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Abstract: Distributed strain and temperature can be measured by using local Brillouin backscatter
in optical fibers based on the strain and temperature dependence of the Brillouin frequency shift.
The technique of analyzing the local Brillion backscatter in the time domain is called Brillouin optical
time domain reflectometry (BOTDR). Although the best spatial resolution of classic BOTDR remains
at around 1 m, some recent BOTDR techniques have attained as high as cm-scale spatial resolution.
Our laboratory has proposed and demonstrated a high-spatial-resolution BOTDR called phase-shift
pulse BOTDR (PSP-BOTDR), using a pair of probe pulses modulated with binary phase-shift keying.
PSP-BOTDR is based on the cross-correlation of Brillouin backscatter and on the subtraction of
cross-correlations obtained from the Brillouin scatterings evoked by each phase-modulated probe
pulse. Although PSP-BOTDR has attained 20-cm spatial resolution, the spectral analysis method of
PSP-BOTDR has not been discussed in detail. This article gives in-depth analysis of the Brillouin
backscatter and the correlations of the backscatters of the PSP-BOTDR. Based on the analysis,
we propose new spectral analysis methods for PSP-BOTDR. The analysis and experiments show that
the proposed methods give better frequency resolution than before.

Keywords: Distributed fiber sensor; strain and temperature sensor; Brillouin scattering; Brillouin
Optical Time Domain Reflectometry; signal processing; spectral analysis; fast Fourier transform

1. Introduction

Brillouin scattering occurs via the interaction of light with acoustic waves in a medium;
this interaction causes a frequency shift, called a Brillouin frequency shift (BFS), due to the Doppler
effect. It has been found that the BFS of silica optical fibers increases with longitudinal strain and
temperature at a rate of about 0.5 MHz/10 µ-strain and 1 MHz/K, respectively [1]. Additionally,
a recent article reported the dependency of the BFS for guided acoustic-wave Brillouin scattering
(GAWBS) on the mechanical impedance of substances outside the cladding of optical fibers [2].
Based on the BFS characteristics and spatially-resolved BFS measurement techniques, various types of
distributed fiber-optic strain and temperature sensors based on Brillouin scatterings have been reported.
They include fiber sensors using backward stimulated Brillouin scattering (SBS) and spontaneous
Brillouin scattering (SpBS) [1,3–6]. SBS-based sensors utilize signals amplified via SBS, and have
thus more easily achieved higher resolutions in space and frequency, as well as faster measurements,
than SpBS-based sensors. However, SBS-based sensors need to access both ends of the fiber to transmit
counter propagating pump and probe lights through the fiber, which makes it difficult to apply
SBS-based sensors to cases where light can be launched through only one end of the fiber cable and
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the fiber cable cannot be folded back at the other end. In contrast to SBS-based sensors, SpBS-based
sensors need only one fiber-end access, since the probe pulse and the backscatter can be launched
and extracted through the same fiber end. However, spontaneous Brillouin scattering is significantly
weaker than the SBS-based signal, and it becomes weaker still if the probe pulse becomes shorter in
its duration for realizing higher spatial resolution. Additionally, the Brillouin scattering spectrum
(BSS)—measured using a narrower pulse—becomes broader in width, which deteriorates frequency
resolution. Therefore, for the classic SpBS-based sensor that uses a short pulse as a probe, called
Brillouin optical time domain reflectometry (BOTDR), the best spatial resolution remained around 1 m.
However, Brillouin optical correlation domain reflectometry (BOCDR) has broken through this barrier,
achieving 40 cm resolution [7] and more recently 6 mm resolution [8]. BOCDR adopts a frequency
modulation scheme and transmits the continuous frequency-modulated lightwave through the fiber;
the Brillouin backscatter is correlated with the delayed frequency-modulated lightwave via an optical
heterodyne detection. Contrary to classic BOTDR, BOCDR can measure the local Brillouin backscatter
continuously, and can thus achieve higher signal-to-noise ratio and better spatial resolution than
classic BOTDR. However, BOCDR requires that the delay fiber be at least twice as long as the sensing
fiber, while the length of the delay fiber should be as short as possible to make fast measurements.
This requirement may cause an impediment to the easy and quick operation of BOCDR in practical
fields. In contrast, BOTDR needs no delay fiber.

