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Sepsis is an abnormal systemic inflammatory response of the host immune system to
infection and can lead to fatal multiorgan dysfunction syndrome. Epidemiological studies
have shown that approximately 10-70% of sepsis cases can lead to septic
cardiomyopathy. Since the pathogenesis of septic cardiomyopathy is not clear, it is
difficult for medical doctors to treat the disease. Therefore, finding effective interventions to
prevent and reduce myocardial damage in septic cardiomyopathy is clinically significant.
Epigenetics is the study of stable genetic phenotype inheritance that does not involve
changing gene sequences. Epigenetic inheritance is affected by both gene and
environmental regulation. Epigenetic studies focus on the modification and influence of
chromatin structure, mainly including chromatin remodelling, DNA methylation, histone
modification and noncoding RNA (ncRNA)-related mechanisms. Recently, long ncRNA
(lncRNA)-related mechanisms have been the focus of epigenetic studies. LncRNAs are
expected to become important targets to prevent, diagnose and treat human diseases.
As the energy metabolism centre of cells, mitochondria are important targets in septic
cardiomyopathy. Intervention measures to prevent and treat mitochondrial damage are of
great significance for improving the prognosis of septic cardiomyopathy. LncRNAs play
important roles in life activities. Recently, studies have focused on the involvement of
lncRNAs in regulating mitochondrial dysfunction. However, few studies have revealed the
involvement of lncRNAs in regulating mitochondrial dysfunction in septic cardiomyopathy.
In this article, we briefly review recent research in this area.
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SEPSIS AND SEPTIC CARDIOMYOPATHY

Sepsis is an abnormal systemic inflammatory response of the host immune system to infection and
can lead to fatal multiorgan dysfunction syndrome (1, 2). In severe cases, sepsis is considered a cause
of death (3). Millions of human beings suffer from sepsis every year, and more than one-quarter of
them lose their lives (4). According to statistics, the hospitalization rate and mortality of patients
with severe sepsis increase by 8.2% and 5.6%, respectively, every year (5). Parker et al. first proposed
in a 1984 study that sepsis-induced cardiac dysfunction is reversible (6). Since then, research on
septic cardiomyopathy has attracted increasing attention. Epidemiological studies have shown that
10-70% of sepsis cases can lead to septic cardiomyopathy (7, 8). The mortality of patients with septic
org November 2021 | Volume 12 | Article 8020851
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cardiomyopathy is 70%-90%, which is 2-3-fold higher than that
of patients with sepsis that does not affect the heart (9, 10).
Current ly , there is no formal definit ion of sept ic
cardiomyopathy. It is generally recognized that septic
cardiomyopathy is transient cardiac dysfunction caused by
sepsis and that it manifests as heart enlargement, ventricular
systolic dysfunction, hypoperfusion without ventricular systolic
dysfunction, poor response to fluid resuscitation and
catecholamines, and so on (11–14).

It has been revealed that the specific septic cardiomyopathy
pathogenesis may include an imbalance of pro- and anti-
inflammatory cytokine expression, abnormal expression of Toll-
like receptors and related downstream pathways, release of nitric
oxide (NO) and reactive oxygen species (ROS), complement
activation, abnormal calcium processing, downregulation of the
adrenergic pathway, cardiomyocyte apoptosis, autonomic nervous
system dysfunction, coronary microvascular disturbance,
mitochondrial dysfunction, and downregulation of sarcomere
and mitochondrial proteins (15–18) (Figures 1, 2).
MECHANISMS OF MITOCHONDRIAL
DYSFUNCTION IN SEPTIC
CARDIOMYOPATHY

Recently, researchers have focused on preventing and reducing
myocardial damage in septic cardiomyopathy. Among the septic
cardiomyopathy pathogenesis, mitochondrial dysfunction
deserves to be a focus and further studied (19, 20) (Figure 3).
Cardiomyocytes are rich in mitochondria, especially in the areas
between sarcomeres and the subsarcolemma (21). As the energy
metabolism centres of cells (22), mitochondria function to
generate energy through oxidative phosphorylation (OXPHOS)
(23). Of the important mechanisms of septic cardiomyopathy,
the specific mechanism of mitochondrial dysfunction is under
debate. Studies have shown that in the pathogenesis of septic
cardiomyopathy, mitochondria undergo relevant changes that
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lead not only to mitochondrial dysfunction but also to the
mitochondrial adaptive response (24, 25).
MITOCHONDRIAL ULTRASTRUCTURAL
DAMAGE AND DECREASED
ATP PRODUCTION

