transcriptomic screen of all Kv α-subunits in human platelets 
and whole-cell patch clamp recordings of Kv1.3-deficient mega-
karyocytes [6]. This conductance has been characterized in mega-
karyocytes of several species and shown to be suppressed by 
activation of certain G-protein-coupled receptors, in part through 
a Gαi-coupled mechanism [38–41]. Each platelet clearly 
expresses considerably more Kv1.3 than KCa3.1 channels (almost 
300 compared with 5–7 in humans) [4,5]. In physiological levels 
of K+, the single-channel conductance of Kv1.3 (~9pS for the 
predominant state) is slightly greater than for KCa3.1 (~5 pS). 
Thus, of these two main K+ conductances, Kv1.3 could poten-
tially exert greater effects [10]. However, it is worth noting that 
the activation of KCa3.1 can hyperpolarize the membrane poten-
tial to levels that completely inactivate Kv1.3.

Kv1.3 has a threshold for activation of about −60 mV, thus 
accounting for its ability to set the resting membrane potential in 
both platelets and megakaryocytes [4,6]. Block of the channel 
with CTX or margatoxin causes a depolarization of ~25-35 mV 
from the resting membrane potential of −50 to −60 mV leading 
to a reduction in Ca2+ entry following stimulation of P2X1 
receptors or store-operated Ca2+ channels [4,6]. This effect on 
Ca2+ influx can be explained by the depolarizing influence of Ca2 

+ or Na+ influx through agonist-activated cation channels and the 
fact that Kv1.3 is strongly activated by small depolarizations from 
the resting membrane potential [4,6].

Functional Kv1.3 channels have also been identified in the 
inner mitochondrial membrane (mitoKv1.3) [42,43]. MitoKv1.3 
in lymphocytes has a role in maintaining mitochondrial mem-
brane potential and regulates volume and reactive oxygen spe-
cies production [42,44]. It has been suggested that mitoKv1.3 is 

a target for the pro-apoptotic protein Bax and is necessary for 
induction of apoptosis via the intrinsic pathway [43,45]. 
Platelets possess a small number of mitochondria and proteins 
belonging to the Bcl-2 family [46], but whether mitoKv1.3 is 
present in platelets and plays a role in platelet apoptosis has yet 
to be determined. However, there is good evidence for this 
hypothesis since Kv1.3-/- mice have elevated levels of circulat-
ing platelets [6,47], and in our recent studies, a longer platelet 
lifespan was observed in Kv1.3-/- mice [48]. Megakaryocyte 
development in the marrow was not increased [6,47], but 
a recent study has described enhanced megakaryocyte numbers 
in the spleen of Kv1.3-/- mice [47], which may contribute to the 
enhanced platelet count.

In addition to its role as an ion channel, Kv1.3 may facilitate 
nonchannel functions since studies in lymphocytes have reported 
a direct interaction of Kv1.3 with β1 integrins, which regulates 
cellular adhesion [49–51]. Platelet adhesion and thrombus forma-
tion in vitro under conditions of arterial shear is significantly 
inhibited during perfusion of Kv1.3-/- platelets over fibrillar col-
lagen but not immobilized fibrinogen [47,48]. This specific role 
for Kv1.3 in α2β1-mediated adhesion is further supported by 
experiments using combinations of triple-helical collagen- 
specific peptides, whereby Kv1.3-/- platelet adhesion is signifi-
cantly reduced during perfusion over surfaces coated with von 
Willebrand factor (VWF)-III (a peptide that contains the VWF- 
A3 collagen-binding motif), and GFOGER (the α2β1-integrin- 
specific peptide), but not when perfused over surfaces coated 
with VWF-III and the glycoprotein VI-specific collagen peptide, 
CRP-XL [48]. Platelet exposure to collagen induces changes in 
platelet morphology, including the extension of filopodial protru-
sions to facilitate platelet attachment to collagen fibrils, followed 
by the formation of actin-rich lamellipodia and platelet spreading 
[52]. Kv1.3-/- platelets display fewer filopodia per platelet than 
platelets from wild-type mice and additionally display a loss of 
directional persistence during chemotaxis toward the collagen 
fibrils [48], both of which may contribute to reduced numbers 
of adherent platelets and subsequently, the size of thrombus 
formed. Interestingly, Kv1.3 inhibition or deletion has previously 
been shown to alter the detection of electrical fields in neutrophils 
[53], and impair the migration of T-lymphocytes [54]. The ability 
of Kv1.3 to alter directional motility in platelets during α2β1- 
mediated adhesion may be through the interaction with β1 integ-
rins (see above), possibly via mechanisms involving other regu-
latory proteins. Possible candidates for such regulatory proteins, 
including channel β-subunits or accessory proteins that bind to the 
cytosolic domain of Kv1.3, are discussed in more detail below. 
Further studies are required to fully understand the channel and 
nonchannel functions of platelet Kv1.3, and how Kv1.3 modu-
lates platelet function in response to different agonists. Kv1.3 
deletion has been reported to result in enhanced agonist-evoked 
platelet secretion in response to low-dose (1 and 10 µM) ADP, but 
has no effect on platelet secretion or aggregation in response to 
CRP-XL [48]. In contrast, genetic deletion or inhibition with the 
pore-blocking antibody (6E12#15) has been reported to reduce 
platelet aggregation in response to thrombin and collagen, and 
high-dose ADP (20 µM) [47]. Interestingly, both recent studies 
found no difference in in vivo thrombus formation or thrombus 
size in cremaster muscle arterioles of WT or Kv1.3-/- mice fol-
lowing laser injury [48] or following FeCl3 injury in mesenteric 
arterioles [47]. Therefore, the lack of Kv1.3 may be compensated 
for in vivo by other channels or pathways; however, Kv1.3 chan-
nel inhibition with 5-(4-Phenoxybutoxy)psoralen (PAP-1) reduces 
infarct size and neurological scores in the middle cerebral artery 
occlusion model of ischemic stroke in rats [55]. The underlying 
basis of this inhibitory effect of PAP-1 is proposed to be through 
targeting Kv1.3 in microglia and a specific subset of central 
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nervous system-infiltrating monocytes/macrophages involved in 
the inflammatory response of this model [55–57]. Since ischemic 
stroke is now recognized to be a thrombo-inflammatory disease 
[58], future studies should assess whether block of Kv1.3 in 
platelets also contributes to the potential therapeutic effect of 
targeting this channel.

