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Abstract: Currently, a new line of research on mitochondria-targeted anticancer drugs is actively
developing in the field of biomedicine and medicinal chemistry. The distinguishing features of this
universal target for anticancer agents include presence of mitochondria in the overwhelming majority,
if not all types of transformed cells, crucial importance of these cytoplasmic organelles in energy
production, regulation of cell death pathways, as well as generation of reactive oxygen species and
maintenance of calcium homeostasis. Hence, mitochondriotropic anticancer mitocan agents, acting
through mitochondrial destabilization, have good prospects in cancer therapy. Available natural
pentacyclic triterpenoids are considered promising scaffolds for development of new mitochondria-
targeted anticancer agents. These secondary metabolites affect the mitochondria of tumor cells
and initiate formation of reactive oxygen species. The present paper focuses on the latest research
outcomes of synthesis and study of cytotoxic activity of conjugates of pentacyclic triterpenoids with
some mitochondria-targeted cationic lipophilic molecules and highlights the advantages of applying
them as novel mitocan agents compared to their prototype natural triterpenic acids.

Keywords: mitochondria; mitochondrial targeting; delocalized lipophilic cations; anti-cancer agents;
mitocans; triterpenic acids

1. Introduction

Despite the considerable progress over the past few decades in the treatment of cancer,
it remains the main threat to human health and the second leading cause of death after
cardiovascular disease [1]. The transformation of normal cells into a malignant form
involves multiple genetic and metabolic changes resulting in hyperproliferation, apoptosis
resistance and evasion of the host immune response. Most of the current antitumor
chemotherapy drugs, including natural compounds of plant origin (vinca alkaloids, taxanes,
podophyllotoxins, captothecins), target the genome or mechanism of division of tumor
cells (intercalation and DNA repair, microtubular destruction). Still, practically all existing
anticancer cytostatic drugs have severe side effects on account of the low selectivity of the
antiproliferative action and develop multiple drug resistance of tumors to chemotherapy.
The next generation targeted anticancer drugs have high selectivity of action and low
systemic toxicity, but they do not actually address the problem of tumor resistance to
therapy arising from high heterogeneity and mutation of the genetic apparatus of cancer
cells [2]. Indeed, the experiments demonstrate that even in the same patient, tumor cells
differ in expressed genes and existing mutations within the same tumor [3,4]. Moreover, in
heterogeneous solid tumors, anoxic and hypoxic zones are formed, within which a special
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clinically significant cell population, that is cancer stem cells (CSC), develops. These cells
adapt well to low oxygen concentrations and exhibit high capacity to repopulate tumors [5].

Thus, research and development of new synthetically available antitumor agents, a
fundamentally different mechanism of action against resistant tumors, of a high therapeutic
selectivity index and acceptable pharmacokinetic parameters, remain an urgent priority.
An example of such developments is the creation of small molecules known as mitocans
(acronym derived from the terms mitochondria and cancer). According to modern concepts,
these compounds have high anti-cancer potential [6–8]. A number of mitocans have shown
efficacy in selective cancer cell killing in pre-clinical and early clinical testing [9]. Mitocans
destabilize the mitochondria of some tumor cells and induce mitochondria-dependent cell
death. The selective anti-cancer effect of mitocans is associated with some functional and
structural differences between the mitochondria of healthy and cancer cells [9,10].

There are several approaches to create mitocans, including conjugation of a biologi-
cally active compound with mitochondria-targeting “vehicles”. Various positively charged
molecules (lipophilic penetrating cations, cationic peptides, etc.) are considered as a com-
ponent that improves mitocan uptake by mitochondria. This is due to the high membrane
potential (negative inside) of the inner mitochondrial membrane. A large number of
compounds are considered as bioactive components. There are several mechanisms (for
example, ROS overproduction, inhibition of respiratory chain complexes, etc.) that can be
used to destabilize mitochondria and kill cancer cells.

In the past few years, available natural pentacyclic triterpenoids such as betulin,
betulinic, ursolic, oleanolic and glycyrrhetic acids have been studied as promising scaffolds
for development of new mitochondria-targeted anticancer agents. The antitumor effect of
native triterpenic acids, established in vitro against various tumor cell lines (melanoma,
adenocarcinoma, neuroblastoma, medulloblastoma and glioblastoma), are complemented
with low systemic toxicity [11–17]. These secondary metabolites affect the mitochondria of
tumor cells, initiating reactive oxygen species overproduction [18].