In 1994, morphological damage of myocardial mitochondria in
septic cardiomyopathy was first described in an animal model
(26). Studies have shown that the ultra-microstructural
abnormalities of myocardial mitochondria in septic
cardiomyopathy include swelling, ridge loss, matrix clearance,
rupture of internal vesicles, and damage to internal and external
membranes (27, 28), which are closely related to mitochondrial
dysfunction (29). Specifically , ultra-microstructural
abnormalities lead to the destruction of the OXPHOS process
and further reduce adenosine triphosphate (ATP) production.
Mitochondria are critical for synthesizing more than 90% of the
ATP required by the body (30). The role of the respiratory chain
represents the basic function of mitochondria. The respiratory
chain is mainly composed of complexes I, II, III and IV (31), and
F0F1 ATPase (32). Fatty acid b-oxidation supplies nicotinamide
adenine dinucleotide (NADH) and flavin adenine dinucleotide
(FADH2), which respectively transport electrons for OXPHOS
through complexes I and II. Subsequently, electrons are
transported to complex III, and then to complex IV, leading to
the reduction of O2 to H2O. Finally, ATP is generated under the
effection of F0F1 ATPase in the mitochondrial inner membrane
(33–35).
NO PRODUCTION AND
OXIDATIVE STRESS

Sepsis is accompanied by the excessive production of NO, ROS
and inflammatory cytokines (36), leading to mitochondrial
FIGURE 1 | Septic cardiomyopathy pathogenesis.
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dysfunction (37). Mitochondria produce NO through
mitochondria NOS (mtNOS), which inhibits cytochrome c
oxidase to regulate mitochondrial respiration (38). NO and O2·

−

produce ONOO− through diffusion-controlled reactions (39).
ONOO− is a strong oxidant that can lead to direct oxidation or
nitrosation damage, inhibit the OXPHOS complex and reduce O2

consumption (40, 41). Studies have shown that knockout of
inducible NOS (iNOS) can attenuate injury induced by oxidative
stress, impaired OXPHOS or reduced ATP synthesis, revealing the
vital role of ONOO− in regulating mitochondrial dysfunction in
septic cardiomyopathy (42). The increase in ROS production,
especially O2·

−, leads to excessive endogenous antioxidant capacity
Frontiers in Immunology | www.frontiersin.org 3
in the body (43). In turn, the excessive production of O2·
− leads to

further production of ROS in mitochondria, creating a vicious
cycle of oxidative stress (44, 45). Excessive ROS induce protein
denaturation and directly cause oxidative damage to DNA (46),
which is particularly serious because mitochondrial DNA is
related to the electron transport chain (ETC) (47). Furthermore,
metalloproteinases and other proteases are activated, causing
further functional deterioration of a variety of proteins,
including antioxidant enzymes (48).
CALCIUM OVERLOAD AND CHANGES
IN MITOCHONDRIAL MEMBRANE
PERMEABILITY

Cytoplasmic calcium homeostasis is impaired in cardiomyocytes in
septic cardiomyopathy, and Ca2+ enters mitochondria through
unidirectional transporters (49). In addition, the rapid oscillation
of Ca2+ between mitochondria and endoplasmic reticulum also
leads to mitochondrial Ca2+ overload, which further initiates the
opening of mitochondrial permeability transition pore (mPTP)
(50). The outer mitochondrial membrane is highly permeable,
substances with molecular weights less than 1500 kDa can pass
through it, while the inner mitochondrial membrane allows only
substances with molecular weights less than 1.5 kDa to pass through
it (51). Proton pumps in the inner mitochondrial membrane pump
protons from mitochondrial matrix to outer chamber, forming a
potential difference between inside and outside mitochondria,
which is called the mitochondrial membrane potential (DYm)
(52). The mPTP opens intermittently in physiological state, and
protons or positive ions in the outer chamber enter the inner
chamber because of the potential difference, preventing the
excessive accumulation of positive ions in the outer chamber (53).
With Ca2+ overload, persistent oxidative stress, adenosine
deficiency, increased phosphate concentration and mitochondrial
depolarization occur, and then, the mPTP is in a mostly irreversibly
opened state (54). The DYM decreases rapidly, leading to ion
imbalance, mitochondrial swelling and ATP depletion (55).
FIGURE 2 | Potential targets of protective intervention in septic cardiomyopathy.
FIGURE 3 | Mechanisms of mitochondrial dysfunction in septic cardiomyopathy.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu and Chong LncRNAs in Septic Cardiomyopathy
Moreover, mPTP opening leads to the release of cytochrome c into
the cytoplasm, which participates in forming apoptotic bodies with
APAF-1 and the precursors of caspase-9. Apoptotic bodies activate
caspase-9 facilitated by deoxy-ATP (dATP), and caspase-9 then
enzymatically cleaves caspase-3 to activate it, which starts the
caspase-induced apoptosis cascade of reactions that ultimately
leads to cell apoptosis (56, 57). In addition, electrons produced by
the mitochondrial ETC can no longer be transported to oxygen
molecules, resulting in the termination of OXPHOS and the
inhibition of ATP synthesis (58). To maintain the DYm,
mitochondria then negatively regulate F0F1 ATP synthase,
leading to hydrolysis of the remaining ATP (59).
MITOCHONDRIAL BIOGENESIS
AND MITOPHAGY

