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Multi-structure Cortical States
Deduced From Intracellular
Representations of Fixed Tactile
Input Patterns
Johanna Norrlid†, Jonas M. D. Enander†, Hannes Mogensen and Henrik Jörntell*

Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden

The brain has a never-ending internal activity, whose spatiotemporal evolution interacts
with external inputs to constrain their impact on brain activity and thereby how we
perceive them. We used reproducible touch-related spatiotemporal sensory inputs
and recorded intracellularly from rat (Sprague-Dawley, male) neocortical neurons to
characterize this interaction. The synaptic responses, or the summed input of the
networks connected to the neuron, varied greatly to repeated presentations of the same
tactile input pattern delivered to the tip of digit 2. Surprisingly, however, these responses
tended to sort into a set of specific time-evolving response types, unique for each
neuron. Further, using a set of eight such tactile input patterns, we found each neuron to
exhibit a set of specific response types for each input provided. Response types were not
determined by the global cortical state, but instead likely depended on the time-varying
state of the specific subnetworks connected to each neuron. The fact that some types of
responses recurred indicates that the cortical network had a non-continuous landscape
of solutions for these tactile inputs. Therefore, our data suggest that sensory inputs
combine with the internal dynamics of the brain networks, thereby causing them to
fall into one of the multiple possible perceptual attractor states. The neuron-specific
instantiations of response types we observed suggest that the subnetworks connected
to each neuron represent different components of those attractor states. Our results
indicate that the impact of cortical internal states on external inputs is substantially more
richly resolvable than previously shown.

Keywords: tactile, in vivo intracellular, neocortex, cortical state, synaptic input

INTRODUCTION

Behavioral, mental, and perceptual functions of the neocortex depend on its internal
state. An unresolved issue is how internal states affect the responses to a given external
input. A state in the brain can be described as the combination of activity in all of
its neurons (Spanne and Jorntell, 2015). Since the neurons make synaptic connections
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with each other, their activities are not independent, which is
reflected in reports of constrained ‘‘realms’’ of possible response
combinations in populations of neurons (Luczak et al., 2009;
Golub et al., 2018). External inputs to the neocortical circuitry,
which generate spatiotemporal patterns of activation arising
in the multitude of sensors throughout our bodies, further
constrain the space of possible neuronal responses (Luczak
et al., 2009). An important aspect of perception, and the
foundation of illusions, is that a response is determined not
only by the quality of the sensory input but also depends on
the physiological circuitry structure, which results from the
internal state of the cortex at the time the input arises (Arieli
et al., 1996; Fiser et al., 2004; Curto et al., 2009; Berkes et al.,
2011). However, although the internal state is a high-dimensional
latent state (Stringer et al., 2019a,b) more detailed physiological
characterization of the state-dependent influence on cortical
circuitry responses to naturalistic sensory input is so far lacking.
This is not surprising given that a direct demonstration would
require a precise estimate of what the experimental subject is
thinking and how that thinking is instantiated in the circuitry,
at the time of the stimulus delivery. Otherwise, the internally
generated constraints become an uncontrolled variable, which
will be interpreted as internal system noise in sensory-evoked
responses. Here we aimed to deduce information about the
character of the interactions between the time-evolving cortical
internal state and external inputs, based on an analysis of the
detailed nature of the cortical neuron responses evoked by inputs
consisting of several alternative fixed spatiotemporal patterns
of tactile sensory activation, each delivered at a high number
of repetitions.

It is difficult to achieve exactly reproducible sensor activation
patterns in a living organism where the sensors are located
in compliant or movable tissue (Hayward et al., 2014) and
their exact location or tuning relative to external stimuli are
moreover subject to uncontrollable efferent control by the
brain, for example via muscles. Therefore, we used electrical
intracutaneous stimulation to deliver a set of reproducible but
also perceptual rich sensory input patterns, mimicking active
touch, to the brain (Oddo et al., 2017; Figure 1A). In order
to minimize system noise caused by uncontrollable movements
and internal thought processes unrelated to the stimuli (see
‘‘Materials and Methods’’ section for further details), and in
order to make the rats accept long–term stimulation of the
skin electrodes, we used light anesthesia. The intracellularly
recorded signal represents the integrated synaptic inputs from
tens of thousands of neurons (out of 25,000,000 neurons in
the rat neocortex; Bandeira et al., 2009). As these neurons,
by being connected to the recorded neuron, are potentially
representing activity in different subnetworks, the intracellular
signal is a read-out of the instantiation of the current brain
state that is specific to the subnetworks connected to that
neuron. Here we find that each out of eight pre-defined
tactile input patterns generates a wide range of response types
that are specific to each neocortical neuron. The findings
suggest a multi-component but structured and subnetwork-
specific interplay between internal cortical states and sensor
input patterns.

MATERIALS AND METHODS

Experimental Design

Ethical Approval
All animal experiment procedures in the present study were in
accordance with institutional guidelines and were approved in
advance by the Local Ethics Committee of Lund, Sweden (permit
ID M118-13 and M13193-2017). All experiments were made
using acute preparations under general anesthesia.

Surgical Procedures
Adult male Sprague Dawley rats of male sex (N = 10, weight
240–383 g, Taconic) were briefly sedated with isoflurane
(3%, 1–2 min), anesthetized with an intraperitoneal injection
(40 mg/kg ketamine, 4 mg/kg xylazine) and maintained under
anesthesia with a continuous infusion (ketamine and xylazine in
a 20:1 ratio, approximately 5 mg/kg ketamine/h) administered
through an intravenous (IV) catheter inserted into the right
femoral vein. A hemicraniectomy (approximately 4 by 2 mm)
exposed the area of the right somatosensory cortex (Figure 1B).
An electrocorticography (ECoG) electrode was positioned on the
surface of the brain in order to continuously monitor the depth
of anesthesia by ensuring the presence of sleep spindles mixed
with epochs of more desynchronized activity, a characteristic of
sleep (Niedermeyer and da Silva, 2005). The level of anesthesia
was additionally characterized by an absence of withdrawal
reflexes in response to noxious pinches of the hind paw. The
type of anesthesia used here has little disruptive effect on the
physiological network structure at short time spans (in the order
of 100 s of ms) as judged by the preservation of the order
of neuronal recruitment of neocortical neurons in spontaneous
brain activity fluctuations (Upstates, recordings obtained using
multi-electrode arrays in the rat) and stimulus-evoked responses
(Luczak and Bartho, 2012). Anesthesia drags down the overall
activity in the neocortical network (Constantinople and Bruno,
2011), though, and in general, can be expected to make those
networks function with a lower degree of precision. Nevertheless,
for the present study, the method of stimulus delivery (see
below) would not be accepted by the awake animal, and meeting
the requirement for long–term intracellular recordings was
further facilitated by the anesthesia. To create further mechanical
stability, and to protect the brain tissue from dehydration, an
agarose gel was applied to cover the exposed part of the cortex.
After finishing the neuronal recordings the animal was sacrificed
with pentobarbital (140 mg/kg IV).

Artificial Touch Inputs
In order to achieve as realistic spatiotemporal patterns of tactile
sensor activation as possible, while preserving the aim of a high
reproducibility of the patterns, we used an artificial fingertip
equipped with four neuromorphic sensors to generate a set
of spatiotemporal patterns of skin activation to be used in
the electrical interface with the rat skin. The procedures have
previously been described in greater detail and the patterns
used here were the same as before (Oddo et al., 2017; Genna
et al., 2018; Enander et al., 2019). As discussed in this previous

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 677568

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Norrlid et al. Multi-structure Representations of Fixed Input

FIGURE 1 | Electrical skin stimulation and general properties of the intracellular responses. (A) Locations of the four pairs of intracutaneous needle electrodes
(“channels”) inserted in digit 2 to stimulate the tactile primary afferents. The eight spatiotemporal patterns were re-used from a previous publication (Oddo et al.,
2017). (B) Left: neuronal recordings were made in an exposed cortical area of 4 by 2 mm, located in the center of the photo. An electrocorticography (ECoG) surface
electrode was placed on the brain. Right: a schematic illustrating the location of the exposed cortical area (red, dashed rectangle). (C) Left: a stained layer III
pyramidal neuron from one of the recordings. The white dashed rectangle represents the zoomed-in area shown to the right. (D) Intracellular traces illustrating the
spontaneous activity and responses evoked by the stimulation patterns (gray horizontal bars). “+” indicates occasional spikes. The arrow indicates a spontaneous
activity pattern resembling an evoked response. Colored lines indicate the times of individual stimulation pulses in pattern F(inf) and F5, respectively. Recording from
Neuron #7. Stimulus artifacts are truncated for clarity.

work, the artificial fingertip allowed synthesizing spatiotemporal
patterns of skin sensor activation at quasi-natural firing rates
that follow a natural overall temporal modulation, or ‘‘envelope’’,
that the biological skin sensors are known to display under
dynamic indentation (Jenmalm et al., 2003). This aspect is
important because the circuitry of the cortex can be expected
to have experienced many events with similar envelopes of
tactile afferent activity and is therefore likely to have adapted
its circuitry structure to effectively process variations of that
overall pattern of activity modulation (Berkes et al., 2011;
Oddo et al., 2017). By delivering this input electrically to
the primary afferents at local skin sites we bypassed the
potentially variable step of skin sensor activation that occurs

even with highly controlled mechanical skin stimulation. Hence,
the decoding capacity of cortical neurons could be studied in
relative isolation from such variability of skin sensor activation.
Just like natural tactile inputs, the input we provided can
be expected to be distributed and processed through the
neuronal networks in the cuneate nucleus, thalamus, and
neocortical circuitry before it reaches the neurons we recorded
from. Hence, the measured responses are bound to reflect
at least in part the natural processing mechanisms of the
brain. Accordingly, in humans, electrical nerve stimulation
with a much lower resolution than in the present set of
experiments are known to generate sensory impressions that
are in part perceived as unnatural but also generate diversified
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and meaningful tactile percepts (Tan et al., 2014; Oddo et al.,
2016).