One could note that many efforts have been focused on targeted delivery of the
terpenoids (for example betulin and betulinic acid) to cancer cells via encapsulation in
nanoparticles. Various nano/microcarriers such as liposomes and carbon nanotubes loaded
with betulin and betulinic acid have been used to develop new drugs [19]. In addition,
there are reports of the use of a folate ligand to target betulinic acid to leukemic cells [20].
A polymer nano-carrier was also synthesized based on self-assembly of betulinic acid
in the presence of PEG, and the carrier was modified with folic acid. In this paper, we
refer to the advantages of applying conjugates of pentacyclic triterpenoids with some
mitochondria-targeted cationic lipophilic molecules as potential mitocan agents compared
to their prototype natural triterpenic acids and their nano-encapsulated forms.

2. Metabolic and Mitochondrial Changes in Cancer Cells

Tumor cells are known to exhibit substantial metabolic reprogramming. Almost a
century ago, Otto Warburg suggested that tumor cells show a shift in energy metabolism
from oxidative phosphorylation in mitochondria to aerobic glycolysis [21]. However, in
recent years, the “Warburg effect” has been revised and thoroughly studied using advanced
approaches (transcriptomics, proteomics, metabolomics, etc.). It was found that tumor
cells show an increase in glucose consumption, which is facilitated by the rearrangement
of the glycolytic pathway, including the over-expression of pyruvate kinase M2 (PKM2),
leading to a backup of upstream glycolytic phospho-intermediates; glucose-6-phosphate
dehydrogenase, promoting the generation of pentose phosphates for ribonucleotide syn-
thesis and NADPH production; dihydroxyacetone-phosphatase, providing biosynthesis of
cell membrane components; phosphoglycerate dehydrogenase, supplying cancer cells with
essential amino acids serine and glycine [22,23]. These and other examples suggest that the
enhancement of aerobic glycolysis is used to create the building blocks of macromolecules
for biosynthetic processes that are critical for accelerated tumor growth [24], rather than for
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energy production, as originally thought. Subsequently, inhibitors of glycolysis enzymes
have been used in the treatment of certain tumors [25].

Mitochondria are one of the key objects of research in various fields of biomedicine,
including cancer therapy. These organelles are the main source of energy in the form of ATP
in eukaryotic cells and are also involved in the generation of reactive oxygen species, the
production of intermediate metabolites, regulation of Ca2+ homeostasis and thermogenesis.
The functions of mitochondria in many processes of cellular physiology/pathophysiology,
including cell survival and proliferation, cell signaling, neoplasia and cell death, have been
detailed [26–33]. Mitochondria are known to contribute to malignant transformation and
tumor progression by increasing the plasticity of cancer cells and controlling some of the
mechanisms necessary for their work.

Some tumors have been shown to be highly dependent on mitochondrial oxidative
phosphorylation [34–36] and biosynthetic processes [37,38]. In addition, an increased
dependence of tumor cells on OXPHOS was observed in the later stages of the disease [22].
Moreover, one should note that the use of complex I inhibitor IACS-010759 suppressed
proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia
(AML) reliant on OXPHOS [39]. On the other hand, some works noted the fact that
the mitochondria of cancer cells show an increased membrane potential [40]. Indeed,
according to various sources, the transmembrane potential of normally mitochondria carry
around 150–180 mV [41,42] and can reach 210 mV in some cancer cells (Neu4145 cancer
cells) [43]. It has been suggested that this may be due to the fact that the inner mitochondrial
membrane of transformed cells is marked by an increase in cholesterol and cardiolipin,
contributing to a decreasing intensity of passive proton leak through the membrane [44,45].
One could speculate that mitocans synthesized on the basis of penetrating cations will
accumulate mainly in the mitochondria of cancer cells. The difference (60 mV) for ∆Ψmito
between solid tumor cells and normal cells can bring about a 10-fold increase in the
selective targeting of the cationic compound in the mitochondria of cancer cells [9,46–48].
However, it is difficult to say how true this statement is. Indeed, the cations used can also
accumulate in the mitochondria of normal cells, which requires careful selection of the
configuration and concentration of the therapeutic agent for a targeted effect on tumor cells.
Moreover, the existing methods for measuring the mitochondrial potential do not allow
us to unambiguously assert an increase in the membrane potential in the mitochondria of
cancer cells compared to healthy ones. In this case, it is impossible to exclude other factors
contributing to high retention of cations in the mitochondria of tumor cells.