GIRK Channel

GIRK channels (Kir3.0 family) are G-protein-gated inwardly rec-
tifying potassium channels. The rectification displayed by these 
channels results in an increase in conductance as the membrane is 
hyperpolarized. Thus, when activated, GIRK channels are very 
effective at shifting the membrane potential toward the equili-
brium potential for K+ (≈-90 mV). Structurally, GIRK channels 
are tetrameric complexes consisting of 4 GIRK subunits 1–4, 
whereby each subunit comprises two transmembrane helices on 
either side of a pore-forming helix [59]. GIRK channel gating 
requires the presence of phosphatidylinositol 4,5 bisphosphate 
(PIP2), and interaction is sensitive to intracellular pH, sodium 
levels and arachidonic acid [60]. The channels are also modulated 
by Gα and Gβγ G-protein subunits, and GIRK channels have been 
reported to be present with GPCRs in macromolecular com-
plexes [61].

One study has reported that platelets express GIRK1, GIRK2 and 
GIRK4 [14] and that two GIRK antagonists (SCH23390 and 
U50488H) inhibited platelet aggregation in response to ADP, 
meSADP, U46619 and low-dose thrombin, but not high-dose throm-
bin or convulxin. In contrast, the same GIRK inhibitors had no effect 
on Gq signaling-associated responses. Supporting this, studies in 
murine platelets that have defective GIRK2 function reported 
impaired ADP-induced TXA2 generation [62]. However, no impair-
ment was observed in murine platelets where GIRK2 was absent, 
suggesting that the absent GIRK2 subunits were replaced by other 
GIRK subunits to maintain function. Further studies are needed to 
explore how these channels interact with each other, and with other 
proteins, to establish their possible role in the modulation of P2Y12 
signaling in the platelet and validate functional channel activity via 
electrophysical recording.

KCa1.1

KCa 1.1, encoded by the gene KCNMA1, is a large conductance 
calcium-activated K+ channel also known as BK, Maxi-K and 
Slo1. The functional channel is formed by a tetrameric assembly 
of alpha subunits, which can be associated with beta subunits that 
modify its function [63]. The opening of the channel is stimulated 
(gated) independently and synergistically by an increase in cyto-
solic Ca2+ and membrane depolarization. A very recent study has 
detected KCa1.1 using antibody-based techniques in human pla-
telets and megakaryocytes [16]. Agonists (openers) of the channel 
exert an inhibitory effect on several functional responses, includ-
ing aggregation or adhesion of platelets and proplatelet formation 
or cell spreading in megakaryocytes. The openers induce mem-
brane hyperpolarization, as expected for an increase in relative 
permeability to K+. These results agree with an earlier study in 
which epoxyeicosatrienoic acids known to be released from 
endothelial cells induced a membrane hyperpolarization of 
human platelets that was blocked by iberiotoxin, a relatively 
selective KCa1.1 inhibitor [64]. Pharmacological openers of 
KCa1.1 also reduced the cytosolic Ca2+ responses to ADP [16]. 
At present, it is unclear why the membrane depolarization 
observed with the block of Kv1.3 [6] (see earlier section) and 
hyperpolarisation following KCa1.1 activation both lead to 
a reduced agonist-evoked Ca2+ response. The role of membrane 
potential per se in platelet and megakaryocyte function clearly 

merits further study. Electrophysiological measurements of 
KCa1.1 channels in platelets or megakaryocytes are also awaited 
and may require studies in human samples as patch clamp of 
Kv1.3-deficient megakaryocytes failed to detect other voltage- 
gated K+ conductances; thus, there may be a species differ-
ence [6].