The probes by which the sensory activation patterns of the
artificial fingertip were generated and the explanation of their
names were thoroughly introduced in Oddo et al. (2017), but
a brief explanation follows. The bionic fingertip was moved
against objects/probes of different roundness. The numbers
within the labels of each pattern (Figure 1A) are exponents in an
exponential function that approximately correspond to the radii
of the curvatures of the different objects/probes. A low number
indicates a higher sharpness, a high number indicates a lower
sharpness. Therefore, ‘‘infinity’’ means a flat probe. The letter of
the label indicates the adaptive tuning of the biomorphic sensors
(S, F; for slow and fast, respectively). These spatiotemporal
stimulation patterns were delivered via four pairs (or channels)
of intracutaneous needle electrodes (Figure 1A) in a pre-defined
random order, where each pattern lasted for less than 340 ms
and the consecutive deliveries of the patterns were separated by
1.8 s in order to allow a relaxation of the cortical activity between
consecutive deliveries of stimulation patterns (Oddo et al., 2017).
Each of the eight patterns was delivered 100 times, except for
four out of the total 13 neurons for which the recording was
lost after 36, 47, 50, and 80 repetitions, respectively. In addition,
for each of the four stimulation channels used, we delivered
the same number (up to 100) of repetitions of isolated single-
pulse stimulations. These isolated single-pulse stimulations were
delivered in chunks of five stimulations from the same channel
separated by 300 ms from each other. Thus, for each channel,
there were 20 such chunks intermixed with the stimulation
patterns in random order. Each channel was stimulated at 0.5mA
with a pulse width of 0.14 ms, which is higher than the threshold
of about 0.2 mA reported for tactile afferents using this type
of electrocutaneous stimulation (Bengtsson et al., 2013), but
lower than the threshold for activating nociceptive afferents
(Ekerot et al., 1987).

Neural Recordings
Wemade recordings in the region of the primary somatosensory
cortex (S1) of the forepaw, as estimated by the focus of
the local field potentials (measured between layers III and
V, corresponding to the depths of maximum field potential
negativity recorded in each track). The coordinates of this region
were −1.0–1.0 mm relative to bregma and 3.0–5.0 mm lateral
to the midline (Figure 1B). Individual neurons were recorded
with patch-clamp pipettes in the intracellular, whole-cell current-
clamp mode. Patch-clamp pipettes were pulled from borosilicate
glass capillaries to 6–15 MOhm using a Sutter Instruments
(Novato, CA) P-97 horizontal puller. The composition of the
electrolyte solution in the patch pipettes was (in mM) potassium-
gluconate (135), HEPES (10), KCl (6.0), Mg-ATP (2), EGTA (10).
The solution was titrated to 7.35–7.40 using 1 M KOH. During
slow advancement of the recording electrode (approximately
0.3 µm per second) made with positive pressure applied,
electrode tip resistance and responses evoked by electrical skin
stimulation were continuously monitored to identify encounters
with neurons. Once encountered, the positive pressure was
changed to negative pressure, and a weak hyperpolarizing

current was applied with the aim of obtaining a GigaOhm
seal on the neuron. Successful access to the intracellular
signal of the neuron, following additional negative pressure
once the seal was established, was followed by the release of
pressure and the start of the data collection. Using a weak
hyperpolarizing bias current, neurons were prevented from
spiking. All intracellular data were digitized at 100 kHz using
CED 1401 mk2 hardware and Spike2 software (Cambridge
Electronics Devices, CED, Cambridge, UK). The criteria used
for inclusion of an intracellular recording, or the time period
of such a recording to be included in the analysis, were a
stable membrane potential of < −55 mV in Down states, a
spike amplitude of >25 mV before and after the termination
of the protocol and a peak-to-peak difference between the
Up and Down states of >10 mV. All neurons recorded were
putatively located within layer III-V based on the recording
depth measured from the cortical surface (Narayanan et al.,
2017). For identification of neuron identity, in addition to
depth, we used the nature of the firing during spontaneous
activity (i.e., if the neuron was fast-spiking, bursting, and
what duration and intensity of bursts the neuron displayed).
Before entering the intracellular mode all neurons recorded
here exhibited infrequent bursts of two or three spikes but
had an absence of longer bursts or sustained periods of high
firing. Based on this criterion, they were considered to be
pyramidal cells rather than interneurons (Luczak et al., 2009).
Three out of the 13 successfully recorded neurons were also
stained with neurobiotin and histologically recovered. They were
thereby confirmed to be pyramidal neurons located in layer III
(Figure 1C).

Statistical Analysis
Post-processing—General
The neuronal recording signal was imported from Spike2 to
Matlab (2016a, Mathworks), where it was low-pass filtered using
a moving average of over 50 µs, i.e., five samples width given a
100 kHz sampling rate. Stimulation artifacts were removed using
a combination of adaptive filtering and blanking of artifacts.
Occasional remaining intracellular spikes were removed using
adaptive filtering, with a recursive fitting algorithm that created a
generic spike shape for the neuron (Mogensen et al., 2019), which
could be subtracted from the signal at all occurrences of the
spike. This allowed for excitatory postsynaptic potential (EPSP)-
like events to be detected also when the membrane potential was
influenced by spiking activity. Since all evoked responses were
analyzed by visual inspection, there was a quality check of the
intracellular signal throughout the recording period.

Post-processing—Clustering Algorithm for
Separation of Response Types
On visual inspection, the time-voltage curves of the intracellular
responses to repetitions of a given stimulation pattern appeared
to fall into certain classes, or types, where the differences
between responses of different types appeared to be larger than
the variability of different responses within any given type
(Figure 2A).
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FIGURE 2 | Different response types evoked by the same stimulation pattern. (A) Each panel i-iii shows, for a sample cell (Neuron #5), examples of qualitatively
different superimposed raw data traces, evoked by the same stimulation pattern (S5). Note that the stimulation pattern (vertical colored lines) outlasted the traces.
Stimulus artifacts are reduced for clarity. (B) The six identified response types for all responses evoked by the 100 repetitions of this stimulation pattern in this cell are
shown separately. The mean response of each type is indicated by the thick blue curve, the threshold difference by the light blue span, and the raw traces are
indicated in gray, alongside the stimulation pattern. (C) Sensitivity analysis of the parameter settings (for “Threshold” and “Overshoot”, respectively, see “Materials
and Methods” section) of our response type classification/clustering method illustrated for two different neurons. The impact of the parameter settings on the fraction
of responses ending up as ungrouped (proportion ungrouped) and on the number of response types identified vs. the maximal number of response types identifiable
within the parameter space (proportion grouped) are illustrated for both sample neurons (Neuron #5 is also illustrated in panels A,B). Note that the parameter settings
used for the main analysis are indicated by the cross-hairs. (D) The Kruskal Wallis test result of the separation between the members of each response type from the
members of other response types evoked by the same stimulation pattern in the same neuron, plotted as a separate time curve for each stimulation pattern
(N = 104; gray traces). The blue trace represents the average across all stimulation patterns. The corresponding plot for the H statistic is shown in the diagram
below. (E) Time evolution of the specificity of the responses of each response type. The black curve is the fraction of all response types where specificity could be
detected (at p < 0.05, Kruskal-Wallis test). The red curve shows the corresponding fraction for responses with shuffled response type labels (within each stimulation
pattern, for each cell). Gray bars show the durations of the eight stimulation patterns.

To quantitatively evaluate this potential clustering, we used
an unsupervised clustering method. This clustering method was
merely based on the amplitudes of the intracellular membrane
potential at each sample time point. The clustering of different
responses was based on the accumulated differences/similarities
of these amplitude values across the whole series of sample time
points that constituted the response. Thereby, it is based on
clear neurophysiological metrics and in this respect differs from
traditional machine learning algorithms, in which it is typically
not clear which metrics underlie the clustering.

The clustering method defined both the number of response
types and the number of members/individual responses that

belonged to each response type. The clustering method was also
capable of reporting zero response types if no response types
could be identified according to the criteria of the clustering
method, and hence it ran a low risk of clustering noise compared
to some machine learning algorithms. The following procedure
was used to sort the intracellular response curves into types:

1. For each cell, the 350 ms time-voltage curves from the onset
of stimulation for each of the (up to) 100 repetitions of a given
stimulation pattern were compared.

2. To remove high-frequency fluctuations the responses were
low-pass filtered (with a 1 ms wide moving average) and
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re-sampled to 1,000 Hz. In order to focus on the temporal
shape of the responses, a moving average of 100 ms was
subtracted from the signal to remove its offset and the response
voltage was then normalized to a 1.0–0.0 range based on
the highest peaks and deepest troughs for each 350 ms
time-voltage curve. This was made to ensure that the method
captured the shape of the response curve over time.