Cancer cells show dysregulation of mitochondrial metabolism mediated by mutations
in the nuclear or mitochondrial genomes. This can lead to dysfunction of proteins of the
Krebs cycle and OXPHOS and the accumulation of various metabolites (oncometabolites) in
mitochondria (and then in the cytoplasm), which can modulate the metabolic flux through
the direct regulation of gene expression or other metabolic pathways [10]. In particular
loss-of-function mutation of succinate dehydrogenase has been associated with several
types of cancer [49]. Accumulation of succinate leads to suppression of prolyl hydroxylase,
stabilization of HIF1a and stimulation of the glycolytic pathway. In this regard, this
signaling function of mitochondria is strictly related to the modulation of cancer cell
metabolism, which supports many cancer-related functions, such as cell proliferation,
migration and resistance to death [10].

Oncogene activation, tumor suppressor loss, cancer-inducing mutations in TCA cycle
enzymes and hypoxia lead to the production of abnormal mitochondrial ROS levels [50].
In this case, a high level of expression of antioxidant proteins is also observed. The mito-
chondrial ROS is believed to activate different signaling pathways towards protumoral
metabolic reprogramming. At the same time, targeting mitochondrial ROS and antioxidant
systems could be beneficial as anticancer therapy. This is due to the fact that the conse-
quence of increased ROS production is a lower threshold of sensitivity to ROS-induced
apoptosis of cancer cells [51].
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Thus, in cancer cells, mitochondria undergo structural and functional rearrangements
that affect the work of TCA, the mitochondrial respiratory chain, Ca2+ homeostasis, produc-
tion of ROS, oncoproteins and oncometabolites, etc. Functional mitochondria are essential
for tumor growth [52] mostly due to their biosynthetic role rather than their proenergetic
features [53]. For a more detailed analysis of changes in the functioning of mitochondria in
cancer cells, we suggest referring to the following excellent reviews [10,54].

3. Delocalized Lipophilic Cations (DLCs) for Mitochondria-Targeted Drug Delivery

At present, various strategies for targeted delivery of biologically active molecules
and drugs to mitochondria are under study, including conjugation of biologically active
compounds with cations of lipophilic molecules of low molecular weight, which can
accumulate inside mitochondria [9,46–48,55–58]. These small molecules easily penetrate
into mitochondria due to the greater value of the transmembrane potential compared
to the potential of the cell membrane (∆Ψmito = 150–180 mV, ∆Ψplasma = 30–60 mV)
(Figure 1) [47,58].
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Figure 1. Cellular uptake of DLCs-based compounds driven by cell membrane potential and mito-
chondrial membrane potential.

The simplified passage of the above cationic compounds through the membrane has
been thoroughly studied and is accounted for by the large hydrophobic surface and large
ionic radius of the cation. Delocalized lipophilic cations that penetrate the hydrophobic
barriers of plasma and mitochondrial membranes include Rhodamine-123, rhodacyanine
MKT-077, dequalinium, triphenylphosphonium, guanidinium cations and the recently
discovered cationic molecule F16 (Figure 2).

Lipophilic cations have different chemical structures and possess different mechanisms
of mitochondrial toxicity. For example, dequalinium chloride inhibits NADH-ubiquinone
reductase of the mitochondrial respiratory chain [9,59], promoting ROS overproduction
and induction of the MPT pore [60]. Rhodamine-123 disrupts the bioenergetic functions
of mitochondria by ATP synthase inhibition [61]. F16 compound induces apoptosis by
decreasing mitochondrial resistance to the induction of calcium dependent MPT pore [62].
The rhodacyanine analogue MKT-077, also known as FJ-776, exhibited the most favorable
pharmacological and toxicological profile of the above listed lipophilic cationic compounds.
This compound brought about general destabilization of the mitochondrial membrane and
triggered nonspecific inhibition of membrane-bound enzymes [63,64]. Preclinical studies
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of the mitochondrial toxicity of MKT-077 against the mitochondria of the human colon
carcinoma cell line and the mitochondria of normal epithelial cells indicated its acceptable
therapeutic index. However, clinical trials of MKT-077 were stopped already at the first
stage of the clinical triad due to the recurrent renal toxicity of this compound [65,66].
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The therapeutic effect and reduction of side effects observed for the above-described
cations at high concentrations can be achieved by involving small lipophilic molecules as
delivery systems of compounds with known antitumor activity, demonstrated in preclin-
ical or clinical studies. Initially, this approach was successfully implemented using the
well-proven triphenylphosphonium cation in the development of mitochondria-targeted
antioxidants blocking accumulation of reactive oxygen species in the cell under oxidative
stress. The reliability and versatility of this strategy have been demonstrated both in vitro
and in vivo experiments. The most significant contribution to this area of research was
made by V.P. Skulachev (decyl-TPP+ with plastoquinone, SkQ1) and M.P. Murphy and
R.A.J Smith (decyl-TPP+ with coenzyme Q10, MitoQ) [67–71].