Though not as high in resolution as the BOCDR, recent BOTDRs are gradually making
some progress to attain cm-scale resolution by using constructed pulses instead of a common
single pulse, and by using special signal processing techniques. These include double-pulse
BOTDR [9], differential-technique BOTDR [10], synthetic BOTDR [11] and phase-shift pulse BOTDR
(PSP-BOTDR) [12,13]. Among them, double-pulse BOTDR was the first that to attain a cm-scale spatial
resolution. Double-pulse BOTDR uses a matched filter to enhance the local Brillouin backscatters
due to the double pulse via interference effects. However, unwanted signals from outside the local
region are superimposed, although they are small. To remove the unwanted signal, subtraction and
cancellation methods have been reported [10–13]. The differential-technique BOTDR uses a pair of long
pulses with a slight difference in width in a way analogous to the differential pulse-width pair Brillouin
optical time domain analysis (DPP-BOTDA) [14] based on SBS. Synthetic BOTDR and PSP-BOTDR
also employ a set of pulsed probes and employ subtraction techniques to remove unwanted signals.
Both BOTDRs apply phase-shift keying modulation to the set of probe pulses; thus, compared to
the differential-technique BOTDR, synthetic BOTDR and PSP-BOTDR have the potential to attain
double the measurement speed. Synthetic BOTDR employs quadrature phase-shift keying to produce
a set of four kinds of probe pulses, while PSP-BOTDR uses binary phase-shift keying, simplifying the
modulation and processing. PSP-BOTDR has already been validated in proof of concept experiments,
achieving a 20-cm resolution. However, the spectral analysis method used in PSP-BOTDR has not been
discussed in detail. This article gives an in-depth analysis of Brillouin backscatter and the correlations
of PSP-BOTDR backscatters. Based on the analysis, we propose improved spectral analysis methods
for PSP-BOTDR. The analysis and experiments show that the proposed methods give better frequency
resolution than the previous one.

2. Materials and Methods

2.1. Principle of Phase-Shift Pulse Brillouin Optical Time-Domain Reflectometry (PSP-BOTDR)

Figure 1 shows a common configuration of BOTDR, where a probe pulse is launched into a sensing
fiber; Brillouin backscatter is detected in the time domain by a heterodyne detection scheme with
a high sensitivity. If we analyze its spectrum to obtain the BFS, we can map the strain and temperature
distribution along the length of the fiber.
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Figure 1. Basic configuration of Brillouin optical time-domain reflectometry (BOTDR). LD: laser 
diode; IM: intensity modulator; ADC: analog-to-digital convertor; DSP: digital signal processor. 
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BSS width, which is determined by the phonon life time for the fiber. This broadening in the 
measured BSS width deteriorates the frequency resolution of the BOTDR, which is one of the main 
reasons why it is difficult to achieve cm-scale resolution using classic BOTDR. 

To overcome this difficulty, PSP-BOTDR uses a pair of probes. Each probe consists of long and 
short pulses which are concatenated with and without a short interval [12,13]. The envelopes of the 
light fields of the long and short pulses, 𝑓 𝑡  and 𝑓 𝑡 , are shown in Figure 2a,b, respectively, and 
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Figure 2. Electric field envelopes and window functions: (a) electric field envelope, 𝑓 𝑡 , of a long 
pulse; (b) electric field envelope, 𝑓 𝑡 , of a short pulse; (c) a pair of window functions related to long 
probe pulse and short probe pulse. 

The short pulse of one probe of the pair is not phase modulated, while the short pulse of the 
other probe is modulated with π-phase shift. Thus, the light fields 𝐸 , 𝑡  and 𝐸 , 𝑡  of the non-
phase-shift and π-phase-shift probes can be expressed respectively by 𝐸 , 𝑡 = 𝐸 , 𝑡 𝑒 = 𝑓 𝑡 + 𝑓 𝑡 𝑒 , (2)

Figure 1. Basic configuration of Brillouin optical time-domain reflectometry (BOTDR). LD: laser diode;
IM: intensity modulator; ADC: analog-to-digital convertor; DSP: digital signal processor.