3. For each neuron/stimulation pattern, each time-voltage curve
was subjected to pairwise comparisons against all other
time-voltage curves evoked by the same stimulation pattern
in the same neuron. The evaluation of similarity between
each pair of time-voltage curves was done on a per-sample
time point basis (i.e., 350 sample points per time-voltage
curve), where the difference for each sample point was
calculated. If the difference for a sample point was below
a threshold value (this ‘‘Threshold difference’’ was set to
0.13 normalized units, see Figure 2C for the sensitivity analysis
of how this threshold was chosen), the difference was set
to zero for that sample point. If the difference was above
the threshold value, the overshoot was calculated as the
absolute value of the actual difference above the threshold
value for that sample point. If the mean overshoot across
the 350 samples fell below a threshold (this ‘‘Overshoot
threshold’’ was set to 0.08 normalized units, see Figure 2C)
the two time-voltage curves were classified as the same
response type. This procedure helped reducing sensitivity
to high-amplitude transient membrane potential shifts while
emphasizing persistent low amplitude differences between
time-voltage curves in the classification/clustering.

4. This procedure was repeated so that all time-voltage curves
were compared with all others of the neuron/stimulation
pattern (i.e., typically 100 responses). This resulted in the
identification of several types of responses. The members of
the response type with the largest number of members were
removed from the set of 100 responses, and the sorting (steps
1–4) was repeated until there were no remaining responses left
to sort.

5. Last, for the set of detected response types, for each
response type with less than five members, the members
were categorized as belonging to the ‘‘ungrouped’’ response
type and that response type was no longer a valid
response type.

Sensitivity Analysis for the Selection of Parameter
Values for the Clustering Method
The clustering method described above is unsupervised but
depends on the choice of parameter values for the Threshold
difference and the Overshoot threshold (step 3 above). The
Threshold difference parameter is the absolute value of the
distance from the voltage of the reference response (in
normalized units) on a per-sample point basis (Figure 2B, light
blue area). The Overshoot threshold is the mean of that distance
across all sample points.

To test the sensitivity of themethod to the choice of parameter
values, we explored the resulting outcome (number of response
types identified, fraction of the responses that fell into the
ungrouped category, and the accuracy by which the identified

response types could be identified) across parts of the parameter
space for two neurons’ sets of responses to different stimulation
patterns. This exploration is visualized in Figures 2C, 3B, which
suggested that our choices of parameter values were located in
the middle of a smooth landscape of outcomes and that our
clustering algorithm was not ‘‘brittle’’ in the sense that gradual
changes in the two parameters Threshold and Overshoot did not
result in dramatically different outcomes.

This is further illustrated in Supplementary Figure 1,
where we analyze the consistency of the members of the
response clusters for adjacent parameter values. The clusters
defined by a parameter setting for an element in a parameter
grid (Supplementary Figure 1) are compared against the
clusters defined by each of the eight neighboring elements
(with single-step increments or decrements in one or both
parameters) in turn. Each comparison reports the proportion of
the responses/members of one cluster in the center element that
are cluster members also of a single cluster in the neighboring
element, i.e., if the center element has one cluster with members
[0, 1] and a neighboring element has two clusters with members
[0, 1, 2] and [3, 4, 5] that comparison would yield the
‘‘agreement’’ value 1.0 since all members of the center element
are contained within the first cluster of the neighbor element. The
reverse comparison would instead have yielded an agreement
value of 0.33 (0.66 for the first cluster and 0 for the second cluster,
0.33 on average). Then the comparison is completed for all eight
surrounding elements (except for edges and corners of the grid)
and a mean ‘‘cluster agreement’’ value is calculated for the center
element. Supplementary Figure 1 also reports the max ‘‘cluster
agreement’’, which is the mean of the best cluster agreement
values for all eight comparisons.

Statistical Evaluation of the Identified Response
Types
We first tested whether the response types of each stimulation
pattern, as identified by the clustering method above, were
different from each other. For each sample point (350 sample
points per response, see step 2 above), we tested if the
distributions of the amplitudes in each cluster/response type
were different from each other using the Kruskal-Wallis test.
For each set of response types for each stimulation pattern, this
procedure was repeated for each sample point up to 1,200 ms
after the onset of the stimulation pattern, i.e., for a much
longer time than the duration of the stimulation pattern, which
yielded a time curve of the p-value that could be visualized
individually for each of the 104 stimulation patterns (eight
patterns for 13 neurons) in the whole data set (Figure 2D). By
defining a threshold p-value of < 0.05, we could also display
the results of this analysis as a time curve of the fraction
of the response types fulfilling this criterion (Figure 2E). In
the latter analysis, we also tested whether a shuffling of the
response type labels between all the responses evoked by a
specific stimulation pattern in a specific neuron resulted in a
collapse of this fraction down to the 5% level, which is the
expected value for randomly distributed responses (Figure 2E).
This shuffled analysis also functioned as a control for themultiple
comparisons problem.
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FIGURE 3 | Specificity of the different response types evoked by the same stimulation patterns in the same neuron. (A) Confusion matrix for the members of each
identified response type for the sample stimulation pattern and neuron illustrated in Figures 2A,B. Decoding accuracy for each response type is indicated by the
color code indicated in the calibration bar. (B) Sensitivity analysis of the parameter settings of our response type clustering method illustrated for two different
neurons, here with respect to the average response type decoding accuracy (see A) but across all stimulation patterns. (C) Confusion matrix for all response types
identified for all stimulation patterns for this sample neuron. Same color code as in (A). (D) To illustrate the specificity of the response types recorded across all eight
stimulation patterns, this plot indicates the decoding accuracy across all stimulation patterns for each neuron. The figure also displays the chance level for each
neuron, and the decoding accuracy when the responses recorded for each neuron were shuffled.

Evaluation of the Specificity of the Identified
Response Types for Each Stimulation Pattern in the
Same Neuron
We also evaluated the separability of the whole membrane
voltage-time curve vectors for each of the identified response
types, for each stimulation pattern in each neuron separately,
as well as their separability vs. the ‘‘ungrouped’’ responses,
using a combination of principal component analysis (PCA) and
k-nearest neighbors (kNN)-classification (Figure 3A).

We started by using the mean membrane voltage-time curve
vector of each response type (see step 2 above) to calculate
the Principal Components (PCs). The number of PCs used
was the number required to explain at least 95% of the total
variance of the mean signals. Finally, we used the principal
component coefficients to transform each individually recorded
membrane voltage-time curve vector from the time domain to
the principal component domain, reducing the dimensionality
of each response from M = 350 (sample time points) to
N = [1–6] (PCs).

The position of each response in PC space was then used
for verification of the accuracy of the classification/type identity

of each response. In order to determine the separability of the
detected response types and their possible confusion with the
‘‘ungrouped’’ responses, we used a kNN classification procedure.
Half of the responses were randomly selected as the training set.
For each response belonging to the test set, we identified the four
closest responses in the training set by calculating the Euclidean
distance in PC space. The response was classified as belonging
to the same response type as the relative majority of the four
neighbors, where the classification either matched the response
type assigned to it by the clusteringmethod or not.We performed
40 iterations of the classification procedure, each with a different
training set, and averaged the fraction of correctly classified
responses in each iteration to get the mean correct classification
value for each response type. The results of the ensuing kNN
decoding are visualized in confusion matrices, which were also
used to extract the mean decoding accuracy and the F1 score.

Evaluation of the Specificity of the Response Types
Across All Stimulation Patterns in the Same Neuron
To evaluate if the identified response types were specific to the
stimulation pattern, we again used PCA and kNN-classification.
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FIGURE 4 | Different response types evoked by the same stimulation pattern in different neurons. (A) Averages of intracellular responses of neuron #5
(N = 100 responses) and neuron #11 (N = 80 responses) to stimulation pattern S20 (top). Vertical colored lines indicate the individual stimulation pulses of that
stimulation pattern. Similar display for the average responses to two other input patterns (middle, bottom). The responses of Neuron #5 to pattern S5 are also
illustrated in Figures 2A,B, 3A. (B) Confusion matrix for all response types identified for all neurons for stimulation pattern F∞. Neurons (N#) recorded in the same
experiments are indicated by * and **, respectively. T# indicates the response type.

Here, the PCs were calculated based on the mean membrane
voltage- time curve vector of each response type across all eight
stimulation patterns. Because the total number of responses
considered in this case was in the order of 800 rather than 100
(as above), the dimensionality of the responses was reduced to
N = [8–40] PCs, rather than [1–6] PCs. Also, the number of
neighbors evaluated for the kNN classification were in this case
nine (N = 9).

Evaluation of the Specificity of the Response Types
Across the Same Stimulation Pattern in Different
Neurons
We also used PCA and kNN decoding to evaluate if the response
types were specific to the neuron, for each specific stimulation
pattern (see for example Figure 4B), using the same type of
approach as above. Here, the PCs were calculated based on the
meanmembrane voltage-time curve vector of each response type,
for a given stimulation pattern, across all thirteen neurons.

Brain State Segmentation
During each neuronal recording, a parallel ECoG signal
was recorded at a sample rate of 1 kHz from the surface
electrode placed on the surface of the cortex nearby the
recording site (Figure 1B). To segment the recording into
epochs occurring during synchronized vs. desynchronized ECoG
states, as previously shown (Enander et al., 2019), the spectral
density of the ECoG was calculated with a segment length
of 1,000 ms, an overlap of 125 ms, and a constant (mean)
detrending. The spectral density of Delta, Theta, and Alpha
bands (0–12 Hz) was summed for each segment and the
compound value was used for the remainder of the analysis. A

desynchronized segment of ECoG was assumed to occur when
the compound spectral density dropped below the compound
spectral density median for at least two segments in sequence.
Therefore, at the onset of every stimulus presentation, and
thereby for each response type, there was an identified ECoG
state. The fraction of stimulus presentations that occurred
within the desynchronized state relative to the total number of
presentations was used for statistical comparisons (Figure 5).
As the probability of a brain state is expected to influence the
observed ratios of occurrences of events within each brain state
the statistical method used to make the comparisons was the
paired t-test.