To date, Visomitin eye drops and ointment for cuts and burns based on SkQ1 have
been developed, while the MitoQ compound is undergoing clinical trials as a drug for the
treatment of hepatitis C, ischemia-reperfusion syndrome and Parkinson’s disease. Further
development of the above strategy relates to possible application of lipophilic carriers for
delivery into mitochondria of not only redox-active molecules, but also other biologically
active compounds, including toxic small molecules, as targeted antitumor agents. Generally,
all of the above cationic small molecules can be successfully employed for selective delivery
of cytotoxic substances into the mitochondria of tumor cells. However, among these
positively charged lipophilic compounds, only the triphenylphosphonium cation has
been thoroughly studied [48,72–76]. Enhanced therapeutic effect has been identified in
mitochondria-targeted triphenylphosphonium derivatives of known anticancer drugs such
as chlorambucil [73], doxorubicin [74], metformin [75] and tamoxifen [76].

Mito-chlorambucil, tested in breast and pancreatic cancer cell lines, interacted with
mtDNA to induce cell death at significantly lower concentrations than the parent chloram-
bucil compound. Mitochondrial delivery of doxorubicin modified with triphenylphospho-
nium cation addressed the problem of resistance of human cancer cells MDA-MB-435 to
this drug [74]. Impressive result was achieved by TPP+ binding to metformin [75] and
tamoxifen [76]. Particularly, recent in vitro studies have discovered that metformin, an
antidiabetic drug known since the 1950s, has antitumor effect against pancreatic cancer.
The study of the mechanism of antitumor action of metformin revealed that this compound
primarily targets complex I (CI) of the mitochondrial respiratory chain. The attachment of
the TPP+ fragment to metformin through the C-10 alkane spacer increased the toxicity of
the parent drug by three to four orders of magnitude, proving the triphenylphosphonium
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metformin derivative Mito-Met to be a promising anticancer agent [75]. Tamoxifen, a
mixed estrogen receptor (ER) agonist/antagonist, is a part of first-line therapy for hormone-
sensitive breast cancer but is ineffective in the treatment of Her2-dependent tumor type.
The conjugate of tamoxifen with the mitochondria-targeted TPP+ group has proved highly
effective against tumor cells with high levels of Her2 [76]. Inhibition of the mitochondrial
complex I and a significant increase in the production of reactive oxygen species in cancer
cells account for its cytotoxicity. Mito-Tam and Mito-Met have efficiently completed Phase
1 of clinical trials.

Along with the development of strategies for treatment of oncological diseases with
mitochondria-targeted derivatives of known synthetic drugs, there is an active search
for mitocans among natural plant substances, referred to as “Herbal mitocans” in the
literature [77]. In this case, both medicinal plant extracts and individual molecules are under
study. The most striking result among natural mitocan compounds was demonstrated by
alpha-tocopherol succinate (α-TOS) and its triphenylphosphonium derivative (MitoVES).

These promising anticancer agents, the first members of the mitocan class, were
discovered and systematically studied by Jiri Neuzil et al. [6,7,72,78–80]. The study of the
mechanism of antitumor action demonstrated that vitamin E group mitocans suppress
the activity of complex II of the mitochondrial respiratory chain, preventing the access of
coenzyme Q to the respiratory chain complexes. At the same time, these agents initiated
enhanced generation of reactive oxygen species, triggering selective apoptosis in cancer
cells. Furthermore, MitoVES predominantly binds to the mitochondria of cancer cells and
kills cancer cells much more efficiently than the original α-TOS compound. At present,
α-TOS and MitoVES have successfully passed the stage of preclinical studies directed at
human breast cancer. Inhibition of complex II by vitamin E group mitocans can lead to
the accumulation of succinate, which is known to inhibit prolyl hydroxylase and mediate
the stabilization of HIF1a and, in turn, causes stimulation of the glycolytic pathway [81].
One could assume that in some cases, this can, on the contrary, facilitate tumorigenesis
and progression.

The polyphenolic compound curcumin and its analogue Mito-curcumin are also
being investigated as promising drug candidates. Curcumin can suppress proliferation
and survival of almost all types of tumor cells. However, its efficiency is limited by
low bioavailability in blood plasma and tissues, which is insufficient for intracellular
accumulation. In preclinical trials, Mito-curcumin exhibited significant cytotoxicity and
antiproliferative activity against MCF-7, MDAMB-231, SKNSH, DU-145 and HeLa cancer
cells with a much lower IC50 value compared to curcumin [82,83].