We commonly use a single pulse as a probe of BOTDR. Then, we can obtain, for example, a 1-m
spatial resolution for a 10-ns pulse as in Rayleigh backscatter-based OTDR. However, if we narrow the
pulse width to less than 10 ns to obtain cm-scale spatial resolution, the measured BSS width begins to
increase. This is due to the fact that the spectrum width of such a narrow pulse exceeds the intrinsic
BSS width, which is determined by the phonon life time for the fiber. This broadening in the measured
BSS width deteriorates the frequency resolution of the BOTDR, which is one of the main reasons why
it is difficult to achieve cm-scale resolution using classic BOTDR.

To overcome this difficulty, PSP-BOTDR uses a pair of probes. Each probe consists of long and
short pulses which are concatenated with and without a short interval [12,13]. The envelopes of
the light fields of the long and short pulses, fL(t) and fS(t), are shown in Figure 2a,b, respectively,
and expressed by

fL(t) =

{
EL 0 < t < TL
0 t ≤ 0, t ≥ TL

,

fS(t) =

{
ES TL + TI < t < TL + TI + TS
0 t ≤ TL + TI , t ≥ TL + TI + TS

,
(1)

where EL and ES denote the amplitudes of fL(t) and fS(t), and TL, TS and TI denote the durations of
the long pulse, short pulse and separation between the pulses, respectively.
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The short pulse of one probe of the pair is not phase modulated, while the short pulse of the 
other probe is modulated with π-phase shift. Thus, the light fields 𝐸 , 𝑡  and 𝐸 , 𝑡  of the non-
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Figure 2. Electric field envelopes and window functions: (a) electric field envelope, fL(t), of a long
pulse; (b) electric field envelope, fS(t), of a short pulse; (c) a pair of window functions related to long
probe pulse and short probe pulse.

The short pulse of one probe of the pair is not phase modulated, while the short pulse of the other
probe is modulated with π-phase shift. Thus, the light fields Ẽin,0(t) and Ẽin,π(t) of the non-phase-shift
and π-phase-shift probes can be expressed respectively by

Ẽin,0(t) = Ein,0(t)ej(ωt+θ0) = [ fL(t) + fS(t)]ej(ωt+θ0), (2)

Ẽin,π(t) = Ein,π(t)ej(ωt+θπ) = [ fL(t)− fS(t)]ej(ωt+θπ), (3)

whereω is the optical frequency, and θ0 and θπ are the initial phases.
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When using the fast Fourier transform (FFT) to obtain BSS for classic BOTDR with a broadband detector,
it is common to directly apply FFT to the backscatter signal sampled with a short window function [15,16];
the absolute square of the FFT result yields the power spectrum of the local Brillouin backscatter. Based
on the Wiener–Khinchin theorem, we can also obtain the power spectrum by applying the FFT to the
auto-correlation function of the sampled backscatters. So, our first idea to solve the spectrum-broadening
problem above is to apply the FFT to the cross-correlation function of the backscatters due to the long and
short pulses of the probe [13]. Window functions to sample the backscatters are shown in Figure 2c, having
the same durations with the long and short probe pulse, TL and TS, and the same interval TI. Since the
absolute value of the FFT of the cross-correlation function gives the product of the absolute values of the
FFTs of each windowed signal, the spectrum obtained by this proposed method may be much narrower
in width than the BSS obtained with a single short pulse. However, the cross-correlation is not localized.
That means that the cross-correlation obtained in the above way is the sum of the cross-correlations of the
signals backscattered at different segments in the fiber. So, our next idea is to use a differential technique
in conjunction with the cross-correlation. This idea comes from the fact that some SBS-based sensors use
a subtraction method to attain cm-scale spatial resolution [17,18]. The subtraction of the cross-correlation
obtained using the π-shift probe pulse (Equation (3)) from that of the 0-shift probe pulse (Equation (2))
removes unwanted cross-correlations and only gives the desired cross-correlation between the localized
backscatter. Details will be given in the following section.

2.2. Differential Cross-Correlation

Consider the spontaneous Brillouin backscatter signals when we launch the probe pulses whose
optical fields are expressed by Equations (2) and (3) into a single-mode fiber. For simplicity, we assume
that the fiber loss can be ignored. Then, by integrating the light field backscattered at a distance z,
we can obtain the backscatter signals detected with a heterodyne receiver at the input end:

bm,0(t) =
∫ LF

0
Rm(t, z)Ein,0

(
t− 2z

v

)
ej[ωB(z)t−θm(z)]dz, (4)

bn,π(t) =
∫ LF

0
Rn(t, z)Ein,π

(
t− 2z

v

)
ej[ωB(z)t−θn(z)]dz, (5)

where bm,0(t) and bn,π(t) are the signals at the m-th and n-th measurements for the probes of the
non-phase shift and π-phase shift, respectively, LF is fiber length, v is light velocity in the fiber,
ωB(z) is the Brillouin frequency shift at distance z and Rm(t, z) and Rn(t, z) are spontaneous Brillouin
backscatter coefficients of the m-th and n-th measurements. The spontaneous Brillouin scattering
occurs due to density fluctuation by thermal agitation independently in the different segments of
the fiber. It is well known that the auto-correlation of spontaneous Brillouin scattering has a Laplace
distribution. Since the coefficient Rm(t, z) can have the same property as the spontaneous Brillouin
scattering, its auto-correlation may be given by

AC(τ, u) = lim
N→∞

1
N

N

∑
m=1

[∫ ∞

−∞
Rm(t, z)Rm

∗(t + τ, z + u)dz
]
= Ae−Γa(z)|τ|δ(u), (6)

where N is the number of the repetitive measurements for time averaging, A is a proportional constant,
Γa is related to the phonon decay rate ΓB [19] as Γa = ΓB/2, and δ(u) is the Dirac delta function and *
denotes the complex conjugate.

Now, we will extract partial data of the Brillouin signals, bm,0(t) and bn,π(t), by using a pair of
window functions wL(t− t0) and wS(t− t0) for each. As shown in Figure 2c, they have the same
durations as the long and short probe pulse, TL and TS, and the same interval TI; wL(t− t0) and
wS(t− t0) begin at t = t0 and t = t0 + TL + TI , respectively. Then, sampled signals can be given by

bq,m,p(t, t0) = bm,p(t)wq(t− t0), (7)
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where the suffix p denotes 0 or π, and q denotes L or S.
Next, as explained in Section 1, we will consider cross-correlations between the backscatter signals

sampled by wL(t− t0) and wS(t− t0). For the case of the backscatter due to the 0-shift probe pulse,
we define the cross-correlation as follows:

CC0(τ, t0) =
1
N

N

∑
m=1

[
1

TR

∫ TR/2

−TR/2
bL,m,0(t, t0)bS,m,0

∗(t + τ, t0)dt
]

. (8)

where TR is the repetition period of the probe pulse. We assume N is so large that the statistical
fluctuation of the thermally excited Brillouin backscatter can be ignored. Then, if we substitute
Equation (7) into (8), we obtain

CC0(τ, t0) =
A
TR

LF∫
0

e−Γa(z)|τ|−jωB(z)τ

 TR/2∫
−TR/2

(pLL + pLS + pSL + pSS)dt

dz, (9)

where 
pLL
pLS
pSL
pSS

 =


fL
(
t− 2z

v
)

fL
(
t− 2z

v + τ
)

fL
(
t− 2z

v
)

fS
(
t− 2z

v + τ
)

fS
(
t− 2z

v
)

fL
(
t− 2z

v + τ
)

fS
(
t− 2z

v
)

fS
(
t− 2z

v + τ
)


×wL(t− t0)wS(t− t0 + τ).

(10)

Similar consideration for the case of the π–shift probe pulse yields the other cross-correlation.
Since Equation (3) for the case of the π–shift probe pulse differs only in the sign of fS(t) and the
initial phase of the optical field from Equation (2), and since the initial phase does not affect the
cross-correlation, we can obtain the cross-correlation for the case of the π-shift probe pulse just by
replacing fS(·) of the cross-correlation for the non-phase-shift case with − fS(·). The result is given by

CCπ(τ, t0) =
A
TR

LF∫
0

e−Γa(z)|τ|−jωB(z)τ

 TR/2∫
−TR/2

(pLL − pLS − pSL + pSS)dt

dz. (11)

with Equation (10). By inspecting the product term pSL, we notice that pSL = 0. This is because pSL
expresses the product of the backscatter of the short pulse sampled with the long window function and
the backscatter of the long pulse sampled with the short window function. However, these samplings
never occur simultaneously, since we set both the long pulse and the long window function in front of
the short ones, respectively, as shown in Figure 2.

Next, we define the differential cross-correlation as

DCC(τ, t0) = CC0(τ, t0)− CCπ(τ, t0). (12)

Substituting Equations (9–11) into (12) and considering pSL = 0 yields

DCC(τ, t0) =
2A
TR

∫ LF

0

{
e−Γa(z)|τ|−jωB(z)τ

[∫ TR/2

−TR/2
pLSdt

]}
dz. (13)

In the following, for simplicity, we will assume fL(t) and fS(t) have the same amplitude
(EL = ES = Ein) and will use rectangular functions for expressing both the pulses and the window
functions as follows:

fL(t)/Ein = wL(t) = rect(t, TL), (14)

fS(t)/Ein = wS(t) = rect(t− TL − TI , TS), (15)
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where

rect(t, T) =

{
1 0 < t < T

0 t ≤ 0, t ≥ T
. (16)

Then, Equation (13) is given by:

DCC(τ, t0) =
2AEin

2

TR

∫ LF

0

{
e−Γa(z)|τ|−jωB(z)τW(τ, z)

}
dz. (17)

where
W(τ, z) =

∫ TR/2
−TR/2

[
rect

(
t− 2z

v , TL
)
rect

(
t− 2z

v − TL − TI + τ, TS
)

.
×rect(t− t0, TL)rect(t− t0 − TL − TI + τ, TS)]dt.

(18)

By inspecting the product rect
(
t− 2z

v − TL − TI + τ, TS
)
rect(t− t0− TL − TI + τ, TS) in Equation (18),

W(τ, z) is set in a narrow region of |δz| = |z− z0| < ∆z, where z0 = vt0/2 and ∆z = vTS/2. Outside the
region, W(τ, z) = 0. Therefore, we may replace ωB(z) and Γa(z) in Equation (17) with constant values of
ωB(z0) and Γa(z0).

For |δz| = |z− z0| < ∆z, W(τ, z) is given as follows:

W(τ, z) =



0 τ ≤ TI + (2/v)|δz|
τ − TI − (2/v)|δz| TI + (2/v)|δz| ≤ τ ≤ TI + TS

TS − (2/v)|δz| TI + TS ≤ τ ≤ TI + TL
−(τ − TI)− (2/v)|δz|+ TL + TS TI + TL ≤ τ ≤ TI + TL + TS − (2/v)|δz|

0 τ ≥ TI + TL + TS − (2/v)|δz|

(19)

Figure 3a shows the relationship between W(τ, z) and the distance z. We can see from Figure 3a
that W(τ, z) ≈ TS in the narrow region of |δz| ≤ ∆z/2.

Figure 3b shows the relationship between W(τ, z) and the lag τ. We can see from Figure 3b that
W(τ, z) ≈ TS in the wide region of τ from τ2 = TI + (TS/2) to τ5 = TI + TL + (TS/2).

Based on Figure 3a,b and Equation (19), we can further approximate Equation (17) as

DCC(τ, t0) ≈
2AEin

2

TR
∆zTse−Γa(z0)|τ|−jωB(z0)τrect(τ − τ2, τ5 − τ2). (20)

As defined in Equation (16), rect(τ − τ2, τ5 − τ2) is a rectangular function in the interval (τ2, τ5)
with the difference τ5 − τ2 = TL.

From both Figure 3a,b and Equations (17–19), we can confirm that the function W(τ, z) plays
a role of the window function multiplied to e−Γa(z0)|τ|−jωB(z0)τ and that it has long and short intervals
in the τ-axis and in the z-axis, respectively, as we expected.
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2.3. Spatial Resolution

As described above, pLS and W(τ, z) center on z = z0 and effectively range from z = z0 − vTS/4
to z = z0 + vTS/4, as shown in Figure 3a. Thus, we can obtain the localized cross-correlation from
Equation (17) and define the spatial resolution ∆z of PSP-BOTDR as

∆z = vTS/2. (21)

This formula of the spatial resolution is the same as that for the classic BOTDR using a single
probe pulse of duration TS.

2.4. Spectral Analysis

We can obtain the complex spectrum of the localized Brillouin backscatter by applying the Fourier
transform to DCC(τ, t0) with respect to lag τ:

B(ω) = Fτ [DCC(τ, t0)]. (22)

If we use DCC(τ, t0) from Equation (20), B(ω) is approximately given by

B(ω) ≈ 2AEin
2

TR
∆zTS

1
−j(ω−ωB) + Γa

e[−Γa+j(ω−ωB)](TI+TS/2)
{

1− e[−Γa+j(ω−ωB)]TL
}

, (23)

where ωB = ωB(z0) and Γa = Γa(z0). It should be noted that in the derivation of Equation (23) the
range of the Fourier integral does not include the negative τ region since W(τ, z) = 0 for τ ≤ 0.

The absolute value of B(ω) is given by

Ba(ω) = |B(ω)| ≈ B0e−Γa(TI+TS/2)

√
1 + e−2ΓaTL − 2e−ΓaTL cos(ω−ωB)TL

(ω−ωB)
2 + Γa2

, (24)

where B0 = 2AEin
2∆zTS/TR. Since the spectrum |B(ω)| is maximum when ω = ωB, we can find the

BFS by analyzing the peak of the spectrum. However, the spectrum width is rather broad compared to
that of the intrinsic BSS. If we assume for simplicity that Γa(TI + TS/2)� 1 and ΓaTL � 1, the width
(FWHM) of the |B(ω)| is given by

∆ω = 2
√

3Γa, (25)

which should be much narrower than 1/TS, but
√

3 times broader than that of the intrinsic BSS,
ΓB = 2Γa [18].

Another spectral analysis method is to use a real part of B(ω): Br(ω) = Re[B(ω)]. If we assume
again for simplicity that Γa(TI + TS/2)� 1 and ΓaTL � 1, the spectrum Br(ω) is given by

Br(ω) = Re[B(ω)] ≈ B0
Γa

(ω−ωB)
2 + Γa2

, (26)

which has the same profile as the intrinsic BSS. Therefore, we should obtain an improved frequency
resolution by using Br(ω) rather than Ba(ω).

It is also possible to use an imaginary part of B(ω) for the spectral analysis Bi(ω) = Im[B(ω)].
Provided that we use the same conditions above, Bi(ω) is given by

Bi(ω) = Im[B(ω)] ≈ B0
(ω−ωB)

(ω−ωB)
2 + Γa2

. (27)
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Based on Equation (27), the BFS can be obtained by seeking the zero-crossing of Bi(ω). Since the
Bi(ω) rapidly increases from the negative minimum to the positive maximum within the narrow range
of 2Γa width, a good frequency resolution similar to that based on Br(ω) can be expected.

The validity of the analysis based on Br(ω) and Bi(ω) will be verified by the experiments
presented in Section 3.

2.5. Signal Processing

We will reconsider the Fourier transform of the differential cross-correlation, expressed by
Equation (22), as follows:

B(ω) = Fτ [DCC(τ, t0)] = Fτ [CC0(τ, t0)]−Fτ [CCπ(τ, t0)]. (28)

If we introduce Equation (8) for the 0-shift probe pulse and its counterpart for the π–shift probe
pulse into Equation (28) and use a cross-correlation theorem, we obtain

B(ω) =
1
N

N

∑
m=1
{Ft[bL,m,0(t, t0)]Ft

∗[bS,m,0(t, t0)]−Ft[bL,m,π(t, t0)]Ft
∗[bS,m,π(t, t0)]}, (29)

where Ft denotes the Fourier transform with respect to t. Therefore, we can also estimate B(ω)

from the average of the differential cross-spectrum. Equation (29) is useful to efficiently process the
backscatter data and obtain the BSS by utilizing high-performance FFT processors.