The levels of NO, ROS and the ratio of adenosine monophosphate
(AMP)/ATP increase during septic cardiomyopathy. These changes
trigger mitochondrial biogenesis (60). The main mechanism of
mitochondrial biogenesis is the activation of the PGC family,
especially PGC-1 a. PGC-1 a is synergistically activated, and its
expression leads to the increasing expression of transcription factors,
mediating the expression of nuclear proteins required for the
transcription and replication of nucleus- and mitochondria-
encoded OXPHOS subunits and mitochondrial DNA,
transcription of OXPHOS assembly factor and mitochondrial
protein import components (61). Mitochondrial biogenesis stands
for the growth and division of mitochondria (62). The recovery of
cardiac function in septic cardiomyopathy depends partly on
mitochondrial biogenesis (63). The mechanism of mitochondrial
biogenesis is debated. Some studies have shown that the clearance of
damaged mitochondria in sepsis can be compensated by
mitochondrial biogenesis rate, producing new mitochondria.
However, other studies have shown that mitochondrial biogenesis,
even as a compensatory mechanism of mitochondrial dysfunction,
may lead to greater mitochondrial dysfunction by disrupting the
complicated processes of gene transcription and mitochondrial
dynamics. In any case, mitochondrial biogenesis in septic
cardiomyopathy is insufficient to compensate for mitochondrial
dysfunction (64, 65). The process opposing mitochondrial
biogenesis is mitochondrial autophagy (66). Mitochondrial
autophagy is a mechanism by which mitochondria eliminate
dysfunctional mitochondria (67). However, it is unclear whether
mitochondria clear dysfunctional mitochondria only through
autophagic mechanisms and/or whether autophagy is involved in
programmed cell death in septic cardiomyopathy. Recent research
has not clarified the relationship between mitochondrial biogenesis
and mitochondrial autophagy.

The recovery of mitochondrial function is closely related to
the reversal of cardiac pump function; therefore, an increasing
number of in-depth targeted intervention studies are needed to
prevent or even reverse mitochondrial dysfunction. Guidelines
for systematic evaluation of sepsis can improve prognosis and
reduce mortality. However, there is no specific treatment for
sepsis complicated with damage to some organs, including the
heart. Further studies on the mechanisms of mitochondrial
Frontiers in Immunology | www.frontiersin.org 4
dysfunction in septic cardiomyopathy may supply a novel
strategy to supplement the treatment options.
EPIGENETICS AND LncRNAs

Epigenetics is the study of stable genetic phenotype inheritance that
does not intervene the gene sequence (68). Epigenetic modifications
regulate many biological processes, including development and cell
differentiation and proliferation (69). Currently, epigenetic
mechanisms include the modification of DNA and proteins closely
related to DNA. That is, epigenetic studies focus on themodification
and influence of chromatin structure, mainly including chromatin
remodelling (including advanced folding of chromatin and
connections with the nuclear matrix), DNA methylation, histone
modification and noncodingRNA-relatedmechanisms (70, 71). The
reversibility of epigenetic regulation provides a targeted treatment
strategy for epigenetically modified components and new ideas for
innovative clinical treatment methods.