Other Potential Platelet K+ Channels

In addition to the K+ channels discussed above, a quantitative 
transcriptomic analysis of the human platelet ion channelome 
suggests that other K+ channels and K+ channel regulatory pro-
teins are expressed and thus may contribute to platelet function 
[2]. RNA transcripts for KCNK6, a 2-pore channel (other names 
TWIK-2, potassium channel subfamily K member 6), were 
detected at 7-fold lower level than Kv1.3 (KCNA3), and have 
also been reported at the protein level [3,7]. KCNK6 is widely 
expressed in other cells and tissues and has been reported to 
contribute to vascular contractility [65]; it has also been identified 
as one of the triggers for macrophage NLRP3 (Nucleotide- 
binding oligomerization domain-Like Receptor containing Pyrin 
domain 3) activation of the inflammasome [66] and located in 
Lamp-1-positive lysosomes in transfected Madin-Darby canine 
kidney epithelial cells [67]. The identity of ion channels that 
reside in platelet lysosome membranes or play a role in platelet 
lysosomal secretion is poorly understood, and our understanding 
of molecular mechanisms involved in the platelet inflammatory 
response is still limited. Further validation and characterization of 
KCNK6 may enhance our knowledge of platelet activation and 
responses. Platelet mRNA was also detected for KCNMA1 
(KCa1.1), the pore-forming subunit of the large conductance 
calcium-activated K+ channel and three of its regulatory subunits 
(KCNMB1,2 and 3). Over-expression of KCNMA1 in human 
hepatic stellate cells (HSC) resulted in reduced migration, and 
Rotterlin activation of KCNMA1 channels resulted in the down-
regulation of TGFB1/SMAD3 and JAK/STAT3 signaling path-
ways [68]. Meanwhile, a mutation in KCNMA1 that reduced 
channel conductance and ion selectivity resulted in impaired 
mitochondrial function [69].

Transcripts were also detected in platelets for several β-subunits 
that modulate the pore-forming α-subunits of voltage-gated potas-
sium channels, including the voltage-gated Shaker-related subunits 
(KCNAB1,2, and 3). KCNAB1 has been reported to modulate the 
channel activity of voltage-gated potassium α-subunits, promoting 
its expression at the cell membrane, but also accelerating the channel 
pore closure [70,71], possibly through the binding of NADPH [72]. 
KCNE3 (MiRP2) from the Isk-related family is another β-subunit 
that has been reported to form complexes with the α-subunits of 
voltage-gated potassium channels, resulting in reduced current den-
sity and modulation of channel activation rates [73]. Another KCNE 
subunit (KCNE4, MiRP3) has been reported to retain Kv1.3 in the 
endoplasmic reticulum of leukocytes when the surface targeting 
motif of Kv1.3 COOH terminus is masked [74], and KCNRG 
(Potassium Channel Regulatory Protein) encodes a soluble protein 
that has been suggested interferes with the assembly of Kv channels, 
suppressing K+ currents [75,76]. Therefore, several candidates exist 
for β-subunits with regulatory roles in platelet K+ channel function 
that are worthwhile exploring in future studies.

Several members of the K+ channel tetramerization domain- 
containing proteins (KCTDs) family were also detected in the tran-
scriptomic channelome study [2]. The biological roles of this large 
family of proteins are still being determined; however, in terms of 
ion channel-related roles, they have been reported to interact with 
GABAB GPCRs resulting in modulation of receptor sensitization 
[77]. The KCTD transcripts detected fell predominantly into the 
Group A and B subfamilies. To date, KCTD10, the most abundant 
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KCTD transcripts quantified in the platelet, has been reported to 
bind to the T-box transcription factor Tbx5, a gene involved in 
cardiac development, and repress its transcriptional activity [78]. 
Furthermore, a single nucleotide polymorphism of KCTD10 has 
been associated with variation of high-density lipoprotein choles-
terol concentrations in individuals with high carbohydrate intakes 
[79]. Several KCTD family members have been reported to interact 
with cullin-3, leading to the degradation of specific target proteins 
[80], alteration of actin organization [81] and Rac1 activation [82]. 
Whether any KCTDs are present at the protein level and actively 
contribute to platelet function, in particular to K+ ion channel func-
tion, remains to be determined.