3. Results

3.1. Experimental Setup

The experimental setup in our work was the same as in [12]. A pair of probe pulses consisted
of a long pulse and a short pulse each, as expressed by Equations (2) and (3). The duration TL of
the long pulse was set to 10, 20, 30 and 60 ns to investigate the frequency resolution dependence on
the duration TL. The duration TS of the short pulse was set to 2 ns to attain 20-cm spatial resolution.
The interval time TI could theoretically be zero; however, it takes about 0.3 ns for our Mach–Zehnder
modulator to transiently provide the π–shift for the short probe pulse, while no transient time exists
for the 0-shift probe pulse. This imbalance could destroy the subtraction principle based on Equations
(12) and (13) of PSP-BOTDR. Thus, we set TI to 0.5 ns for the pair of probes [12]. The attenuation of
the differentiate cross-correlation due to the interval can be ignored since the factor of the attenuation
is estimated at e−ΓaTI = 0.95 by assuming a typical BSS linewidth of ΓB/2π = Γa/π = 30 MHz and
TI = 0.5 ns. The peak power of the probe was set to 300 mW for both long and short pulses. The fiber
under test was a 330-m single-mode fiber including 30 cm and 3 m sections that differed in the BFS by
about 50 MHz from the other sections. The short sections were about 310 and 320 m from the input
end of the fiber under test. The number of repetitions for averaging N was 50,000 for each probe pulse
case. All data were saved on a digital oscilloscope and sent to a personal computer (PC). We obtained
the spectrum by computing Equation (29). The Fourier transforms were executed by applying the
FFT to the data. Lorentz curve fitting was used to obtain BFS from the spectra of Ba(ω) and Br(ω),
while linear fitting was used for the spectrum of Bi(ω).

3.2. Experimental Results and Discussions

Figure 4a–d shows the experimental spectra of normalized Ba(ω) for durations of TL=10,
20, 30 and 60 ns, while Figure 4e–h illustrates numerical spectra corresponding to Figure 4a–d.
The calculations assumed that Γa/π = 30 MHz. We can see that, on the whole, the experimental
and numerical spectra agreed well with each other. Both experiments and calculations showed that
the spectrum width decreases as the duration TL increases. Therefore, we could expect that the BFS
resolution would be improved with an increase in TL. Accordingly, the BFS resolutions were evaluated



Sensors 2019, 19, 1497 9 of 12

by calculating the standard deviations of the BFSs in the region from 200 to 300 m of the fiber under
test. The experimental results of the width and the BFS resolution are summarized in Table 1.

Table 1. Experimental results of Brillouin spectrum width and Brillouin frequency shift (BFS) resolution.

TL (ns) Width (FWHM) (MHz) BFS Resolution (MHz)

10 137 3.4
20 66 2.2
30 46 2.4
60 36 4.0Sensors 2019, 19, x FOR PEER REVIEW  9 of 12 
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Figure 4. Ba(ω) for various durations of TL: TS = 2 ns and TI = 0.5 ns; (a–d): experiments;
(e–h): calculations; TL = 10 ns for (a,e); TL = 20 ns for (b,f); TL = 30 ns for (c,g); TL = 60 ns for (d,h).
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The BFS resolution for TL =10 ns was 3.4 MHz, which was poorer than the resolutions of 2.2 MHz
for TL = 20 ns and 2.7 MHz for TL =30 ns, as expected. However, the BFS resolution for TL = 60 ns
deteriorated to 4.0 MHz. This was probably caused by the degradation of signal-to-noise ratio due to
the difference in the rate of increase of signal and noise with the increase of TL. The integration of the
differential cross-correlation DCC(τ, t0) of the backscatter with respect to the lag τ may increase with
TL but reach a constant value for long TL. This is due to the fact that DCC(τ, t0) for the backscatter
is almost zero for large τ. In contrast, the integration of the variations in the cross-correlation of
noise itself and in the cross-correlation between noise and backscatter may continue to increase with
TL. Measured Ba(ω) for TL = 60 ns was noisy, as shown in Figure 4d. Thus, we found that a choice
of TL = 20–30 ns yields better BFS resolution. This is probably because this choice improves the
trade-off relation of the differential cross-correlation of the backscatter signal and the reduction in the
cross-correlations related to the above noise.

Figure 5 shows experimentally obtained spectra, Ba(ω), Br(ω) and Bi(ω), obtained using the
probe pulse pair of TL = 20 ns, TS = 2 ns and TI = 0.5 ns. The widths (FWHM) of Ba(ω) and Br(ω)

were 69 and 34 MHz, respectively; the former was 2.0 times broader than the latter, in relatively good
agreement with the theoretical value of

√
3. The frequency difference between the maximum and

minimum of Bi(ω) was 43 MHz. This frequency separation was a little larger than the width of Br(ω),
but was much less than the width of Ba(ω). Based on the results, we can expect better BFS resolution
by using Br(ω) and Bi(ω) rather than Ba(ω).
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Figure 5. Comparisons of experimentally obtained spectra, Ba(ω), Br(ω) and Bi(ω), drawn by blue,
orange and green curves, respectively; TL = 20 ns, TS = 2 ns, TI = 0.5 ns.

Finally, Figure 6 shows the BFS distributions measured over the single-mode fiber under testing.
The BFS distributions were evaluated using three spectra each, Ba(ω), Br(ω) and Bi(ω), which were
plotted by blue, orange and green curves, respectively. In each curve, we can see a change of 50 MHz
in the BFS over the 30 cm and 3 m sections near the end of the fiber with a spatial resolution of
20 cm. To accurately evaluate the BFS resolution, the standard deviations of BFSs in the region from
311 to 320 m of the fiber were calculated. This was due to the fact that the fiber in the region was
carefully coiled with a diameter of up to 30 cm, so that no accidental strain would occur. Evaluated
BFS resolutions were 1.5, 1.1 and 1.2 MHz for the spectra of Ba(ω), Br(ω) and Bi(ω), respectively.
Thus, we confirmed that the spectra of Br(ω) and Bi(ω) provide better BFS resolution than Ba(ω),
which was used previously.
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4. Discussion 

We have derived an expression for the complex spectrum obtained by the high-spatial-
resolution BOTDR called PSP-BOTDR, and have explained the principle of PSP-BOTDR theoretically. 
Based on the expression, we have also proposed the use of new spectra—a real part and an imaginary 
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can also be applied to the PSP-BOTDR to improve the BFS resolution and make faster measurements; 
we have reported its initial success in operating the 20-cm spatial resolution coded PSP-BOTDR [21]. 
We believe the results reported in this article will help to significantly improve the performance of 
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Finally, we would like to note that this article discusses the basic property of PSP-BOTDR based 
on spontaneous Brillouin scattering. However, an increase in the peak power of the probe pulse and 
the coding of the probe pulse with a long code to extend the measurement range would manifest the 
SBS; therefore, we should take into account the SBS. The mathematical formalism of the SBS that 
affects PSP-BOTDR and experiments involving this will constitute our future work. 
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4. Discussion

We have derived an expression for the complex spectrum obtained by the high-spatial-resolution
BOTDR called PSP-BOTDR, and have explained the principle of PSP-BOTDR theoretically. Based on
the expression, we have also proposed the use of new spectra—a real part and an imaginary part of
the complex spectrum. We have theoretically and experimentally clarified that the newly proposed
spectra of the real and imaginary parts of the spectrum have sharper profiles than the absolute of
the complex spectrum that was used previously. Our experiments have also clarified that the new
spectra provide better BFS resolution than the previous one. As in a BOTDR approach that combines
the FFT technique and the monopolar complementary code technique [20], bipolar code can also be
applied to the PSP-BOTDR to improve the BFS resolution and make faster measurements; we have
reported its initial success in operating the 20-cm spatial resolution coded PSP-BOTDR [21]. We believe
the results reported in this article will help to significantly improve the performance of such high-
spatial-resolution BOTDRs.

Finally, we would like to note that this article discusses the basic property of PSP-BOTDR based
on spontaneous Brillouin scattering. However, an increase in the peak power of the probe pulse and
the coding of the probe pulse with a long code to extend the measurement range would manifest the
SBS; therefore, we should take into account the SBS. The mathematical formalism of the SBS that affects
PSP-BOTDR and experiments involving this will constitute our future work.
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