LncRNAsare endogenousRNAswith transcript lengths ofmore
than200nucleotides,whichdonot possess the functionof encoding
protein. NcRNAs account for 98% of the human genome, and
lncRNAs account for 80-90% of all ncRNAs (72, 73). LncRNAs are
currently considered to be key epigenetic regulators (74). With
increasing and in-depth researchonwhole-genome sequencing and
function, the structure and function of lncRNAshave been found to
be particularly complex (75).Although there is no consensus on the
functional classification of lncRNAs, four main types are currently
recognized: signals, decoys, guides and scaffolds (76). As signals or
decoys, lncRNAs participate in the activation or inhibition of gene.
As guides, they enlist chromatin-modifying enzymes to regulate
gene expression in a cis/trans manner. As scaffolds, they enlist a
variety of proteins to synthesize ribonucleoprotein complexes that
regulate chromatin or histones (77). According to the classification
of gene structure, lncRNAs aremainly divided into sense lncRNAs,
antisense lncRNAs, intronic lncRNAs, long intergenic lncRNAs (or
lincRNAs), enhancer RNAs (or erRNAs), and circular RNAs (or
circRNAs) (78). LncRNAs interact with various molecules to form
RNA-RNA, RNA-DNA and RNA-protein complexes, which play
important roles in chromatin modification (79).

LncRNAs AND CARDIOVASCULAR
DISEASES

Mutation or abnormal expression of lncRNAs is closely relevant to
cardiovascular diseases (80, 81). Published research results mainly
refer to MIAT, ANRIL, LIPCAR, and Braveheart. As early as 2006,
scholars explored the relationship between MIAT and myocardial
infarction. MIAT single-nucleotide polymorphisms can cause
changes in the expression of myocardial infarction-related
proteins (82). Overexpression of ANRIL can change sites of
chromosome 9p21 that are closely relevant to the pathogenesis of
coronary atherosclerosis (83). Further studies showed that ANRIL
expression was positively related to the severity of coronary
atherosclerosis (84). It was discovered that LIPCAR expression
was upregulated during the early stage of heart failure and
downregulated during the late stage, and therefore, changes in
November 2021 | Volume 12 | Article 802085
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LIPCAR expression can be used to predict the risk of late
cardiovascular events (85). It has been confirmed that Braveheart
is closely relevant to the differentiation of mouse cardiomyocytes.
Studies have shown that PRC2 can inhibit the genes necessary for
the differentiation and development of cardiac cells, such as the
MesP1 gene, and Braveheart can interact with SUZ12 in the PRC2
complex to further control the expression of MesP1. When the
expression of Braveheart is lower than normal, mouse embryonic
stem cells did not differentiate into normal cardiomyocytes, which
limited heart development (86).
EFFECTS OF REGULATED LncRNA
EXPRESSION ON MITOCHONDRIAL
FUNCTION

Mitochondria are important multifunctional organelles
participating in various basic biological processes (87). The
integrality of mitochondrial structure and function is significant
tomaintain the stabilityof the intracellular environment.Currently,
it is generally believed that the stability of the intracellular
environment depends on various mitochondrial pathways
regulating energy conversion and ATP production, involving
ETC and tricarboxylic acid cycle (TCA) (88). Mitochondria have
genetic system independent of the nucleus, and the mitochondrial
genome has a complete expression mechanism (89). However, the
scale of the mitochondrial genome is small (90). The biological
function of mitochondria does not solely depend on the
mitochondrial genome; it also depends on nucleus-encoded
proteins, which are synthesized in the cytoplasm and transported
into mitochondria through specific mechanisms. In other words,
mitochondrial energy metabolism and intracellular environment
stability depend on the simultaneously coordinated regulation and
expression of the nuclear genome andmitochondrial genome (91).
Increasing evidence has shown that lncRNAs can act asmessengers
between nucleus andmitochondria, and participate in regulating of
diverse pathways (92). However, the potential regulatory
mechanisms may be very complex, and relevant research
is ongoing.

LncRNAs can regulate mitochondrial function and dynamics at
different levels (93). Abnormal regulation of lncRNAs leads to
abnormal synthesis of ATP and ROS, thus contributing to the
pathological development of many diseases. Currently, research on
lncRNA regulation of mitochondrial function mainly focuses on
cardiovascular diseases, neurodegenerative diseases and tumour
diseases (94–96). As mentioned above, cardiomyocytes are
enriched with many mitochondria, and mitochondrial dysfunction
is closely relevant to the pathogenesis of cardiovascular diseases.
EFFECTS OF LncRNA REGULATION ON
MITOCHONDRIAL DYSFUNCTION IN
SEPTIC CARDIOMYOPATHY

As previously mentioned, various mechanisms of mitochondrial
dysfunction in septic cardiomyopathy have been reported.
Frontiers in Immunology | www.frontiersin.org 5
According to the literature, recent research on lncRNAs
participating in the regulation of mitochondrial dysfunction in
septic cardiomyopathy has mainly focused on decreases in ATP
production, mitochondrial NO production and oxidative stress.
Additionally, studies have shown that lipopolysaccharide (LPS)
can induce an increase in ROS, a decrease in DYm, the release of
cytochrome c, and the upregulation of caspase-9 and caspase-3
in the cytoplasm, ultimately leading to cardiomyocyte
apoptosis (97).