Platelet- or Megakaryocyte-related K+ Channelopathies

The consequences of loss of Kv1.3 function based upon the use of 
blockers and Kv1.3-/- mice are discussed above. Within such studies, it 
is worth considering that KCa3.1 and Cl– channels are known to 
compensate for the lack of Kv1.3 in lymphocyte development and 
function [40]. One study has reported a loss of Kv1.3 channel function 
in megakaryocytes from a proportion of patients with myelogenous 
leukemia and reappearance of the channel after treatment [41]. 
Whether this shift in channel expression is a causal factor in the 
development of the leukemic phenotype is unknown. Interestingly, 
a number of human myeloid cell lines with megakaryocytic surface 
markers that have been derived from cancer patients also lack Kv1.3 
but express robust KCa3.1 currents [2,83–85]. This represents a shift 
in K+ channel phenotype toward that of human erythrocytes rather 

than leukocytes or platelets [20,21]; thus, it is interesting to speculate 
that a reprogramming toward a more erythroid-type lineage occurs 
within megakaryoblastic leukemias. Indeed, observations of changes 
in conductance with megakaryocyte differentiation have led to the 
suggestion that in patients with myelogenous leukemias, these cells 
display a more immature or dedifferentiated form [41]. Under resting 
conditions, the loss of Kv1.3 but retention of KCa3.1 will yield 
a reduction in homeostatic K+ fluxes and a depolarization of the 
membrane potential of ~30 mV; however, the ability to hyperpolarize 
to near the K+ equilibrium potential of ≈-90 mV following an eleva-
tion of cytosolic Ca2+ will be retained [4,6,85].

Alterations to platelet Ca2+-dependent K+ channel function 
have been suggested to occur in Alzheimer’s disease [86]. This 
neurodegenerative disease is characterized pathologically by the 
appearance of proteinaceous plaques in areas of the brain [87]. 
Indeed, platelets represent a principal peripheral source of a major 
plaque component, β-amyloid, and its precursor, β-amyloid pre-
cursor protein [88,89]. The relative role of platelet sources of 
these proteins during Alzheimer’s is unclear; however, the proper-
ties of platelet K+ channels could be markers for early stages of 
this debilitating disease, which is becoming a significant increas-
ing problem in the aging community of the Western world.

Summary and Conclusion

While there is currently a paucity of information on the contribu-
tion of K+ channels to platelet function, it is clear that they 
control the membrane potential under resting and activated 

Figure 1. Platelet potassium ion channel functions.
The diagram shows potassium channels that have been characterized by electrophysiological studies and biological function (black bold text: Kv1.3, 
and KCa3.1), or by platelet function only (gray bold text: GIRK1, 2, and 3 and KCa1.1); and potassium channels that have been identified by 
transcriptomic and/or proteomic studies of platelets but have not yet been further characterized (bold blue text: K2P6.1). Also shown (in green text) are 
gene names for platelet mRNA transcripts encoding regulatory β-subunits, which may modulate α-subunit channel function (KCNAB1, 2, and 3; 
KCNE3; KCNRG; KCNMB1, 2, and 3; and the KCTD family). Text boxes in the diagram list known and potential roles for each ion channel. 
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conditions. This will have a major influence on Ca2+ influx, 
particularly given the inwardly rectifying nature of store- 
operated Ca2+ channels [90,91], and thus, in theory modulate 
the wide range of Ca2+-dependent responses in platelets includ-
ing shape change, secretion, procoagulant activity and integrin 
inside-out signaling [92–95]. Roles in mitochondrial activity have 
been implied but not yet been clearly demonstrated [6]. More 
direct effects on procoagulant activity have also been reported. 
Given the major role of Kv1.3 and KCa3.1 in erythrocyte and 
leukocyte function, it is likely that additional roles for K+ chan-
nels in the platelet and megakaryocyte exist. In addition to an 
influence through control of membrane potential, these channels 
may directly interact with integrins and mitochondrial Bcl-2 
proteins. The location and possible interactions of K+ channels 
with other proteins in the platelet are summarized in Figure 1. 
A further signaling mechanism that has been reported in leuko-
cytes is via control of intracellular K+ and serine/threonine phos-
phatase activity, which can have a substantial effect on T cell 
development and function [95,96]. Given the established roles 
and therapeutic potential of K+ channels in other blood cells (e.g. 
treatment of autoimmunity and sickle cell anemia) [51,97], 
increasing our knowledge of this major class of membrane pro-
tein function and our understanding of their regulation in the 
platelet and its precursor cell could yield useful additional targets 
for modulation of thrombosis and other platelet-dependent 
diseases.
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