Post-processing—Responses Evoked by Isolated
Single-Pulse Stimulation Pulses
As described above, isolated single-pulse stimulations were
delivered for each stimulation channel separately in sequences
of five repetitions separated from each other by 0.3 s, whereas
different such chunks of five pulse stimulations (N = 20 per
channel) were randomly intermixed with the full stimulation
patterns. We analyzed the responses to such isolated single-pulse
stimulations with respect to the onset latency time, the time-to-
peak, and the response amplitude, using a tailor-made point-and-
click user interface (Figure 6, Table 2).

Post-processing—Responses Evoked by Individual
Stimulation Pulses Within Patterns
We also performed an analysis of the responses to the individual
pulses within the different stimulation patterns (Figure 7).
We constrained the analysis to the following set of individual
stimulation pulses: Each of the eight spatiotemporal stimulation
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FIGURE 5 | No preferred ECoG state for specific response types. (A) Two sample responses belonging to the same response type evoked during synchronized and
desynchronized ECoG states. Top two traces are time-compressed ECoG recordings. The pink time zone is expanded below to illustrate the corresponding
intracellular responses of a recorded neuron, superimposed. Note the rising Upstate starting before the onset of the stimulation (gray arrow) for the gray trace
(synchronized ECoG). (B) Two sample responses from the same neuron and stimulation pattern as in (A), but from response Type 1. Both traces occurred during
synchronized ECoG states. The red trace had a rising Upstate that started (red arrow) at almost the exact same time as in the gray trace in (A). (C,D) The fraction of
responses occurring in the desynchronized ECoG state for the responses evoked by each stimulation pattern is shown in red, for each neuron, and for each member
of a response type (blue). The fraction for each response type is hence paired with the corresponding fraction for the stimulation pattern. The bar chart in (B)
illustrates the results of this investigation only for response types with more than nine members (nine responses). In (D), the same display but for all response types
identified (including those with less than 10 members, N = 494).

patterns consisted of 5–33 individual stimulation pulses and a
total sum of 152 pulses altogether in the eight patterns used
(Figure 1A). The time between subsequent stimulation pulses
within the stimulation patterns varied in the span of 1–123 ms.
This means that in some cases, the intervals between subsequent
stimulation pulses were too short to identify which of the

pulses generated the recorded response. Since the scope of this
part of the analysis was to investigate the response to specific
in-pattern stimulation pulses, only stimulation pulses that were
temporally segregated from previous and subsequent pulses by
at least 10 ms were included (as the average response latency
time was 11 ms, Table 2). Based on this selection criterion,
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FIGURE 6 | Random variability of the isolated single-pulse responses. (A) Six superimposed raw intracellular traces evoked by isolated single-pulse stimulations to
channel #3, recording from Neuron #7. Pairs of arrows indicate the response onset latency time, the time-to-peak and the peak amplitude for three sample
responses. (B) 3D plot of the measured parameters for all responses evoked by isolated single-pulse stimulation of channel #3 in the same neuron. (C) Similar
display for all four channels used. (D) The matrix presents the outcome of a statistical investigation of whether the rank order of the single-pulse stimulations within
the five pulse chunks (each pulse separated by an interval of 0.3 s) had a statistically significant impact on the response amplitude, by comparing the 20 responses
of any one group (the first pulse, for example) to those of each other group (the third pulse, for example) in turn (Wilcoxon rank sum test for pairwise comparisons,
p-values are indicated according to the color scale). (E) For the investigation of which an example is shown in (D), this histogram summarizes the result (the
distribution of p values) across all stimulation channels and all neurons (binned).

52 out of the total 152 pulses were included in the analysis of
the responses evoked by the individual stimulation pulses within
stimulation patterns.

Responses to the individual stimulation pulses were analyzed
bothmanually and automatically. Themanual part of the analysis
consisted of a visually guided definition of the onset latency,
amplitude height, and latency-to-peak using the tailor-made
point-and-click user interface (as in Figures 6A–C). The
automatic part consisted of detection of EPSP-like events using
tailored template matching routines—its sole purpose was to
identify if EPSPs evoked by a particular stimulation pulse were
so infrequent that they were at risk of not surpassing the
spontaneous occurrence of similar EPSP events (in the recording
times in between the presentation of the stimulation patterns),
in which case they were to be excluded from further analysis.
EPSP templates consisted of a series of 5–20 time-voltage
thresholds with individually variable voltage variance and were
defined manually for each neuron based on a large sample of
EPSP-like events (�100) occurring after in-pattern stimulation
pulses. They were visually confirmed to not omit mid to large
EPSP-like events (>3 mV) that occurred spontaneously at
randomly sampled time points throughout the duration of the
recordings. The response fraction of a neuron to each repetition
of a stimulation pulse was defined as the number of repetitions
evoking an EPSP-like event, as judged by the automated EPSP

identification in the time range 4–18 ms after the pulse onset,
divided by the total number of repetitions of that pulse. The
baseline activity of that same EPSP-like event was determined
by counting its spontaneous activity in time bins of 14 ms
width (i.e., the same width as the response time window) for
12 consecutive bins preceding the onset of the stimulation
pattern. As each stimulation pattern, as a rule, was repeated
100 times, we typically obtained a total of 1,200 such bins. The
response fraction of the spontaneous activity was obtained by
taking the average activity across these 1,200 bins. The threshold
activity for the EPSP template, i.e., the response fraction that an
in-pattern stimulation pulse needed to exceed in order to qualify
as an evoked rather than spontaneous response, was defined as
the mean plus two standard deviations of the response fraction
of the spontaneous activity. If the response fraction was below
the threshold activity, or if there were less than five manually
detected EPSPs, the response of that in-pattern stimulation
pulse was considered not significant and was discarded from
further analysis.

Statistical Analysis Summary
For statistical evaluation of the identified response types, we
used the Kruskal-Wallis test (Figures 2D,E). For pairwise tests of
response fractions occurring under desynchronized brain states
(Figure 5), we used paired t-test. For pairwise comparisons
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of EPSP-like responses (Figures 6, 7), we used the Wilcoxon
rank-sum test for pairwise comparisons as the data was not
following a normal distribution.

RESULTS

Large Variations in Neocortical Internal
States and Responses
While providing specific spatiotemporal tactile afferent
activation patterns to the skin (Figure 1A), we made
intracellular, whole-cell patch-clamp in vivo recordings from
single neocortical pyramidal cells [putative layer III-V pyramidal
neurons in the somatosensory cortex (S1), Figure 1B], three of
which were morphologically verified to be layer III pyramidal
cells (Figure 1C). The time-varying states of the subnetworks
connected to the recorded neuron generated a rich background
of spontaneous Up and Down states, mixed with episodes of
intermediate states, against which the responses evoked by the
sensor input patterns could often stand out as distinctly different
(Figure 1D). Responses evoked by the same stimulation pattern
appeared to be impacted by the preceding state, as reflected in
the spontaneous activity (Figure 1D, top two traces). In addition,
in some cases, the spontaneous activity could even resemble
the responses evoked by the stimulation (Figure 1D, indicated
by an arrow in the bottom trace), in agreement with previous
observations (Berkes et al., 2011).

Distinct Types of Responses on Repeated
Application of Identical Tactile Input
Patterns
Given a consistent input pattern (Figure 1A), the response to
any element in the stimulation pattern might still be modulated
by cortical state changes, internally generated and/or impacted
by prior elements of the pattern. Indeed, repeated delivery of
one specific stimulation pattern generated multiple different
responses that on visual inspection tended to sort into a few
different categories, or types (Figure 2A). In order to explore this
separability, we applied a clusteringmethod that sorted responses
on basis of their membrane potential at each sample time point.
In the illustrated case, this method indicated that the majority
of the responses evoked by this specific stimulation pattern
were separable into six recurring response types (Figure 2B).
For the same neuron, the other seven stimulation patterns
had three-six response types each. Across all neurons recorded,
the responses of the intracellular membrane potential evoked
by each stimulation pattern were on average divisible into
3.8+ /−1.3 response types (Table 1).

For the clustering method we used, the set thresholds of
allowed variability of the membrane potential were naturally
critical factors for the outcome. A parameter sensitivity analysis
showed how different parameter settings affected the outcome
in two different sample neurons (Figure 2C). The aim for the
parameter settings was to have as few ungrouped responses and
as many groups as possible. However, across the population of
neurons, there was no single setting that would maximize these
two factors across the whole population of neurons (Figure 2C).

As shown in Figure 2C, the parameter settings that were chosen
were located in the center region of a relatively smooth landscape
of possible outcomes. This was reassuring, as it showed that
our clustering algorithm was not unstable in the sense that
gradual changes in the two parameters Threshold and Overshoot
did not result in dramatically different outcomes (see also
Supplementary Figure 1).

We next investigated if the clustered response types were
different from each other using the Kruskal-Wallis test. We
compared the responses that belonged to each response type to
the responses evoked by the same stimulation pattern in the same
neuron but belonging to the other response types. Whereas the
Kruskal-Wallis test results for individual response types could
fluctuate across different sample time points (Figure 2D), it was
clear that the probability of H0 was substantially lowered during
the time window that the stimulation pattern was on 0–350 (ms,
approximately). When we instead plotted the fraction of the
response types that were statistically different (at p < 0.05) from
the other responses evoked by the same respective stimulation
pattern, this separability was true for more than 60% of the
response types across every time point for the duration of the
stimulation patterns (Figure 2E). When the stimulation patterns
ceased, however, the separability dropped relatively rapidly
(within 100–150 ms) to chance levels (Figure 2E). Furthermore,
when the response type labels were shuffled among the responses
evoked by the same stimulation pattern in the same neuron,
the separability collapsed to chance level (0.05; red trace in
Figure 2E) for all time points.