Cheng Xing Peng et al. explored the regulatory role of MIAT
in septic myocardial injury. They found that MIAT knockdown
significantly inhibited the production of mitochondrial ROS in
LPS-treated HL-1 cells. In addition, the ratio of reduced
glutathione to oxidized glutathione (GSH/GSSH) decreased
with increasing malondialdehyde (MDA) content. This result
suggested that MIAT aggravated myocardial damage by
promoting oxidative stress. It was confirmed that MIAT acted
on miR-330-5p directly to upregulate the TRAF6/NF-kB
pathway, promoting inflammation and oxidative stress in LPS-
induced cardiomyopathy (98).

RMRP inhibits the posttranscriptional regulatory effect of
miR-1-5p on HSPA4 in LPS-induced mitochondrial damage.
Overexpression of RMRP can significantly inhibit the decline in
DYm, the level of intracellular ROS, and the expression of
cytoplasmic cytochrome c, caspase-9 and caspase-3, thereby
inhibiting cardiomyocyte apoptosis (99). Bin Shan et al.
discussed H19 regulation in septic cardiomyopathy. H19 can
reduce mitochondrial inner membrane damage by regulating
mitochondrial membrane potential by regulating miR-93-5p/
SORBS2 pathway, thereby inhibiting mitochondrial apoptosis.
Inflammatory factors, involving TNF-a, IL-1b and IL-6, were
markedly downregulated in LPS-induced cardiomyocytes
overexpressing H19. The expression of cytochrome c in
mitochondria was upregulated, while that in cytoplasm was
downregulated. This result indicated that the overexpression of
H19 alleviated inflammation and mitochondrial apoptosis in
LPS-induced cardiomyocytes (100). Studies have also pointed
out that knocking down SOX2OT can significantly enhance
cardiac function, inhibit the decline in DYm, and reduce the
production of mitochondrial ROS in mice with septic
cardiomyopathy, while upregulating SOX2OT can reverse all of
these effects. Through further research on the regulatory
mechanism, it was ultimately concluded that SOX2OT
aggravated mitochondrial dysfunction by downregulating the
expression of SOX2, thereby affecting the prognosis of septic
cardiomyopathy (101).

Studies on the involvement of lncRNAs regulating
mitochondrial energy metabolism in septic cardiomyopathy are
also ongoing. Dongshi Liang et al. found that the increased
expression of Xist is related to the decreased level of both PGC-
1a and ATP, which suggested that inhibiting the expression of
Xist enhanced the production of ATP, reducing sepsis-induced
myocardial injury (102).

Although the aforementioned lncRNAs have been confirmed
to participate in septic cardiomyopathy by regulating
mitochondrial function and apoptosis, it is still unclear whether
November 2021 | Volume 12 | Article 802085
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other lncRNAs are involved in regulatingmitochondrial functions,
and the specific regulatory mechanisms of participating lncRNAs
are also unknown. To date, using gene chip hybridization
technology, researchers at Zhejiang University identified 471
upregulated lncRNAs and 804 downregulated lncRNAs in
myocardial tissues of septic mice. Ultimately, this group found
that partial lncRNAs are mainly enriched in inflammation,
immunity, energy metabolism and cell death, and predicted that
certain lncRNAs may participate in mitochondrial dysfunction
(103). All these results provide strong theoretical support for the
continuing study of the involvement of lncRNAs in mitochondrial
dysfunction in septic cardiomyopathy.
CONCLUSION AND PERSPECTIVE

LncRNAs will increasingly become targets for the intervention and
treatment of septic cardiomyopathy, and the mechanism to target
is closely related to lncRNA involvement in mitochondrial
dysfunction. Finding intervention measures to prevent and treat
mitochondrial damage is significant to improved treatment and
prognosis of patients with septic cardiomyopathy. Although
Frontiers in Immunology | www.frontiersin.org 6
research on biomarkers for use in assessing the severity and
prognosis of septic cardiomyopathy is ongoing, no clear markers
with both sufficient sensitivity and specificity have been identified
to date. Recent research has found that CitH3 may be recognized
as a reliable blood biomarker for diagnosis and prognosis of sepsis
(104). LncRNAs may be potential biomarkers for evaluating the
severity and prognosis of septic cardiomyopathy, and they will also
be the focus of the next phase of our research.
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