4. Mitochondria-Targeted Conjugates of Triterpenic Acids with DLCs as a Novel
Group of Mitocans

Pentacyclic triterpenoids (betulin, betulinic, ursolic, oleanolic and glycyrrhetic acids)
are one the most available terpenoids in the plant kingdom (Figure 3).
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These compounds are of great interest for pharmacological studies as they exhibit a
wide range of biological effects [11,84–88]. These distinguishing properties of triterpenoids
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include anticancer effect and ability to trigger the mitochondrial pathway of apoptosis in
various types of human cancer cells. Indeed, betulinic acid can induce apoptosis in tumor
cells of melanoma, lung cancer, ovarian cancer and neuroectodermal tumors [18,89,90].
Betulinic acid stimulates apoptosis involving reactive oxygen species (ROS). ROS promote
the permeability of the outer mitochondrial membrane (OMM) by releasing apoptogenic
mitochondrial proteins (cytochrome c, Smac, apoptosis inducing factor (AIF)) from the
intermembrane space, followed by activation of the caspase cascade [18,89–92]. Ursolic acid
has been shown to inhibit the proliferation of various types of cancer cells by suppressing
the STAT3 activation pathway [12,93]. Ursolic acid can also induce apoptosis, autophagy
and cell cycle arrest in various ways, such as inhibiting DNA replication, stimulating
production of reactive oxygen species and influencing the balance between pro- and
anti-apoptotic proteins [94–96]. Native betulin and betulonic acid were found to directly
affect mitochondria and their membranes, inhibiting the activity of complexes of the
respiratory chain of organelles, thereby initiating ROS overproduction and mitochondrial
dysfunction [97]. The lack of cytotoxic effect against normal human cells (fibroblasts or
normal lymphocytes) confers a significant advantage to triterpenic acids. However, a
relatively low antitumor potential, high hydrophobicity, poor solubility in blood serum
significantly complicate promotion of triterpenoids as anticancer drug candidates.

So far, mitochondria-targeted pentacyclic triterpenoids, with the triterpene skeleton
bonded to a lipophilic cationic fragment, remain a poorly studied class of compounds [98–103].
Our research group synthesized the first samples of triphenylphosphonium derivatives of
betulinic acid in 2013 [98] (Figure 4).
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The addition of a triphenylphosphonium fragment to the betulinic acid molecule at
the C-2 position of ring A through the alkyl chain produced a 40–50-fold increase in the
cytotoxic effect of cationic derivatives compared to betulinic acid. Subsequent studies on the
antitumor activity of a large number of triphenylphosphonium salts of lupane triterpenoids
proved that TPP+ has a major impact on the cytotoxicity of cationic compounds irrespective
of the structure of the triterpene skeleton and the position the cationic TPP+ fragment is
attached to [99] (Figure 5).

The cytotoxic effect of triphenylphosphonium derivatives of betulin triterpenoid
against adenocarcinoma of the prostate (RC-3) and human breast cancer (MCF-7), including
the vinblastine-resistant type of cancer MCF-7/Vinb, was analyzed [100]. The findings
revealed that the conjugate of betulin with TPP+ considerably increased, compared to
betulin, the antiproliferative effect against vinblastine-resistant MCF-7 cells with an IC50
value of less than 0.045 µM (Figure 6).
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The studies of the mechanism of cytotoxic effect of triterpenoid-TPP+ conjugates
carried out in [101–103] indicated that triterpene mitocans initiate the mitochondrial path-
way of apoptosis in cancer cells, producing reactive oxygen species and decreasing the
mitochondrial membrane potential. In addition, assessment of oxygen consumption by
HCT116 (human colon carcinoma) tumor cells after incubation with betulinic acid and
triphenylphosphonium derivative 15 confirmed that conjugate 15 suppresses mitochon-
drial respiration at low concentrations (1–2 µM). At these concentrations, betulinic acid
was ineffective (Figure 7).

Furthermore, treatment of HCT116 and Tet 21N tumor cells with conjugate 15 brought
about disruption of PARP, a significant increase in caspase-3 activity and release of cy-
tochrome c into the cytosol (Figure 8). These experiments clearly demonstrate mitochon-
drial involvement in triggering apoptosis of BA analog 15 [101].

The prospects of applying a mitochondria-targeted strategy for enhancing the cyto-
toxic effect and selectivity of the antitumor action of triterpenic acids have been convinc-
ingly demonstrated in the study of conjugates of glycyrrhetinic acid (GA) with a TPP+

fragment [102]. Triphenylphosphonium derivative 16 exhibited significantly higher an-
titumor activity, as well as acceptable selectivity for the studied cancer and normal cells,
compared to GA and 10-hydroxycamptothecin (HCPT) (Figure 9).

Mitochondrial uptake of compound 16 in human lung cancer A549 increased 2.5-fold
compared to natural GA. The analysis of the mechanism of the pro-apoptotic action of
conjugate 16 by flow cytometry and western blotting methods showed that after incubation
of A549 cancer cells with compound 16 (5, 10 and 20 µM), the percentages of early and late
apoptosis cell was 18.5%, 30.8% and 45.0%, respectively. Moreover, triphenylphosphonium
derivative 16 triggered apoptosis of A549 cells through the inner mitochondrial pathway
via reactive oxygen species production, the collapse of mitochondrial membrane potential,
the activation of caspases-9 and caspases-3. Conjugate 16 significantly increased the
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expression of pro-apoptotic protein Bax and corresponding down-regulated the expression
of anti-apoptotic protein Bcl-2.

The ability to induce a mitochondria-dependent pathway of apoptosis in cancer
cells of various etiologies by the action of triphenylphosphonium derivatives of lupane
triterpenoids was reported by Fan P. et al. as well [103]. More importantly, mitochondria-
targeted triterpenoid derivatives significantly inhibited cancer cell proliferation and migra-
tion in an in vivo zebrafish xenograft model.
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Recently, the mitochondria-toxic cationic compound F16 was found to selectively
accumulate in the mitochondrial matrix of various tumor cell lines [57,62]. Its high concen-
tration in mitochondria leads to cell death caused by the arrest of the cell cycle, interruption
of the mitochondrial respiratory chain, a decreased intracellular ATP level and induction of
apoptosis. Meanwhile, the potential of F16 for delivering biologically active compounds to
malignant transformed cells, unlike the triphenylphosphonium cation typically used today,
has not been studied in detail and is reported only in a few works [104,105]. To reduce side
effects, the known antitumor agent 5-fluorouracil (5-FU) was linked to F16 via ester, amide,
or sulfide functions in the work [104]. The resulting conjugates did not show the expected
synergistic effect though, presumably on account of different mechanism of antitumor
activity of fluoronucleotide 5-FU, which disrupts the sequence of RNA and DNA chains
and F16, concentrated in the mitochondrial matrix.

Instead, the conjugate of the antitumor alkylating agent chlorambucil with F16 offered
good prospects for further research as a drug candidate [105]. This hybrid compound
accumulated mainly in the mitochondria of cancer cells and simultaneously affected several
mitochondrial components, interacted with mtDNA, increased the concentration of reactive
oxygen species and caused depolarization of the inner mitochondrial membrane. The above
examples suggest that the molecular structures of the antitumor compound and the cationic
fragment used as a carrier can have a significant impact on cytotoxicity, cellular penetration
and the mechanism of the antitumor action of the target conjugates. We assumed that
the combination of the apoptosis-inducing triterpenoid molecule with the cationic F16
fragment would enhance the antitumor effect of the hybrid compound, similar to the use
of TPP+ cation.

The synthesis of conjugates of F16 with betulin, betulinic, ursolic, oleanolic and
glycyrrhetic acids was carried out by binding the triterpene nucleus at the C-3, C-28 or
C-30 positions with one or two F16 fragments, via butane or triethylene glycol spacers [106]
(Figure 10).

The resulting conjugates 17–24, betulinic acid and compound F16, as well as a me-
chanical equimolar mixture of betulinic acid and F16 (1:1, mol/mol) were tested in vitro
in three tumor cell lines U937 (leukemic monocytic lymphoma), K562 (chronic myeloid
leukemia), Jurkat (T-lymphoblastic leukemia) and a healthy human fibroblast cell line. Cell
viability after exposure to the test compounds was analyzed by flow cytometry.

Most hybrids 18–20, 21, 22 and 24 exhibited high cytotoxic activity against all can-
cer cell lines under study. These compounds were considerably (≈100–200 times) more
cytotoxic than the parent betulinic acid (Table 1).
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Table 1. Cytotoxic action of compounds 17–24 on the U937, Jurkat and K562 tumor cells and
fibroblasts (X ± SE) b.

Compound
IC50 (µM) a

U937 Jurkat K562 Fibroblasts

17 4.190 ± 0.117 b 4.360 ± 0.122 b 4.010 ± 0.109 b 10.400 ± 1.230 b

18 0.573 ± 0.024 b 1.260 ± 0.042 b 1.210 ± 0.041 b 5.500 ± 0.340 b

19 0.616 ± 0.028 b 0.844 ± 0.034 b 0.812 ± 0.032 b 6.100 ± 0.220 b

20 0.906 ± 0.037 b 0.937 ± 0.032 b 0.904 ± 0.033 b 8.200 ± 0.630 b

21 2.461 ± 0.085 b 0.623 ± 0.031 b 0.588 ± 0.032 b 6.230 ± 0.850 b

22 0.607 ± 0.027 b 0.687 ± 0.034 b 0.671 ± 0.035 b 3.490 ± 0.560 b

23 >125 b >125 b >125 b >125 b

24 2.425 ± 0.083 b 0.559 ± 0.024 b 0.511 ± 0.022 b 8.300 ± 1.190 b

F16 >500 b >500 b >500 b >500 b

BA c 149.290 ± 4.170 b 81.680 ± 1.820 b 78.540 ± 1.760 b 236.400 ± 3.600 b

F16:BA/1:1 122.170 ± 3.460 b 91.580 ± 1.950 b 89.150 ± 1.890 b 280.100 ± 3.440 b

a IC50 (µM) is the half-maximal inhibitory concentration against the tested cells b X is the average of experimental
values, SE is the standard error. Each IC50 value (X ± SE) was found from the data of three experiments performed
in duplicate. c BA is the betulinic acid. Adapted from [106].

Lupane triterpenoids 18–20 were found to be the most selective compounds among
the studied conjugates with a selectivity index of about 10 (determined by the IC50 ratio
of the U937 tumor cell line to non-malignant fibroblasts). The introduction of the second
fragment (E)-4-(1H-indole-3-ylvinyl) pyridine into the triterpenoid molecule (compound
17, IC50, 4.19 µM, U937), as well as conjugation of betulinic acid with F16 at the position
C-30 did not increase the antitumor activity (compound 23, IC50, >125 µM). Compound F16
did not show cytotoxic action under studied conditions, while betulinic acid BA exhibited
antitumor activity with IC50 values of 149 (U-937), 81.7 (Jurkat) and 78.5 (K562) mM.
Compared to the covalent binding of betulinic acid to the F16 molecule, the mechanical
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mixture of these compounds did not show a noticeable increase in the cytotoxic effect
though (Table 1).

Recently, we reported the direct effects of new F16—betulinic acid [107] and F16—
betulin conjugates [108] on mitochondria. The conjugates were shown to be capable
of targeted binding to mitochondrial membranes and dose-dependently reducing the
membrane potential of organelles, as well as the intensity of respiration and oxidative
phosphorylation, which is also accompanied by an increase in the production of hydrogen
peroxide by mitochondria (Figure 11).
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The membranotropic activity of F16—betulinic acid and F16—betulin conjugates was
found to be the result of several effects: reversion of organelle ATP synthase, inhibition
of the activity of the respiratory chain complexes and, first of all, complex I, which is the
main generator of ROS in mitochondria. Moreover, it was found that the F6 conjugate, due
to its structure (the presence of oxygen atoms in the triethylene glycol spacer connecting
betulinic acid and F16) proved to induce permeabilization of the lipid phase of the inner
mitochondrial membrane, as well as the membrane of liposomes. In this case, the F6
conjugate is supposed to serve a protonophore uncoupler and transfer protons across the
inner mitochondrial membrane. We also demonstrated the mitochondria-targeted effects of
conjugates on rat thymocytes cells. Indeed, all the studied conjugates were able to reduce
the mitochondrial potential of these cells, as well as initiate superoxide overproduction,
which probably provides their cytotoxic effect. The conjugates are considered to have a
similar effect on the mitochondria of cancer cells. Meanwhile, the previously revealed
selectivity of agents allows to expect more pronounced mitochondria-targeted cytotoxic
effects on cancer cells with a high mitochondrial membrane potential. Our research group
is planning to address this important issue in further studies.

Recently R. Csuk et al. reported the development of triterpenoid rhodamin B con-
jugates as promising new mitocans exhibiting cytotoxicity against various human cell
lines at low nanomolar concentrations [109–116]. A significant increase in the cytotoxic
effect of natural triterpenic acids (for example, ursolic, oleanolic, betulinic, maslinic acid)
was achieved by their combination with rhodamin B (RhoB) through a piperazine spacer.
Moreover, the resulting hybrid compounds showed low toxicity to healthy mouse fibroblast
cells. Thus, the conjugate of 2,3-di-O-acetyl maslinic acid and RhoB 25 was approximately
1000 times more cytotoxic and far more selective (Fsi = 5 0, defined as EC50 A2780 tumor
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cell line to EC50 nonmalignant mouse fibroblasts NIH 3T3) than its prototype maslinic
acid [109] (Figure 12).
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The antitumor activity of hybrid 25 was comparable to common anticancer drugs such
as doxorubicin and paclitaxel. RhoB showed no cytotoxicity up to a concentration of 30 µM
(experimental threshold value). The morphological changes in A2780 (ovarian carcinoma)
cancer cells after incubation with compound 25 were analyzed with a fluorescence micro-
scope and double staining experiments. The research outcomes proved conjugate 25 to
function as a mitocan agent.

The study of the mechanism of mitochondrial action of triterpenoid-RhoB conjugates
applying a molecular docking approach indicated that these hybrid compounds can target
mitochondrial NADH dehydrogenase (complex I) and mitochondrial succinate dehydroge-
nase (complex II), enzymes responsible for the transfer of electrons in the mitochondrial
respiratory chain and formation of reactive oxygen species in mitochondria [117]. Fur-
ther studies included synthesis of a broad range of rhodamine derivatives of triterpenic
acids [110–116] and RhoB conjugates with some steroids and diterpenoids. The RhoB frag-
ment was attached to the triterpene nucleus directly as a triterpene ester, or the triterpenoid
and lipophilic cation fragments were separated by piperazine or homopiperazine spacers.
The analysis of cytotoxic activity of the conjugates identified the crucial importance of a
triterpene nucleus in the hybrid compound, while the molecular structure of the terpene
skeleton and the ring size of the heterocyclic spacer (piperazine, homopiperazine) had a
significant impact on the biological effect of the hybrid. The homopiperazine spacer was
clearly superior to the piperazine fragment. The authors consider the tormentic acid (TA)
and RhoB conjugate with a homopiperazine spacer 26 to be the most promising candidate
for further biological studies among the compounds studied [115].

5. Conclusions

In the past few years, secondary plant metabolites, pentacyclic triterpenic acids, have
been actively studied as a promising molecular platform for development of a libraries
of antitumor mitochondria-targeted agents inducing various forms of cell death. These
natural compounds are distinguished by their availability and cytotoxic activity, established
against various types of tumor cells. The antitumor effect of pentacyclic triterpenic acids
is directed at different cellular targets, but their cytotoxic activity for the most part is
associated with affecting the mitochondria of cancer cells. Triterpenic acids directly affect
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mitochondrial membranes and, first of all, the respiratory chain, initiating overproduction
of reactive oxygen species in these organelles, resulting in the induction of mitochondrial
permeability transition (MPT), release of cytochrome c into the cytosol and finally induction
of cell death.

Furthermore, these natural compounds inhibit cancer cell proliferation through cell
cycle arrest and suppress tumor angiogenesis by blocking epidermal growth factor recep-
tors and nuclear transcription factor NF-kB, which affects various aspects of angiogenesis.
However, the low bioavailability of triterpenoids does not allow them to reach the target
in vivo and obtain the desired therapeutic effect in acceptable therapeutic doses. The
research results highlighted in this article prove the effectiveness of natural triterpenic
acids to be improved by binding to mitochondria-targeted carrier molecules. And although
the mechanisms of action of mitocans based on delocalized cations and triterpenes on
mitochondria may be specific, one way or another, they all cause generalized mitochondrial
dysfunction with varying efficiency. Therefore, an important task is to carefully select the
configuration and concentration of mitocan for selective action on tumor cells.

At the same time, to date, none of the antineoplastic agents mitocans has been intro-
duced to the pharmaceutical market. This is primarily due to the fact that most of the data
was obtained in vitro on cancer cells or, in one case, on the zebrafish xenograft model. It
is necessary to thoroughly test the efficacy of TPP-conjugated triterpenes in vivo, using
advanced mouse models that recapitulate landmark events in human tumors. This will
show whether these mitocans are well tolerated for prolonged times, without toxicity in
the organs with prevalent oxidative metabolism (heart, brain, muscles). In addition, it
is necessary to assess their effect at different stages of the disease, given that metabolic
phenotypes develop with tumor progression and late stages of the disease show an increase
in the dependence of tumor cells on OXPHOS. Perhaps in this case mitocans causing
generalized mitochondrial dysfunction will be useful. This implies not only the creation
of a special animal model, reproducing human tumors cancer progression, but also the
identification of biomarkers in order to predict the patients who would benefit from them
and the best therapeutic time window.

It is also important to note that targeting mitochondria cannot be considered a general
anti-cancer approach but is likely to be effective in those tumors that have been shown
to be highly dependent on oxidative metabolism, such as brain cancer, acute myeloid
leukemia [39,118], cisplatin-resistant ovarian cancer cells [119] or at certain stages of tumor
progression [22].
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