As another independent verification method, we next used
Principal Component Analysis (PCA) to find out to what
extent the shapes of the full duration traces of the response
types were distinctly different from each other. This method
provided a measure of the accuracy, or the distinctness of
separation of the individual responses, as summarized in the
confusion matrix for the sample stimulation pattern in this
neuron (Figure 3A). The mean accuracy across the different
response types, indicated by the diagonal, was on average 56.7%
for this stimulation pattern (including ungrouped responses;
the chance level was = 1/7 = 14.3%). Across the population
of recorded cells, the accuracy of the separation of the
responses into the identified response types was generally above
60% for each of the eight stimulation patterns (Table 1),
verifying that the identified response types were composed
of a set of responses that to a relatively high degree were
orthogonal to the responses belonging to other response types.
A sensitivity analysis of the parameter choice for the clustering
method showed that the chosen parameter values did not
provide the highest possible decoding accuracy (Figure 3B),
but was instead a balance between this metric, the number
of ungrouped responses, and the number of response types
identified (Figure 2C).

Whereas the majority of the evoked responses could be
classified as belonging to one of the response types (Table 1),
‘‘ungrouped’’ responses (Figure 3A) were by definition a much
broader and heterogeneous class and consequently had a much
greater risk of confusion (i.e., a low value in the diagonal
and a higher prevalence of well-above-zero values outside the
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FIGURE 7 | Response metrics differences between neurons for isolated within-pattern stimulation pulses. (A,B) Examples of the variation of the responses to
single-pulse stimulation of the same channel depending on the pulse position within the stimulation pattern and the neuron (shown for Neuron#5 and Neuron#11).
Five superimposed raw data traces are shown for each neuron for the responses to stimulation of ch#3 at various time points (as indicated by pu# and arrows below
traces) within stimulation pattern S20. (C) Average EPSP amplitude, indicated as multiples of the average EPSP amplitude to the isolated single-pulse stimulation of
the corresponding channel in the same neuron (Figure 6), shown for each neuron and each analyzed within-pattern stimulation pulse (N = 52), corresponding to a
total of 56,762 responses. For each analyzed stimulation pulse, the stimulus pattern and the sequential position of the pulse within that pattern (pu#) for each
respective stimulation channel (ch#) are indicated at the bottom (organized according to their order of occurrence within the stimulation patterns). White entries
indicate that the response fraction did not surpass the spontaneous level of EPSP events by more than two standard deviations according to the automatic EPSP
detection method and the response was hence discarded from further analysis. (D) Similar display as in (A) , but for the relative response latency time, i.e., the
latency expressed as multiples of the average response latency time to isolated single-pulse stimulation of the corresponding channel. (E,F) Pairwise comparisons of
differences in EPSP amplitudes between all neurons. For two sample stimulation pulse positions (S10, ch#3, pu#6; and F5, ch#3, pu#4, respectively) we analyzed
whether the changes in relative EPSP amplitude (compared to the neuron’s isolated single-pulse response) differed between neurons. The p-values of the Wilcoxon
rank sum test for each pairwise comparison of the raw EPSP-like responses are reported as a color code in the matrix (N = 56 comparisons).

diagonal, Figure 3A). To evaluate the ‘‘ungrouped’’ responses
we used the F1 score. A high F1 score value indicates a small
risk of confusion with any of the specific classes of responses.
In Figure 3A, the F1 score for ungrouped responses was 0.32.
This value does suggest some degree of confusion, even though
the confusion matrix indicates that there wasn’t any specific
response type that the ungrouped responses were confused with.

Across the dataset, the F1 score was 0.48 (Table 1), indicating
that the ungrouped responses were overall well separated from
the responses classified as belonging to the defined response
types, and therefore potentially represented additional response
types that our method could not reliably identify due to the
limited number of repetitions (100 or less) available for each
input pattern.
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TABLE 1 | Number of response types and the performance measures for the response type separation for each stimulation pattern separately, based on principal
component analysis (PCA) and k-nearest neighbors (kNN) analysis.

mean (std) Grand F5 S5 F10 S10 F20 S20 Finf Sinf

average

Identified response
types (N)

3.8 (1.3) 3.5 (1.0) 3.9 (1.4) 4.0 (1.4) 4.0 (1.6) 4.1(1.5) 3.5 (1.8) 3.7 (2.2) 3.6 (1.8)

Type separation
accuracy (%)

60.9 (8.1) 59.5 (7.5) 62.6 (14.2) 61.8 (9.0) 61.5 (13.2) 56.7 (14.2) 61.9 (13.0) 60.7 (10.3) 62.7 (12.2)

Fraction
“Ungrouped” (%)

37.5 (14.6) 39.5 (12.9) 34.8 (12.8) 33.1 (18.2) 34.1 (17.6) 43.4 (15.9) 38.2 (18.0) 38.6 (15.3) 37.9 (20.4)

F1-score,
“Ungrouped” (0–1)

0.48 (0.18) 0.51 (0.21) 0.48 (0.19) 0.45 (0.21) 0.45 (0.21) 0.54 (0.18) 0.50 (0.21) 0.48 (0.22) 0.47 (0.26)

Summarized data for all neurons displayed for each stimulation pattern (based on matrices of the type shown in Figure 3A), and as a Grand Average across all stimulation patterns.

We also used PCA to compare the response types evoked
by all eight stimulation patterns (Figure 3C). As each of
the eight stimulation patterns on average evoked about four
responses types (Table 1), a large number of comparisons were
made in this investigation (and hence the analysis results for
pattern S5 in Figure 3A, for example, cannot be expected to
be preserved, as there were so many more responses to be
compared with, which substantially increases the probability
of confusion/misclassification for each response). In this case,
the accuracy of the response types (ungrouped responses were
excluded here) was on average 57.6%. This is a remarkably
high specificity, considering that the chance level for this
comparison was only 2.9% (i.e., 1/34, for the comparison
involving 34 response types). Across all cells recorded, this cross-
stimulation pattern response type accuracy was 38.2 +/−21.0%.
Hence, in each individual neuron, a majority of the evoked
responses for a single stimulation pattern could be divided
into distinct types that were separable with high accuracy from
responses not belonging to that type, regardless of whether they
were evoked by the same or by other stimulation patterns. In
order to confirm that the reported decoding accuracy was not
due to chance, we shuffled the stimulation pattern labels between
the responses recorded in the same neurons. In this case, the
decoding accuracy dropped substantially (Figure 3D). The fact
that it did not drop all the way to chance level was likely
due to the circumstance that many of the evoked responses,
just like the spontaneous activity (Figure 1D), did share some
common features.

Uniqueness of the Response Types
Between Neurons
We have previously found that the intracellular responses evoked
by a given stimulation pattern are different between neurons
(Oddo et al., 2017), which on average was the case also in the
present set of recordings (Figure 4A). Here, the issue was instead
if the various response types evoked by the same stimulation
pattern were distinct from each other across the recorded
neurons, which would indicate differences in the subnetworks
connected to them. Figure 4B illustrates a confusion matrix
of a sample stimulation pattern, for which the accuracy of
response types separation was 42.7% (chance = 1/48 = 2.1%)
across the 13 neurons (some neurons were recorded in the
same experiment, as indicated). Across all eight stimulation

patterns, this accuracy was 39.5 +/−3.5%. Moreover, in the
sample illustration (Figure 4B), we found that 45 out of 48, or
93.8%, of the response types were separable, from the responses
of all other types (i.e., decoding accuracy higher than chance).
Across all stimulation patterns, 44.1 +/−2.9 response types, or
89.6 +/−3.0% of each response type identified, were similarly
separable from all other response types evoked by the same
stimulation pattern in different cells.

Response Types Were Not Associated With
Specific ECoG States
Given that anesthesia tends to increase the duration and depth of
synchronized cortical activity states (Constantinople and Bruno,
2011), during which responses could possibly become more
stereotyped, one suspicion could be that some response types
occurred only during synchronized cortical activity whereas
other response types occurred only in the desynchronized state.
However, comparing the prevailing ECoG state across individual
responses of the same response type demonstrated that this was
not a rule (Figure 5A). A response evoked in the middle of
a desynchronized ECoG state could be classified to the same
response type (Type 0) as another response evoked in the middle
of a synchronized ECoG state, even in cases where the response
was evoked in the middle of a starting Upstate in the neuron
(Figure 5A; note that Up-Down states tend to increase with
synchronized states but are not equivalent to such states; Poulet
and Petersen, 2008). To further show that a rising Upstate alone
was not a strong determinant of the response type, a sample trace
of another response type (Type 1) is illustrated in Figure 5B,
alongside another trace also belonging to Type 1. These two
examples illustrate that the presence or absence of an Upstate
initiation was not in itself a decisive predictor of which response
type was going to be evoked.

We next systematically compared the relative probability of
the desynchronized ECoG state for each stimulation pattern
(a total of 8 times 13 neurons = 104 data points) with the
corresponding probability for each of the 494 response types
identified (Figures 5C,D). The issue addressed was if some of
the response types were more likely to be associated with a
desynchronized or a synchronized ECoG state. In Figure 5C,
we only analyzed the distribution for response types with more
than nine individual responses/members. In Figure 5D, we also
included response types with fewer than 10 members, which
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resulted in a separate small peak at 0.0 and a few very high
values for the type-separated responses. These outlier bars could
be explained by chance omission or addition of one response
in the desynchronized state, which could greatly impact the
ratio for response types with fewer than 10 members as the
overall probability of being in the desynchronized ECoG state
was around 20%. Nevertheless, under both conditions, the
response types were not distributed significantly differently from
the overall responses evoked by the same stimulation pattern
according to the paired t-test (p = 0.76 and p = 0.68, respectively).
Hence, the ECoG indicator of the global brain state was not
predictive of the response type, suggesting that the response types
were not an effect merely of this global brain state but rather
the result of an interplay between the input and the dynamics
of subnetwork-specific internal state evolution as the stimulus
presentation unfolded.

Neuron-Specific Responses to the
Individual Pulses That Composed the
Stimulation Patterns
We also performed a separate analysis of the responses evoked
by the individual stimulation pulses, of which each stimulation
pattern was composed. A striking feature of the responses
to isolated single-pulse stimulations, delivered in between the
stimulation patterns (analyzed in Figures 1–5), was their highly
variable nature (Figures 6A–C, Table 2), in contrast to the
known consistency of the primary sensory afferent activation
of this type of electrocutaneous stimulation (Bengtsson et al.,
2013). A statistical analysis moreover suggested that there was
no order-dependence of the response amplitudes evoked by the
isolated single-pulse stimulations when delivered in chunks of
five pulses separated by 0.3 ms (Figures 6D,E). In contrast,
for the same single-pulse stimulations, when they were part
of one of the stimulation patterns, the responses displayed
a relative specificity that depended on the position of the
pulse within the stimulation pattern (Figure 7), and which
moreover differed between neurons (Figures 7A,B). Systematic
analysis indicated that each neuron constituted a unique pattern
within the ‘‘mosaic’’ of response parameter variations across the
whole set of ‘‘within-pattern’’ stimulation pulses (Figures 7C,D).
This was quantified using a pairwise statistical comparison
across all neurons, illustrated in Figures 7E,F for two sample
within-pattern stimulation pulses. Across all 52 stimulation
pulse positions tested (see ‘‘Materials and Methods’’ section),

TABLE 2 | Quantification of single-pulse responses in the population of neurons.

Mean ± std Peak amplitude Response onset Latency to peak
latency time

CV 0.43 ± 0.10 0.28 ± 0.10 0.29 ± 0.08
Values 7.7 ± 4.8 mV 11.1 ± 3.1 ms 9.8 ± 5.6 ms

Quantified response variability across the entire population of neurons using the
coefficient of variation (CV) measure. We investigated responses to inputs from 4 four
channels for 12 neurons, and hence calculated the CV for N = 48 stimulus presentations,
each repeated 100 times (four exceptions, see “Materials and Methods” section). For the
CV of the response onset latency time, we subtracted a fixed 4 ms delay for the cuneo-
thalamo-cortical pathway. The corresponding values are displayed on the second row.
Altogether, the data indicated that the three measured response parameters had a large
internal variability.

statistically significant differences between the neurons (at
p < 0.05, Wilcoxon rank-sum test for pairwise comparisons;
the analysis only included responses that were statistically
significant, i.e., non-white entries in Figures 7C,D) were found
in 65% of the comparisons of the amplitudes, 78% of the
comparisons of the time-to-peaks and 86% of the comparisons of
the response latency times. Thus, for the majority of the within-
pattern stimulation pulses, the changes in response amplitude,
time-to-peak, and response latency relative to the isolated single-
pulse stimulation were statistically different between the neurons,
corroborating the results from Figure 4B that each neuron
responded with partly unique time-voltage curves across the
duration of the stimulation patterns. Altogether, the results
in Figure 7 show that the outcome of the response type
identification analysis cannot be explained by a generic sequence
of paired-pulse depression or facilitation phenomena, since these
would affect all neurons in the same way.

DISCUSSION

Our results show that the responses evoked by tactile sensory
input patterns fall into a limited subset of preferred response
states that are specific to each input pattern and each cortical
neuron. The relative orthogonality of these recurring response
types (Figure 3A, Table 1), the identification of which was made
possible by the high resolution of the recording and precise
repeatability of the stimulation method, indicates that they
resulted from specific response states of the cortical networks,
rather than being noise or specific patterns of spontaneous
activity unrelated to the stimuli. The finding that the response
types were relatively unique even when all the response types
evoked across all the eight stimulation patterns were compared
(Figure 3C) is another strong piece of evidence against that
possibility. Moreover, the observation that the response types
are relatively unique for each neuron (Figure 4B) indicates
the existence of multiple, parallel, neuron-specific subnetworks,
which could reflect specific aspects of the current global internal
brain state (Figure 8). This is conceivable since the global
internal states subsampled by each neuron, in turn, are likely
to encompass large parts of the neocortex (Spanne and Jorntell,
2015; Enander et al., 2019; Stringer et al., 2019a,b; Wahlbom
et al., 2019), as underscored by the estimate that any neuron
in the neocortex connects to any other neocortical neuron with
synaptic linkages within no more than five neurons on average
(Arbib et al., 1998). The existence and regulation of internal brain
states can be expected to be essential for forming the percepts (or
illusions), generated by given sensor activation patterns (Geldard
and Sherrick, 1972; Robles-De-La-Torre and Hayward, 2001).
Our results indicate that the neocortical network physiology has
a non-uniform, non-continuous landscape of solutions, which
may cause the response types observed to arise as the result of
an adaptable time-evolving match between various subnetworks’
internal states and the actual sensory input pattern received.

Methodological Considerations
Our response types should not be regarded as fixed entities,
for example the specific types detected could grow or shrink
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FIGURE 8 | Summary of findings. Recorded neocortical neurons receive a
high number of synaptic inputs, each of which could potentially be controlled
by a different subnetwork. Each subnetwork may be gated by other, relatively
independent, events in the global neocortical circuitry. When the same tactile
afferent stimulation pattern is provided at different points in time, these
subnetworks may have different initial states, which will impact which
subnetworks are gated in or out, which in turn will affect the appearance of
the intracellular response (two traces shown in the top right corner). Circles
are neurons, triangles are synapses, lines are axons and variable connections
are drawn by dashed lines.

with altered parameter settings of the clustering method (see
Figure 2C) and there was a degree of response variability within
each identified response type (Figure 2B). However, as each
response type could subsequently be demonstrated to have a
degree of orthogonality to the responses belonging to other
types (Figure 3A, Table 1), our data show that the dynamics
of the neocortical network created a multitude of alternative,
non-continuous response states to any given sensory input
pattern. It is highly unlikely that our identified average number of
four response types per stimulation pattern represents anything
near an actual upper limit—if we had had the possibility to
repeat each stimulation pattern millions of times, rather than
one hundred, a higher number of response types would most
likely have been possible to identify. Nevertheless, as shown in
our sensitivity analysis, where we tested hundreds of different
parameter settings for our clustering algorithm, almost every
clustering setting with more than one identified response type
indicated that the identified clusters were objectively separable
using PCA+ kNN (Figure 3B). Hence, our analysis indicates the
existence of discontinuity, or local minima, in the response states
of the cortical network.

Alternative approaches to clustering, like machine learning
networks or k-means, were not explored here, as these

approaches commonly require a target aim of how many clusters
should be sought for, or can suffer from instability and high
sensitivity to the exact choice of hyperparameters. Our clustering
method was instead designed to identify how many clusters
could be observed based on clearly defined metrics of the
neurophysiological recording data.

How many possible response types exist and what specific
membrane voltage curves they would create are more than likely
to depend on the condition. Hence, it would not be surprising
if they are instantiated differently in the awake behaving animal,
where they may be varying even further with the ‘‘state of mind’’,
and differently still when there is an accurate prediction of
an expected sensory input being made. However, apart from
beingmethodologically nearly impossible to explore in the awake
animal (due to the requirement of achieving identical stimuli
over a long time), a correct analysis of such data in this respect
would have required a precise estimate of what the experimental
subject is thinking at the time of the stimulus delivery, which is
today not theoretically possible.

To what extent could our results be a ‘‘product’’ of
the anesthetics? Anesthesia increases the probability of the
thalamocortical system to enter episodic, coordinated oscillatory
modes (Amzica and Steriade, 1998; Constantinople and Bruno,
2011), or synchronized states, even though they are certainly
not uncommon in the awake state (Poulet and Petersen, 2008;
Bennett et al., 2013; Petersen and Crochet, 2013; synchronized
states are widely observed also in awake humans; Sachdev et al.,
2015). However, in between such episodes, there are periods of
desynchronized activity, or states, which do not differ between
the awake and the anesthetized animal, though anesthesia
could be expected to lead to an overall activity reduction
within desynchronized states (Constantinople and Bruno, 2011).
Importantly, the response types were not specifically associated
with any of these two opposite global states (Figure 5), which
is a strong argument against the possibility that the response
types are a peculiarity created by the increased time spent in a
synchronized state that is a consequence of the anesthesia. Hence,
whereas our recordings do not reflect natural integrated thought
processes, they can still provide important information about
underlying governing principles of information processing,
principles which would be much harder to disentangle in
awake recordings. However, there are data from awake behaving
animals that are compatible with the presence of multi-structure
cortical states, for example, that the activity of a population
of neocortical neurons can follow different trajectories of
interdependencies depending on the motor task performed
(Churchland et al., 2012; Gallego et al., 2017; Russo et al.,
2020). Distributedmulti-stable states are also compatible with the
dynamic routing of brain activity in humans (Finger et al., 2019).

Relation to Previous Literature
Previous analyses of state-conditioned intracellular signal
variations evoked by somatosensory inputs have largely focused
on the binary issue of Up and Down states using single-shot
or brief inputs. The seemingly paradoxical finding that inputs
provided in an excited, Up, state result in much lower responses
than the same input in a Downstate (Petersen et al., 2003)
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was in a detailed conductance-level analysis indicated to be
partly due to the shunting effect caused by the Upstate being
associated with a high level of excitatory synaptic input but also
in parallel a high level of inhibitory synaptic input (Hasenstaub
et al., 2007). Moreover, it was observed that stimuli during a
Downstate could often evoke disproportionately large responses,
by inducing transitions to an Upstate. More recent studies
suggest such effects to be inducible because the neocortex is
a system with criticality phenomena, where small changes at
critical states can cause avalanche effects of increased excitability
that spread widely through the cortical network (Wright and
Wessel, 2017; Johnson et al., 2019). Although our data indicate
a much more fine-grained subdivision of cortical states than the
binary dichotomy between Up and Down states, such avalanche
effects could be the underlying reason for the response types we
observed here. If each subnetwork for example exhibits partly
independent criticality, where each individual synaptic input to
a neuron could in theory represent the activity state of partly
independent subnetworks, this would be compatible with the
fact that different neurons exhibited different response types
to the same inputs. Moreover, the data suggest that different
individual neurons are connected to unique combinations of
such subnetworks (Figure 8).

Implications for Our View on the
Neocortical Mode of Operation
Although our data naturally do not allow identification of
the full perceptual processes, they explore the physiological
brain mechanisms that support such processes, which likely
correspond to mechanistic underpinnings of expectations or
predictions (Loeb and Fishel, 2014). The findings suggest that the
multidimensional latent state defined by the large populations
of neurons across the neocortex (Stringer et al., 2019b) works
according to attractor-like dynamics (Ringach, 2009) with
multiple attractors for each given input. The interaction between
the input pattern and the cortical state at the moment of
stimulus onset would thus cause the cortical network to fall into
one specific out of many possible attractors, or series of such
attractors. Since different neurons would be coupled to different
subnetworks of this global network, the same attractor would
potentially impact different neurons in different ways, as our
data indicate (Figure 4B). The specificity of the response types
observed in individual neurons would thus be local subnetwork-
instantiations of the time-evolving input-updated brain-wide
state estimations of world and body, hence fundamental
mechanisms for forming rich perception, and illusions. We
expect these principles to reflect a general computational strategy
used by the neocortex across all sensory systems.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. This data can be found here: https://doi.org/10.6084/
m9.figshare.14681340.v1. Further requests can be directed to the
corresponding author.

ETHICS STATEMENT

The animal study was reviewed and approved by Local Ethics
Committee of Lund, Sweden.

AUTHOR CONTRIBUTIONS

JN and HJ planned the study and conducted the experiments.
JN, JMDE, and HJ designed the analysis. JN, JMDE, and
HM conducted the analysis. JN and HJ wrote the article.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the EU Grant FET 829186 ph-
coding (Predictive Haptic COding Devices In Next Generation
interfaces) and the Swedish Research Council (project grant no.
K2014-63X-14780-12-3).

ACKNOWLEDGMENTS

We thank Jerry Loeb (USC Los Angeles) and Matthias Kohler
(TU Munich) for pre-reviewing our manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncel.
2021.677568/full#supplementary-material.

SUPPLEMENTARY FIGURE 1 | Stability of identified clusters across the full
range of parameter settings. (A) Mean agreement between surrounding elements.
The position of each center element was defined by the values of its “Threshold”
and “Overshoot” parameters. The color code indicates the average
number/proportion of response members of the center element that fell into the
same clusters as in each of the eight surrounding elements, across all clusters
identified. Data for Neuron#5, pattern S5 (same as in Figures 2, 3). (B) Maximal
agreement between surrounding elements. Same analysis as in (B), but instead
the highest level of agreement between two clusters is illustrated. The color code
here instead indicates the average max agreement between the central element
and its eight surrounding elements.

REFERENCES

Amzica, F., and Steriade, M. (1998). Electrophysiological correlates of sleep delta
waves. Electroencephalogr. Clin. Neurophysiol. 107, 69–83. doi: 10.1016/s0013-
4694(98)00051-0

Arbib, M. A., Numbers, R. L., Érdi, P., Szentágothai, J., Szentagothai, J.,
and Szentagothai, A. (1998). Neural Organization: Structure, Function and
Dynamics. Cambridge, MA: MIT press.

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics
of ongoing activity: explanation of the large variability in evoked
cortical responses. Science 273, 1868–1871. doi: 10.1126/science.273.52
83.1868

Bandeira, F., Lent, R., and Herculano-Houzel, S. (2009). Changing numbers
of neuronal and non-neuronal cells underlie postnatal brain growth in the
rat. Proc. Natl. Acad. Sci. U S A 106, 14108–14113. doi: 10.1073/pnas.08046
50106

Frontiers in Cellular Neuroscience | www.frontiersin.org 16 June 2021 | Volume 15 | Article 677568

https://doi.org/10.6084/m9.figshare.14681340.v1
https://doi.org/10.6084/m9.figshare.14681340.v1
https://www.frontiersin.org/articles/10.3389/fncel.2021.677568/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncel.2021.677568/full#supplementary-material
https://doi.org/10.1016/s0013-4694(98)00051-0
https://doi.org/10.1016/s0013-4694(98)00051-0
https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1073/pnas.0804650106
https://doi.org/10.1073/pnas.0804650106
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Norrlid et al. Multi-structure Representations of Fixed Input

Bengtsson, F., Brasselet, R., Johansson, R. S., Arleo, A., and Jorntell, H. (2013).
Integration of sensory quanta in cuneate nucleus neurons in vivo. PLoS One
8:e56630. doi: 10.1371/journal.pone.0056630

Bennett, C., Arroyo, S., and Hestrin, S. (2013). Subthreshold mechanisms
underlying state-dependent modulation of visual responses. Neuron 80,
350–357. doi: 10.1016/j.neuron.2013.08.007

Berkes, P., Orban, G., Lengyel, M., and Fiser, J. (2011). Spontaneous cortical
activity reveals hallmarks of an optimal internal model of the environment.
Science 331, 83–87. doi: 10.1126/science.1195870

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D.,
Nuyujukian, P., Ryu, S. I., et al. (2012). Neural population dynamics during
reaching. Nature 487, 51–56. doi: 10.1038/nature11129

Constantinople, C. M., and Bruno, R. M. (2011). Effects and mechanisms of
wakefulness on local cortical networks. Neuron 69, 1061–1068. doi: 10.1016/j.
neuron.2011.02.040

Curto, C., Sakata, S., Marguet, S., Itskov, V., and Harris, K. D. (2009). A
simple model of cortical dynamics explains variability and state dependence
of sensory responses in urethane-anesthetized auditory cortex. J. Neurosci. 29,
10600–10612. doi: 10.1523/JNEUROSCI.2053-09.2009

Ekerot, C. F., Gustavsson, P., Oscarsson, O., and Schouenborg, J. (1987). Climbing
fibres projecting to cat cerebellar anterior lobe activated by cutaneous A and C
fibres. J. Physiol. 386, 529–538. doi: 10.1113/jphysiol.1987.sp016549

Enander, J.M.D., Spanne, A., Mazzoni, A., Bengtsson, F., Oddo, C. M., and
Jorntell, H. (2019). Ubiquitous neocortical decoding of tactile input patterns.
Front. Cell. Neurosci. 13:140. doi: 10.3389/fncel.2019.00140

Finger, H., Gast, R., Gerloff, C., Engel, A. K., and Konig, P. (2019). Probing neural
networks for dynamic switches of communication pathways. PLoS Comput.
Biol. 15:e1007551. doi: 10.1371/journal.pcbi.1007551

Fiser, J., Chiu, C., and Weliky, M. (2004). Small modulation of ongoing cortical
dynamics by sensory input during natural vision. Nature 431, 573–578.
doi: 10.1038/nature02907

Gallego, J. A., Perich, M. G., Miller, L. E., and Solla, S. A. (2017). Neural manifolds
for the control of movement. Neuron 94, 978–984. doi: 10.1016/j.neuron.2017.
05.025

Geldard, F. A., and Sherrick, C. E. (1972). The cutaneous ‘‘rabbit’’: a perceptual
illusion. Science 178, 178–179. doi: 10.1126/science.178.4057.178

Genna, C., Oddo, C. M., Mazzoni, A., Wahlbom, A., Micera, S., and Jorntell, H.
(2018). Bilateral tactile input patterns decoded at comparable levels but
different time scales in neocortical neurons. J. Neurosci. 38, 3669–3679.
doi: 10.1523/JNEUROSCI.2891-17.2018

Golub, M. D., Sadtler, P. T., Oby, E. R., Quick, K.M., Ryu, S. I., Tyler-Kabara, E. C.,
et al. (2018). Learning by neural reassociation. Nat. Neurosci. 21, 607–616.
doi: 10.1038/s41593-018-0095-3

Hasenstaub, A., Sachdev, R. N., and McCormick, D. A. (2007). State changes
rapidly modulate cortical neuronal responsiveness. J. Neurosci. 27, 9607–9622.
doi: 10.1523/JNEUROSCI.2184-07.2007

Hayward, V., Terekhov, A. V., Wong, S. C., Geborek, P., Bengtsson, F., and
Jorntell, H. (2014). Spatio-temporal skin strain distributions evoke low
variability spike responses in cuneate neurons. J. R. Soc. Interface 11:20131015.
doi: 10.1098/rsif.2013.1015

Jenmalm, P., Birznieks, I., Goodwin, A. W., and Johansson, R. S. (2003). Influence
of object shape on responses of human tactile afferents under conditions
characteristic of manipulation. Eur. J. Neurosci. 18, 164–176. doi: 10.1046/j.
1460-9568.2003.02721.x

Johnson, J. K., Wright, N. C., Xia, J., and Wessel, R. (2019). Single-cell membrane
potential fluctuations evince network scale-freeness and quasicriticality.
J. Neurosci. 39, 4738–4759. doi: 10.1523/JNEUROSCI.3163-18.2019

Loeb, G. E., and Fishel, J. A. (2014). Bayesian action&perception: representing the
world in the brain. Front. Neurosci. 8:341. doi: 10.3389/fnins.2014.00341

Luczak, A., and Bartho, P. (2012). Consistent sequential activity across diverse
forms of UP states under ketamine anesthesia. Eur. J. Neurosci. 36, 2830–2838.
doi: 10.1111/j.1460-9568.2012.08201.x

Luczak, A., Bartho, P., and Harris, K. D. (2009). Spontaneous events outline the
realm of possible sensory responses in neocortical populations. Neuron 62,
413–425. doi: 10.1016/j.neuron.2009.03.014

Mogensen, H., Norrlid, J., Enander, J.M.D., Wahlbom, A., and Jorntell, H. (2019).
Absence of repetitive correlation patterns between pairs of adjacent neocortical
neurons in vivo. Front. Neural Circuits 13:48. doi: 10.3389/fncir.2019.00048

Narayanan, R. T., Udvary, D., and Oberlaender, M. (2017). Cell type-specific
structural organization of the six layers in rat barrel cortex. Front. Neuroanat.
11:91. doi: 10.3389/fnana.2017.00091

Niedermeyer, E., and da Silva, F. H. L. (2005). Electroencephalography:
Basic Principles, Clinical Applications and Related Fields. Philadelphia, PA:
Lippincott Williams &Wilkins.

Oddo, C. M., Mazzoni, A., Spanne, A., Enander, J. M., Mogensen, H.,
Bengtsson, F., et al. (2017). Artificial spatiotemporal touch inputs reveal
complementary decoding in neocortical neurons. Sci. Rep. 8:45898.
doi: 10.1038/srep45898

Oddo, C. M., Raspopovic, S., Artoni, F., Mazzoni, A., Spigler, G., Petrini, F.,
et al. (2016). Intraneural stimulation elicits discrimination of textural
features by artificial fingertip in intact and amputee humans. eLife 5:e09148.
doi: 10.7554/eLife.09148

Petersen, C. C., and Crochet, S. (2013). Synaptic computation and sensory
processing in neocortical layer 2/3. Neuron 78, 28–48. doi: 10.1016/j.neuron.
2013.03.020

Petersen, C. C., Hahn, T. T., Mehta, M., Grinvald, A., and Sakmann, B.
(2003). Interaction of sensory responses with spontaneous depolarization in
layer 2/3 barrel cortex. Proc. Natl. Acad. Sci. U S A 100, 13638–13643.
doi: 10.1073/pnas.2235811100

Poulet, J. F., and Petersen, C. C. (2008). Internal brain state regulates membrane
potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885.
doi: 10.1038/nature07150

Ringach, D. L. (2009). Spontaneous and driven cortical activity: implications for
computation. Curr. Opin. Neurobiol. 19, 439–444. doi: 10.1016/j.conb.2009.
07.005

Robles-De-La-Torre, G., and Hayward, V. (2001). Force can overcome object
geometry in the perception of shape through active touch.Nature 412, 445–448.
doi: 10.1038/35086588

Russo, A. A., Khajeh, R., Bittner, S. R., Perkins, S. M., Cunningham, J. P.,
Abbott, L. F., et al. (2020). Neural trajectories in the supplementary motor
area and motor cortex exhibit distinct geometries, compatible with different
classes of computation.Neuron 107, 745.e6–758.e6. doi: 10.1016/j.neuron.2020.
05.020

Sachdev, R. N., Gaspard, N., Gerrard, J. L., Hirsch, L. J., Spencer, D. D., and
Zaveri, H. P. (2015). Delta rhythm in wakefulness: evidence from intracranial
recordings in human beings. J. Neurophysiol. 114, 1248–1254. doi: 10.1152/jn.
00249.2015

Spanne, A., and Jorntell, H. (2015). Questioning the role of sparse coding in the
brain. Trends Neurosci. 38, 417–427. doi: 10.1016/j.tins.2015.05.005

Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., and Harris, K. D.
(2019a). High-dimensional geometry of population responses in visual cortex.
Nature 571, 361–365. doi: 10.1038/s41586-019-1346-5

Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C. B., Carandini, M.,
and Harris, K. D. (2019b). Spontaneous behaviors drive multidimensional,
brainwide activity. Science 364:255. doi: 10.1126/science.aav7893

Tan, D.W., Schiefer, M. A., Keith, M.W., Anderson, J. R., Tyler, J., and Tyler, D. J.
(2014). A neural interface provides long-term stable natural touch perception.
Sci. Transl. Med. 6:257ra138. doi: 10.1126/scitranslmed.3008669

Wahlbom, A., Enander, J. M. D., Bengtsson, F., and Jorntell, H. (2019). Focal
neocortical lesions impair distant neuronal information processing. J. Physiol.
597, 4357–4371. doi: 10.1113/JP277717

Wright, N. C., andWessel, R. (2017). Network activity influences the subthreshold
and spiking visual responses of pyramidal neurons in the three-layer turtle
cortex. J. Neurophysiol. 118, 2142–2155. doi: 10.1152/jn.00340.2017

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Norrlid, Enander, Mogensen and Jörntell. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 17 June 2021 | Volume 15 | Article 677568

https://doi.org/10.1371/journal.pone.0056630
https://doi.org/10.1016/j.neuron.2013.08.007
https://doi.org/10.1126/science.1195870
https://doi.org/10.1038/nature11129
https://doi.org/10.1016/j.neuron.2011.02.040
https://doi.org/10.1016/j.neuron.2011.02.040
https://doi.org/10.1523/JNEUROSCI.2053-09.2009
https://doi.org/10.1113/jphysiol.1987.sp016549
https://doi.org/10.3389/fncel.2019.00140
https://doi.org/10.1371/journal.pcbi.1007551
https://doi.org/10.1038/nature02907
https://doi.org/10.1016/j.neuron.2017.05.025
https://doi.org/10.1016/j.neuron.2017.05.025
https://doi.org/10.1126/science.178.4057.178
https://doi.org/10.1523/JNEUROSCI.2891-17.2018
https://doi.org/10.1038/s41593-018-0095-3
https://doi.org/10.1523/JNEUROSCI.2184-07.2007
https://doi.org/10.1098/rsif.2013.1015
https://doi.org/10.1046/j.1460-9568.2003.02721.x
https://doi.org/10.1046/j.1460-9568.2003.02721.x
https://doi.org/10.1523/JNEUROSCI.3163-18.2019
https://doi.org/10.3389/fnins.2014.00341
https://doi.org/10.1111/j.1460-9568.2012.08201.x
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.3389/fncir.2019.00048
https://doi.org/10.3389/fnana.2017.00091
https://doi.org/10.1038/srep45898
https://doi.org/10.7554/eLife.09148
https://doi.org/10.1016/j.neuron.2013.03.020
https://doi.org/10.1016/j.neuron.2013.03.020
https://doi.org/10.1073/pnas.2235811100
https://doi.org/10.1038/nature07150
https://doi.org/10.1016/j.conb.2009.07.005
https://doi.org/10.1016/j.conb.2009.07.005
https://doi.org/10.1038/35086588
https://doi.org/10.1016/j.neuron.2020.05.020
https://doi.org/10.1016/j.neuron.2020.05.020
https://doi.org/10.1152/jn.00249.2015
https://doi.org/10.1152/jn.00249.2015
https://doi.org/10.1016/j.tins.2015.05.005
https://doi.org/10.1038/s41586-019-1346-5
https://doi.org/10.1126/science.aav7893
https://doi.org/10.1126/scitranslmed.3008669
https://doi.org/10.1113/JP277717
https://doi.org/10.1152/jn.00340.2017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles

	Multi-structure Cortical States Deduced From Intracellular Representations of Fixed Tactile Input Patterns
	INTRODUCTION
	MATERIALS AND METHODS
	Ethical Approval
	Surgical Procedures
	Artificial Touch Inputs
	Neural Recordings
	Statistical Analysis
	Post-processing—General
	Post-processing—Clustering Algorithm for Separation of Response Types
	Sensitivity Analysis for the Selection of Parameter Values for the Clustering Method
	Statistical Evaluation of the Identified Response Types
	Evaluation of the Specificity of the Identified Response Types for Each Stimulation Pattern in the Same Neuron
	Evaluation of the Specificity of the Response Types Across All Stimulation Patterns in the Same Neuron
	Evaluation of the Specificity of the Response Types Across the Same Stimulation Pattern in Different Neurons
	Brain State Segmentation
	Post-processing—Responses Evoked by Isolated Single-Pulse Stimulation Pulses
	Post-processing—Responses Evoked by Individual Stimulation Pulses Within Patterns
	Statistical Analysis Summary


	RESULTS
	Large Variations in Neocortical Internal States and Responses
	Distinct Types of Responses on Repeated Application of Identical Tactile Input Patterns
	Uniqueness of the Response Types Between Neurons
	Response Types Were Not Associated With Specific ECoG States
	Neuron-Specific Responses to the Individual Pulses That Composed the Stimulation Patterns

	DISCUSSION
	Methodological Considerations
	Relation to Previous Literature
	Implications for Our View on the Neocortical Mode of Operation

	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES


