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In our previous study, we reported that peptidyl-prolyl isomerase 1 (Pin1)-modulated
regulated necrosis (RN) occurred in cultured retinal neurons after glutamate injury. In the
current study, we investigated the role of calcium/calmodulin-dependent protein kinase
II (CaMKII) in Pin1-modulated RN in cultured rat retinal neurons, and in an animal in vivo
model. We first demonstrated that glutamate might lead to calcium overloading mainly
through ionotropic glutamate receptors activation. Furthermore, CaMKII activation
induced by overloaded calcium leads to Pin1 activation and subsequent RN. Inactivation
of CaMKII by KN-93 (KN, i.e., a specific CaMKII inhibitor) application can decrease the
glutamate-induced retinal neuronal RN. Finally, by using an animal in vivo model, we
also demonstrated the important role of CaMKII in glutamate-induced RN in rat retina.
In addition, flash electroretinogram results provided evidence that the impaired visual
function induced by glutamate can recover after CaMKII inhibition. In conclusion, CaMKII
is an up-regulator of Pin1 and responsible for the RN induced by glutamate. This study
provides further understanding of the regulatory pathway of RN and is a complementary
mechanism for Pin1 activation mediated necrosis. This finding will provide a potential
target to protect neurons from necrosis in neurodegenerative diseases, such as
glaucoma, diabetic retinopathy, and even central nervous system diseases.

Keywords: regulated necrosis, glutamate, calcium, CaMKII, Pin1

INTRODUCTION

Glutamate is the most prevalent excitatory neurotransmitter in the central nervous system (CNS;
Chi-Castaneda et al., 2015; Lopez-Colome et al., 2016; Madji Hounoum et al., 2018; Wang
et al., 2018b). Glutamate plays a vital role in excitatory actions by gating glutamate receptors
(GluRs), which are divided into ionotropic glutamate receptors (iGluRs) [N-methyl-D-aspartic acid
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receptor (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole
propionate receptor (AMPAR)/kainic acid receptor (KAR)], and
metabotropic glutamate receptors (mGluRs) [mGluR1-8] (Boye
Larsen et al., 2014; Guillem et al., 2015; Flores-Mendez et al.,
2016; Xu et al., 2017; Liu et al., 2018). Glutamate concentration
is under the control of a series of signaling cascades triggered by
glutamate receptors present in the pre/post-synaptic membrane
and neighboring glial cells (Lopez-Colome et al., 2016). After
stimulation, glutamate is released from pre-synaptic terminals
and removed by excitatory amino acid transporters and
sodium-dependent glutamate transporters (Mendez-Flores
et al., 2016; Chi-Castaneda et al., 2017). Meanwhile, inefficient
clearance of glutamate from the synaptic cleft leads to the
overstimulation of neuronal GluRs, triggering the overloaded
calcium influx that activates intracellular events that result in
neuronal death, such as necrosis, apoptosis, and RN, which
is also known as excitotoxicity (Agudo-Barriuso et al., 2016;
Chi-Castaneda et al., 2017; Madji Hounoum et al., 2017;
Suarez-Pozos et al., 2017; Chi-Castaneda and Ortega, 2018).

Glutamate excitatory action has been involved in various
neurodegenerative diseases including Alzheimer’s disease (AD),
Parkinson’s disease (PD), as well as many retinal diseases, such
as diabetic retinopathy and glaucoma (Alarcon-Martinez et al.,
2010; Esposito et al., 2013; Haris et al., 2013; Singh et al.,
2017; Kabra et al., 2018). Neuronal responses to glutamate
treatment are characterized by increased intracellular calcium
concentration through GluRs activation (Madji Hounoum et al.,
2017). We have investigated the key molecular pathway involved
in glutamate-induced RN in our previous study (Wang et al.,
2018a, 2019). However, the specific role of distinct GluRs
involved in the glutamate-induced RN in the retinal neuronal
cultures has not been clarified. It has been reported that retinal
neurons express all of the glutamate receptor subtypes (Luo
et al., 2001; Fang et al., 2010). Some reports have indicated
that retinal excitotoxicity was mediated by both non-NMDAR
and NMDAR, whereas other studies have found an entirely
non-NMDAR-mediated retinal neuronal death (Luo et al., 2001;
Opere et al., 2018). Such differences may be partially due to
the maturational changes of retinal neurons and the difference
in cell culture environment (Luo et al., 2001). In the current
study, we first wanted to investigate and identify the battery of
glutamatergic receptors responsible for glutamate-induced RN in
our retinal neuronal culture conditions.

RN is a type of programmed cell death, mainly including
necroptosis, ferroptosis, parthanatos, etc. (Galluzzi et al., 2014;
Chen et al., 2016; Liao et al., 2017; Xiong et al., 2017;
Wang et al., 2018c,d). The morphological features of RN
are similar to necrosis, which exhibit plasma integrity loss
and organelle swelling, and are different from apoptosis and
autophagy (Galluzzi et al., 2014; Catalani et al., 2016). Both our
studies and others have found that peptidyl-prolyl isomerase
1 (Pin1) activation was involved in glutamate-induced RN
(Del Rosario et al., 2015; Wang et al., 2018a). Pin1 is one
subtype of the peptidyl cis-to-trans isomerases (PPIases) that
can bind and catalyze cis/trans isomerization of phosphorylated
threonine/serine-proline, leading to protein phosphorylation and
degradation, neuronal survival and death (Agostoni et al., 2016;

Islam et al., 2018). Further reports have indicated that PPIases,
including Pin1, are involved in calcium-mediated pathological
and physiological changes (Ghosh et al., 2013; Agostoni et al.,
2016). However, the mechanism of Pin1 activation induced
by increased calcium has not been fully elucidated. It is well
known that calmodulin (CaM) is a calcium-binding protein
involved in many cellular physiological processes (Chai et al.,
2018). CaM consists of two globular lobes that are able to
bind two calcium ions, respectively (Wyttenbach et al., 2010).
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a
protein kinase that can be regulated by the calcium/calmodulin
complex (Tanaka et al., 2018). CaMKII activity could be
dysregulated by increased calcium in some neuronal diseases,
such as stroke, epilepsy, and glaucoma, etc. (Cooper et al., 2008;
Brewster et al., 2016; Zhou et al., 2018). CaMKII inhibition
prior to excitotoxic injury could prevent neuronal damage both
in vitro and in vivo (Qian et al., 2019). More importantly, it
has been reported that Pin1 binds with CaMKII in mouse brain
homogenate (Tatara et al., 2010; Oliveira et al., 2019). However,
to date it has not been reported whether Pin1 is involved in the
CaMKII regulatory pathway.

Therefore, in this study we aim to investigate whether CaMKII
is an up-regulator of Pin1 and whether it is responsible for the
RN in cultured retinal neurons. To resolve this, the first step is
to address which types of glutamate receptors are involved in the
calcium changes. Then, the regulatory role of CaMKII in Pin1
mediated retinal neuronal RN will be determined. We expect
that the results could provide a better understanding and rational
interventional targets for neuronal RN in the future.

MATERIALS AND METHODS

Primary Retinal Neuron Cultures and
in vitro Model Preparation
All experimental procedures used in the present study were
approved by the Ethics Committee of the 3rd Xiangya Hospital
of Central South University in keeping with the Guidelines
for the Care and Use of Laboratory Animals (U.S. National
Institutes of Health). Primary cultures of retinal neurons
were prepared from 1-day-old Sprague-Dawley (SD) rat pups
as described previously (Li N. et al., 2016; Wang et al.,
2017, 2018a). In brief, the eyes were removed under sterile
conditions, and the retinae were extracted with the aid of a
dissecting microscope. The retinae were digested at 37◦C for
10 min in Dulbecco’s modified Eagle’s medium (DMEM, GE
Healthcare, Logan Utah, United States) containing 0.02% papain
and then the tissue was gently triturated for 20 times and
filtered through a 70-mm nylon cell sieve, followed with 5-
min centrifugation. After resuspension, the cells were counted
and plated onto flasks or plates precoated with poly-D-lysine
(10 µg/mL, Sigma-Aldrich, St. Louis, MO, United States) at
a density of 6 × 105 cells/mL. Cells were maintained in 5%
CO2 incubator at 37◦C for four hours after plating, followed by
replacing the plating medium with neurobasal medium (Thermo
Scientific, Waltham, MA, United States) supplemented with B27
(Thermo Scientific). Half of the culture media were replaced
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every 2 days. On the 7th day, the cultures were conducted
with 50 µM glutamate (Sinopharm, Beijing, China) insult for
indicate time points.

Animal Model in vivo of Glutamate
Treatment
Rats were anesthetized by intraperitoneal injection of 1%
pentobarbital sodium (6 mL/kg). To dilate the pupils,
chloramphenicol eye drops were placed onto the left conjunctiva
sac. Intravitreal injection of a single dose of 5 µL of 100 mM
glutamate in 0.01 M PBS was then conducted and a sham
operation was performed as a control. Animals were allowed to
survive for 12 h. Each group was composed of four animals.

Animal Tissue Preparation
Animals were anesthetized with 1% pentobarbital sodium and
perfused transcardially with 0.9% sodium chloride, followed by
4% paraformaldehyde (PF) in 0.1 M PB. Subsequently, the eyes
were enucleated, anterior segments were removed, and posterior
eyecups were post-fixed in 4% PF overnight at 4◦C. Then, the
eye cups were dehydrated in 15 and 30% sucrose in 0.1 M
PB at 4◦C sequentially. Next, the eyecups were embedded with
Tissue-Tek optimal cutting temperature medium and frozen in
liquid nitrogen. Then, 8 µm thick of cryosections were cut using
a microtome (Thermo Scientific). The sections, which included
the optic nerve were stored at−20◦C until use.

Drug Application
(+)-MK 801 [MK, i.e., a NMDAR antagonist (Kubrusly
et al., 1998; Aihara et al., 2014), MCE, Monmouth Junction,
United States], CNQX [CN, i.e., an AMPAR/KAR antagonist
(Couratier et al., 1993; Thellung et al., 2013), MCE], (RS)-MCPG
[MC, i.e., a non-selective group I/group II mGluRs antagonist
(Kusama-Eguchi et al., 2004), MCE], BAPTA-AM (BA, i.e., a
calcium chelator, Selleck, Houston, TX, United States), KN-93
Phosphate (Selleck) was dissolved in dimethyl sulfoxide (DMSO,
Sigma-Aldrich) as a stock solution. The stock solution was
further diluted in the medium to achieve concentration of DMSO
lower than 0.1%. MK, CN, MC, BA, and KN were used at
a concentration of 10, 10, 50, 10, and 10 µM, respectively.
Thirty minutes before the glutamate insult, the drug solution was
directly added to primary retinal neuronal cultures or injected
into the vitreous cavity of rats.

Calcium Measurement
Fluo-4, AM Kit
The cells were washed three times in Calcium free HBSS
(Solarbio, Beijing, China) and incubated with neuronal culture
media containing 4 µM Fluo-4, AM, a fluorescent probe
(Solarbio) at 37◦C for 20 min. The cells were then washed
three times in HBSS before imaging. Images acquired with a
fluorescence microscope (Olympus, Tokyo, Japan) using the
same exposure time were captured from 5 random fields of each
group. The excitation wavelength was 494 nm and the emission
wavelength was 516 nm. Fluorescence signal intensity values of
different images were equal to the calibrated integrated density,

which was quantified using Image J software (NIH, Baltimore,
MD, United States) divided by the number of cells.

Cell Calcium Assay Kit
Calcium concentrations were measured using a biochemical
testing kit for cell calcium assay (Genmed, Shanghai, China)
according to the manufacturer’s instructions. In brief, cells were
harvested and washed three times with washing reagent. After
protein lysis, the supernatants were collected and a BCA assay
was used to determine the protein concentration of different
groups and then diluted by using lysis reagent to form the
same protein concentration samples. Serial dilutions of standard
reagent (0–0.5 mM) were used to create a standard curve. For
analyses, 160 µL of working reagent was added to aliquots of
20 µL of sample or standard reagent in a 96-well plate and
then the plate was incubated at room temperature (RT) in the
dark for 5 min, and a microplate reader (Bio-Rad, Berkeley,
CA, United States) was used to measure the absorbance at
595 nm of each well. The actual calcium concentration was
equal to the corresponding calcium concentration of the sample
obtained from the standard curve multiplied by the dilution
factor. The fold change of calcium concentration was calculated
and normalized to the control group.

Lactate Dehydrogenase (LDH) Release
The release of lactate dehydrogenase into the extracellular
space/supernatant is regarded as an important feature of the
break of cell membrane integrity (Kumar et al., 2018; Parhamifar
et al., 2019). For in vitro analysis, the LDH cytotoxicity assay
kit (Beyotime, Shanghai, China) was used to measure LDH
released from necrotic cells in different groups. In brief, cell
cultures were centrifuged at 400 g for 5 min and then cell-free
culture supernatants were harvested from each well of the
plate and incubated with the working reagent mixture for
30 min at RT according to the manufacturer’s instructions.
For the in vivo analysis, the LDH cytotoxicity assay kit
(Jiancheng Institutes, Nanjing, China) was used according to
the manufacturer’s instructions. In brief, the eyes were quickly
removed from anesthetized rats and then the rats were sacrificed
by decapitation. The retinae were homogenized in 0.86% NaCl by
sonication before incubation with the working reagent mixture
for 30 min at 37◦C. The optical density of each well in the assay,
which in proportional to both the LDH activity and percentage
of necrotic cells, was measured at a wavelength of 490 or 450 nm
with a microplate reader. The percentage of necrotic cell death
was calculated from four independent experiments by measuring
the optical density of the treated group minus control group/LDH
releasing, reagent treated group minus control group.

Propidium Iodide (PI) Staining
Propidium iodide staining was used to identify cells undergoing
necrosis (Jiang et al., 2014; Ding et al., 2015; Shang et al.,
2017). Cell cultures on the coverslips were washed twice with
PBS at the indicated time points and incubated with 10 µg/mL
PI-dye solution in 5% CO2 incubator at 37◦C for 15 min.
For animal experiments, rats were euthanized 30 min prior
to the indicated time-point and 5 µL 10 µg/mL PI-dye was
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intravitreally injected. The eye balls were separated before animal
sacrifice. The eyes were frozen in liquid nitrogen vapor and
cryosectioned followed by washing three times in PBS buffer
and covered with an anti-fading mounting medium containing
DAPI (Vector Laboratories, Burlingame, CA, United States).
Images acquired with a fluorescence microscope using the same
exposure time were captured for five random fields of each group.
The percentages of PI-positive cells are equal to the number
of PI-positive cells divided by the number of DAPI-positive
cells, which was analyzed in every intact captured image using
Image J software.

Immunofluorescence Staining
At the indicated time points, cell cultures on the coverslips
were washed three times with PBS and fixed with 4% PF for
20 min. After being washed in PBS three times again, the
coverslips were blocked at RT in blocking buffer, i.e., PBS
containing 5% normal bovine serum and 0.3% Triton X-100 for
1 h. The coverslips were then incubated with combinations of
the primary antibodies against the following targets, overnight
at 4◦C: Pin1 (1:100, 3722S, Cell Signaling, Danvers, MA,
United States), p-CaMKII (1:100, bs1647R, Bioss, Beijing, China),
Map2 (1:200, M4403, Sigma, St. Louis, MO, United States).
The coverslips were moved to RT for 30 min on the following
day, washed three times, and incubated with Alexa-conjugated
secondary antibodies (1:200, Jackson ImmunoResearch, West
Grove, PA, United States) at RT for 2 h with fluctuation. The
coverslips were washed three times and then covered with
Vectashield mounting medium containing DAPI. All the staining
procedures were in parallel and images were captured at five
random fields of each coverslip using the same settings with a
fluorescence microscope.

Western Blot
Cell cultures were lysed on ice in RIPA buffer contained 1%
protease inhibitors and 1% phosphorylated inhibitors (CWBIO,
Beijing, China). The extracts were centrifuged at 12,000 × g
for 20 min at 4◦C to collect the supernatant and then a BCA
assay was used here to determine the protein concentration.
After unifying the protein samples, 5× loading buffer was
added in the samples and the mixture was boiled for 5 min,
centrifuged at 12,000 × g for 20 min at 4◦C, and then the
supernatant was harvest into a new tube. Twenty microgram
proteins was loaded for each lane and separated using 4–15%
or 10% SDS-PAGE gel and transferred onto a nitrocellulose
membrane (GE Healthcare). The membranes were blocked in
TBS-T containing 5% non-fat milk in for 1 or 2 h, at RT, and
then incubated with the following primary antibodies overnight
at 4◦C: Pin1 (1:1,000, Cell Signaling), p-CaMKII (1:1,000,
Bioss), CaMKII (1:1,000, 12666-2-AP, Proteintech, Rosemont,
IL, United States), NR1 (1:500, bs-23343R, Bioss), GluR1
(1:500, bs-10042R, Bioss), GAPDH (1:5,000, AF0006, Beyotime,
Beijing, China). After three washes in TBS-T, the membranes
were incubated in TBS-T containing HRP-conjugated secondary
antibody (1:5,000, Beyotime) at RT for 2 h, followed by three
times wash in TBS-T buffer. And then the immunoreactive bands
were visualized by low or high sensitivity chemiluminescence

reagent (CWBIO). Integrated density values of specific proteins,
which quantified by Image J software, were normalized to
the GAPDH values.

Simulation of Protein Binding
Confirmation
The three-dimensional structures of proteins were built based on
available protein crystal diffraction structure and frozen electron
microscopic structures by homologous modeling (Swiss Model).
To calculate the protein surface electrostatic potential energy,
APBS (Figures were produced using PyMOL) (Baker et al.,
2001) was used.

Co-immunoprecipitation (Co-IP)
Primary cultured cells were lysed with a non-denaturing lysis
buffer containing 1% protease and 1% phosphatase inhibitor and
protein solution medium was centrifuged at 12,000 rpm (4◦C)
for 20 min. Four microgram CaMKII antibody (11533-1-AP,
Proteintech) or IgG (B900610, Proteintech) was pre-incubated
with protein A/G agarose beads (Beyotime) for 8 h at RT
and washed with GLB+ buffer for five times. Then, 500 µg
extracted protein was incubated with primary antibody coupled
with protein A/G agarose beads at 4◦C for 24 h with gentle
fluctuating. After five times washed by GLB+ buffer, the
protein-beads mixture coupled with 1× loading buffer was
boiled for 5 min and centrifuged at 10,000 rpm for 5 min to
get the supernatant. Finally, the bound proteins were analyzed
by western blot.

Real-Time Quantitative Polymerase
Chain Reaction
After being washed three times in PBS, cell cultures were
lysed in TRIzol R© (Invitrogen, Carlsbad, CA, United States) to
harvest total RNA according to the manufacturer’s instructions.
And then, 1 µg total RNA was used for cDNA synthesis
using HiFiScript cDNA synthesis kit (CWBIO) according
to the manufacturer’s instructions. Quantitative real-time
polymerase chain reaction (RT-PCR) was performed using a
sequence detection system (Prism 7500, Applied Biosystems
Inc., Waltham, MA, United States). Amplification of specific
PCR products was performed in triplicate in a total reaction
volume of 10 µL-containing 2 µL cDNA template, forward
and reverse primers (0.4 µM), and 2 × UltraSYBR mixture
(Low ROX, CWBIO). The specific primers, purchased from
Sangon Biotech Co., Ltd. (Shanghai, China) are listed in
Table 1. GAPDH was used as an internal standard. Controls
treated as above, without adding template, were included
for each primer pair to check for any significant levels of
contaminants. All threshold cycle (Ct) values were measured
for a normalized fluorescence threshold of 0.02. All products
produced similar amplification curves and single melt-curve
peaks, indicating similar amplification efficiencies and a lack of
non-specific amplification and primer-dimer formation. Relative
mRNA levels were normalized to those of GAPDH and are
calculated as 211Ct.
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TABLE 1 | Primer sequence for real-time PCR.

Gene/Protein Forward primer (5′–3′) Reverse primer (5′–3′)

Grin1/NR1 ATGTGGTGGCTGTGATGCTGTAC TTCCTCCTCCTCCTCACTGTTCAC

Grin2a/NR2A GTGTGATGCCTGTCTGCGGATG GCGTTGTTCTGTGACCAGTCCTG

Grin2d/NR2D GCAAGGTCTTCGCCACCACTG CAGCCGCTCCAGCATCTCAATC

Grin3a/NR3A CAGCAGCAGCAGCAGTTCTTCC AGGTTGAGAGGAGCCAGAGTTGTC

Gria1/GluR1 AGTCCAAGCCAGGTGTCTTCTCC CTCTTCGCTGTGCCATTCGTAGG

Gria2/GluR2 CTCTTCGCTGTGCCATTCGTAGG CAGTCCAGGATTACACGCCGTTC

Grik2/GluR6 GCTGCTATCTTCGGTCCTTCACAC GTTGTCTGACACCTGGTGCTTCC

Grik4/KA1 ACGCCTTCCTGCTGGAGTCC ACGCCTTCCTGCTGGAGTCC

Grm1/mGluR1 CCGCTCCAACACCTTCCTCAAC ACCATGACACAGACTTGCCGTTAG

Grm3/mGluR3 CTATGTGTCCACCGTTGCCTCTG GTCGTAGGACTTGCGGATGTTGG

Grm4/mGluR4 GTCACCTACACCAACCATGCCATC CCTCAGCACCAAGCCACATTCG

GAPDH GACATGCCGCCTGGAGAAAC AGCCCAGGATGCCCTTTAGT

Flash Electroretinogram (fERG)
Flash electroretinogram was used to monitor the visual
function (Alarcon-Martinez et al., 2010). The RM6240 system
(Chengdu Instrument Factory, Chengdu, China) was applied
to fERG recording. After the drug treatment, the rats were
dark-adapted for 12 h and then anesthetized under dim red
illumination. Then, the recording electrode, reference and
ground electrodes were inserted into the anterior chamber, the
subcutaneous layer of the forehead and tail base, respectively.
A bandpass filter of 10 Hz and 1.6 cd/s/m2 lash luminance
was used. Each eye was exposed to flashes, three times,
at 5-min intervals with the contralateral eye covered. All
procedures were repeated at least four times. The amplitude
of b wave was calculated from the bottom of a wave to
the peak of b wave.

Statistical Analysis
All experiments were repeated at least three times to ensure
consistency of the results. Figure panels were assembled using
Photoshop CC (Adobe Systems Incorporated, San Jose, CA,
United States). The measurement data are expressed as the
mean ± standard deviation (SD) and analyzed by one-
way analysis of variance (ANOVA) which was carried out
with GraphPad Prism 5 software (GraphPad Software Inc.,
San Diego, CA, United States). Statistical significance was
set at p < 0.05.

RESULTS

Glutamate Increased Calcium
Concentrations in Retinal Neuron
Cultures
We first tested whether changes in calcium occurred in retinal
neurons following glutamate treatment. Fluo-4 was used as a
calcium indicator. According to calcium imaging, it was clear
that Fluo-4 signals were increased with increasing times of
glutamate treatment compared to control groups (Figure 1A).
Quantitatively, the average fold change of calcium fluorescence
signal intensity was increased in 15-min glutamate treatment

groups compared with control groups, and further declined after
this time point (Figure 1B). Next, we used a cell calcium assay
kit to directly test the fold changes of calcium concentrations
in retinal neuron cultures. As shown in Figure 1C, the relative
ratio of calcium concentration was increased in 15-min glutamate
treatment groups, and then tended to gradually decrease.
These results indicated that glutamate could increase calcium
concentrations in retinal neurons.

Glutamate Induced Changes in Calcium
Concentration Rhrough iGluRs
Since the average fold change of calcium fluorescence signal
intensity was increased and peaked at 15 min after glutamate
treatment, in this part of our study we investigated the battery
of glutamatergic receptors responsible for glutamate-induced
calcium changes in our retinal neuronal cultures at this
time point. To identify whether NMDAR is involved in
glutamate-induced changes in calcium concentration, before
being treated with glutamate, retinal neurons were incubated
with CN +MC for 30 min to block AMPAR/KAR and mGluRs.
For inhibition of NMDAR and mGluRs, before treatment with
glutamate, retinal neurons were incubated with MK + MC for
30 min. For inhibition of NMDAR and AMPAR/KAR, retinal
neurons were pre-incubated with MK+ CN for 30 min, and then
treated with glutamate for 15 min. As shown in the Figure 2A,
Fluo-4 signals intensity in MK+CN groups were much weaker
compared with Glu, CN+MC, and MK+MC treatment groups.
From quantitative results of calcium imaging (Figure 2B) and
biochemical tests of the cell calcium assay kit (Figure 2C), it
was also clear that the calcium concentrations in MK + CN
groups were much lower compared with Glu, CN + MC, and
MK+MC treatment groups. These results mean that it is possible
that mGluRs activation cannot significantly change the calcium
concentrations in our retinal neuron cultures after glutamate
injury. It should be noted that although calcium concentrations
in CN + MC and MK + MC treatment groups were somewhat
decreased compared with Glu groups, this difference is not
significant. Taken together, these results showed that glutamate
may induce changes in calcium concentrations through iGluRs,
which included both NMDAR and AMPAR/KAR.
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FIGURE 1 | Calcium concentrations in retinal neuron cultures treated with 50 µM glutamate injury for different time points. (A) Calcium concentrations indicated by
Fluo-4 signals. (B) Quantitative analysis of Fluo-4 fluorescence signal intensity. (C) The fold change of calcium concentrations was determined by cell calcium assay
kit. Data were analyzed using one-way ANOVA. ∗p < 0.05 vs. CTL group. These data are representative of results from five independent experiments. Scale
bar = 20 µm in all panels.

To investigate the expression of the various subtypes of
glutamate receptors after antagonist and glutamate treatment, we
first assessed the mRNA level of several NMDARs, AMPA/KA
receptors. Then, we validated the protein expression levels of
NR1, GluR1, which were widely reported to be involved in
glutamate excitatory toxicity (Dijk and Kamphuis, 2004; Kaur
et al., 2012; Chong et al., 2016). As shown in Figures 3A,B,
real-time PCR results indicate that the levels of NR2A, NR3A,
GluR1, and GluR2 mRNA were down-regulated after glutamate
insult, while NR1 and KA1 mRNA levels were up-regulated.
However, NR2D and GluR6 were not affected by glutamate
exposure significantly. In addition, MK treatment seemed to
attenuate the changes in NR1 and NR2A mRNA level. These
results were similar to previous studies (Goebel and Poosch,
2001), i.e., that MK could affect the gene expression of
NMDAR subunits. In addition, CNQX didn’t affect GluR1,
GluR2, GluR6, and KA1 gene expression. Moreover, western
blot analysis showed different results, that no change in NR1
and GluR1 protein level was observed within 15 min glutamate
treatment (Supplementary Figure S1). The stable NR1 and
GluR1 protein levels could be explained because our observations
were conducted at early stages of necrosis, so the changes of
protein levels can’t be tested at the early necrotic stages.

Expression Changes of p-CaMKII,
CaMKII, and Pin1 Following Glutamate
Treatment
We examined whether the expression of p-CaMKII, CaMKII,
and Pin1 could be changed after glutamate treatment in retinal
neurons. To exclude the underlying effect of mGluRs activities,
MC groups were set as control groups. In our previously observed
time points (15 min, 30 min, 1 h, 2 h), the expression of
p-CaMKII, CaMKII, and Pin1 were not changed significantly
following glutamate treatment (data not shown). We further
extended our observed time points, because we had found
expression changes of Pin1 in our previous studies (Wang et al.,
2018a). Western blot results showed that the expression of
p-CaMKII and Pin1 were significantly increased after 12 and 24 h
of glutamate treatment (Figures 4A–C). These results indicated
that glutamate could increase the expression of p-CaMKII and
Pin1 in retinal neuron cultures.

CaMKII Regulates Pin1 Activity in Retinal
Neurons
To examine the regulatory role of p-CaMKII in Pin1 activity,
we first verified a previous report that CaMKII could bind with
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FIGURE 2 | Calcium concentrations in retinal neuron cultures after different GluRs inhibition. (A) Calcium concentrations indicated by Fluo-4 signals. (B) Quantitative
analysis of Fluo-4 signals intensity. (C) The fold change of calcium concentrations was determined by cell calcium assay commercial kit. MK, CN, and MC, which
respectively block NMDAR, AMPA/KA receptor and mGluRs, were added to the cultures at a final concentration of 10, 10, and 50 µM, 30 min before 15 min
glutamate insult. Experiments were repeated three times. Data were analyzed using one-way ANOVA. ∗p < 0.05 vs. CTL group, # p < 0.05 vs. Glu group. Scale
bar = 20 µm in all panels.

FIGURE 3 | The mRNA level of various subtypes of ionotropic glutamate receptors after antagonist and glutamate treatment. (A,B) Fold change of various subtypes
of glutamate receptors mRNA level detected by real-time PCR; MK, CN, and MC were used at a concentration of 10, 10, and 50 µM, 30 min before 15 min
glutamate insult. To ensure consistency of the results, experiments were repeated four times. Data were analyzed using one-way ANOVA. ∗p < 0.05, ∗∗p < 0.01 vs.
respective CTL group, #p < 0.05 vs. respective Glu group.

Pin1. The possible interaction between CaMKII and Pin1 was
investigated using computer software. The electrostatic potential
on CaMKII and Pin1 surface was calculated by APBS followed

by energy minimization using NAMD v2.12. As shown in
Figures 5A–B, both CaMKII and Pin1 displayed positive and
negative electrostatic potential, which indicated that CaMKII
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FIGURE 4 | Expression of CaMKII, p-CaMKII and Pin1 in retinal neurons following glutamate treatment. (A) Western blot of CaMKII, p-CaMKII and Pin1 expression.
(B) The statistical analysis of p-CaMKII/CaMKII expression. (C) The statistical analysis of Pin1 expression. MC was used at a concentration of 50 µM, 30 min before
glutamate insult. N = 3 cultures. Data were analyzed using one-way ANOVA. ∗p < 0.05 vs. CTL group.

FIGURE 5 | The regulatory role of CaMKII in Pin1 activity. (A) Three dimensional structure of proteins by homologous modeling (Swiss Model). (B) Protein surface
electrostatic potential energy are calculated by APBS (Figures are produced by using PyMOL). (C) The initial binding mode is constructed by manually binding areas
with opposite electrostatic potential of two proteins and then the protein complex is energy minimized using molecular dynamics software NAMD v2.12. (D) IP assay
of CaMKII and Pin1. Pin1 was pull-down with CaMKII antibody suggested by a 18 KDa band as observed. (E) Western blot of CaMKII, p-CaMKII, and Pin1
expression after Glu, MC, BA, and KN treatment. (F) The statistical analysis of p-CaMKII/CaMKII expression. (G) The statistical analysis of Pin1 expression. MC, BA,
and KN were used 30 min before glutamate treatment at a concentration of 50, 10, and 10 µM, respectively. N = 3 cultures. Data were analyzed using one-way
ANOVA. ∗p < 0.05 vs. CTL group, #p < 0.05 vs. Glu group.
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could be bound to Pin1 (Figure 5C). We further performed
Co-IP, and the results showed that CaMKII also interacted with
Pin1 and the interaction was increased after glutamate treatment
(Figure 5D). This result was correlated with previous reports that
CaMKII could bind with Pin1 (Tatara et al., 2010).

To investigate the underlying effect of CaMKII in regulating
Pin1 activity, we cultured retinal neurons with KN before
glutamate treatment. We also added MC to the cultures as
negative controls. In addition, BA was added to the cultures
to investigate whether calcium was directly involved in the
changes in Pin1 activity after glutamate treatment. Our results
showed that KN efficiently blocked the CaMKII activity, which
was shown by decreased p-CaMKII expression (Figures 5E,F).
Furthermore, Pin1 activity was inhibited, as shown by decreased
Pin1 expression after KN application (Figures 5E,G). However,
the expression of p-CaMKII and Pin1 were not significantly
changed in MC and BA groups compared with the glutamate
groups (Figures 5E–G). These results suggest that the Pin1
activity might be affected by KN, but not MC and BA, in this
glutamate model.

Double immunofluorescence was further used to evaluate the
effect of CaMKII in Pin1 activity. Immunostaining results showed
that p-CaMKII was predominantly located in the cytoplasm
and nucleus (Figure 6A). The immunofluorescence intensity of
p-CaMKII showed a dramatic increase in the cytoplasm and
nucleus after glutamate treatment (Figure 6A). However, the
increased p-CaMKII declined after the KN application, compared
with glutamate, MC and BA treatment groups (Figure 6A).
Pin1 immunostaining was mainly present in the cytoplasm and
nucleus. Pin1 expression was increased within the cytoplasm,
nucleus, and slightly in dendrites (Figure 6B). The enhanced
Pin1 level was decreased after the KN application, compared with
glutamate, MC and BA treatment groups (Figure 6B). Altogether,
these results confirmed that CaMKII activation may lead to the
activation of Pin1 in retinal neurons after glutamate treatment.

The Effect of CaMKII in RN
We evaluated the effect of KN-induced CaMKII inactivation in
retinal neuronal RN. As shown in the PI staining and LDH
assay, the necrosis in KN-treated retinal neurons was decreased,
compared with glutamate and MC groups (Figures 7A–C).
Although the necrosis in the BA groups was slightly decreased
compared to glutamate, the difference was not significant
(Figures 7A–C). These results indicated that inactivation of
CaMKII by KN application can decrease the retinal neuronal RN
induced by glutamate treatment.

CaMKII Modulates Retinal Neuronal
Necrosis in Retinal GCL and INL in vivo
To examine the necrotic cells in rat retina in vivo, PI was
intravitreally injected. Quantitative analysis of PI stained cells in
the ganglion cell layer (GCL) and inner nuclear layer (INL) is
shown in Figure 8S. Double immunofluorescence of DAPI and
PI showed that the necrotic cells in GCL and INL were increased
in glutamate groups (Figures 8E,F), compared with control
(Figures 8A,B) and sham-operated groups (Figures 8C,D). PI

FIGURE 6 | Immunofluorescence staining of p-CaMKII and Pin1 after
glutamate and drugs treatment. (A) Immunofluorescence staining of p-CaMKII
(red) and Map2 (green). (B) Immunofluorescence staining of Pin1 (red) and
Map2 (green). N = 3 cultures. MC, BA, and KN were used 30 min before 12 h
glutamate treatment at a concentration of 50, 10, and 10 µM, respectively.
Scale bar = 10 µm in all panels.

staining results further demonstrated significant reductions in
necrotic cells in both GCL and INL in KN (Figures 8K,L) and
BA (Figures 8I,J) pretreatment groups. Necrotic cells in MC
pretreatment groups (Figures 8G,H) were reduced in INL, but
not GCL, compared with glutamate groups. LDH cytotoxicity
assay in vivo was also conducted (Figure 8T). Compared with
control and sham groups, increased LDH release was observed
in the glutamate group. However, the increased LDH release
was decreased in KN, but not MC and BA pretreatment groups.
Taking these results together, they indicated that KN could
provide a protective role in retinal cells in GCL and INL against
glutamate induced neuronal necrosis.

fERG was performed to evaluate the visual function. fERG
results showed that the amplitudes of b waves in glutamate groups
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FIGURE 7 | Glutamate-induced necrosis decreased by KN treatment. (A) Retinal necrotic neurons were stained with PI (red). Nuclei were counterstained with DAPI
(blue). (B) Statistical analysis of PI-positive retinal neurons. (C) The percentage of necrotic neurons after glutamate treatment and pretreated with 50 µM MC, 10 µM
BA, and 10 µM KN was determined by LDH release assay. N = 3 cultures. Data were analyzed using one-way ANOVA. ∗p < 0.05 vs. CTL group, #p < 0.05 vs. Glu
group. Scale bar = 20 µm in all panels.

(Figure 8O) were significantly decreased compared to control
and sham groups (Figures 8M,N). Meanwhile, the amplitudes
of b waves were enhanced in KN and BA treated groups
(Figures 8Q,R). However, the amplitudes of b wave in MC groups
were not significantly changed compared to the glutamate group
(Figure 8P). Quantitative analysis of the b wave amplitudes is
shown in Figure 8U. These results demonstrated that KN and
BA have underlying protective effects on retinal function after
glutamate treatment.

DISCUSSION

In the current study, we investigated the role of CaMKII
in Pin1-modulated RN induced by glutamate in cultured rat
retinal neurons and in vivo. In our previous study, we reported
that Pin1-modulated RN occurred in cultured retinal neurons
after glutamate injury (Wang et al., 2018a). In this study,
we first demonstrated that glutamate might lead to calcium
overloading mainly through iGluRs activation. Furthermore,
CaMKII activation induced by overloaded calcium plays a
regulatory role in Pin1 activity and subsequent RN. Finally,
by using an animal in vivo model, we also demonstrated the

important role of CaMKII in glutamate-induced RN in rat
retina. These findings indicated the regulatory role of CaMKII
in Pin1 activity and the involvement of the CaMKII-Pin1
pathway in glutamate-mediated excitotoxicity. These results will
provide a potential target to protect neurons from necrosis
in neurodegenerative diseases, such as glaucoma, diabetic
retinopathy, and even CNS diseases.

In our previous study, we found that the Pin1-CAST/calpain2
pathway was involved in glutamate-induced retinal RN (Wang
et al., 2018a). However, the mechanism of Pin1 activation induced
by glutamate has been not fully elucidated. Neuronal responses to
glutamate treatment are characterized by increased intracellular
calcium concentration through GluRs activation (Mendez-Flores
et al., 2016; Madji Hounoum et al., 2018). GluRs are classified
into two main types: iGluRs and mGluRs. IGluRs (NMDAR and
AMPAR/KAR) are ligand-gated ion channels that open upon
the binding of glutamate, leading to the sustained influx of
calcium (Wang and Qin, 2010; Madji Hounoum et al., 2016;
Tiburcio-Felix et al., 2018). Activation of mGluRs, which are
G-protein coupled receptors, leads to release of calcium from
intracellular stores (Wang and Qin, 2010; Madji Hounoum
et al., 2017). Some reports have indicated that all iGluRs are
expressed in the retinal neuron cultures, while NMDARs are
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FIGURE 8 | Necrosis and visual function in retina in vivo. (A,C,E,G,I,K) Nuclei were stained with DAPI (blue). (B,D,F,H,J,L) Retinal necrotic neurons were stained
with PI (red). Nuclei and PI stained cells in GCL as indicated are shown in the merged frame areas (A′,C′,E′,G′,I′,K′). (M,N,O,P,Q,R) Representative fERG results of
groups treated with glutamate and pretreated with different drugs. (S) Statistical analysis of PI stained cells in GCL and INL in retina. (T) The percentage of necrosis
cells were determined by LDH release assay. (U) Statistical analysis of the b wave amplitudes. ∗p < 0.05 vs. CTL group, #p < 0.05 vs. Glu group. Each group was
composed of four animals. Data were analyzed using one-way ANOVA. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ONL, outer nuclear layer. Scale bar = 20 µm in all panels.
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mainly responsible for glutamate induced retinal neurons death
(Otori et al., 1998; Fang et al., 2010). Others have reported that
non-NMDARs (AMPAR/KAR and mGluRs) also play key roles
in glutamate mediated cell death in cultured retinal neurons
(Dhingra and Vardi, 2012; Opere et al., 2018). To uncover
the mechanism of Pin1 activation induced by glutamate, the
distinct GluR subtypes involved in the glutamate-induced, first,
retinal RN should be investigated. In this study, we used several
antagonists to block GluR subtypes. Our aim is not to activate
the NMDARs or AMPARs or mGluRs directly and investigate
their roles in regulated necrosis (RN), but to inhibit two of
them to investigate whether the un-inhibited glutamate receptors
are involved in glutamate-induced RN under some neuronal
diseases, such as glaucoma. So, we didn’t use the agonists to
activate these receptors. While under a neuronal injury model,
we used MK 801, CNQX, and MCPG, which are commonly
used to block the activity of NMDARs, AMPAR/KA receptors
and mGluRs, respectively. MK-801 was reported to be a highly
potent antagonist of NMDA receptors. It could bind to the
assembled helices of the transmembrane domain of NMDAR and
block the channel ion conductance pore from the intracellular
compartment (Berretta and Jones, 1996). Furthermore, MK-801
could significantly reduce glutamate-induced RGC death (Aihara
et al., 2014). CNQX was first reported to be a competitive
antagonist of kainate and quisqualate but not NMDA (Honore
et al., 1988). Subsequent work revealed that CNQX had a high
affinity for AMPARs primarily due to its slow rate of unbinding
(Rosenmund et al., 1998). It has been reported that CNQX could
reversibly block AMPA- and KA-evoked robust voltage responses
in rabbit retinal slices (Zhou and Fain, 1995), decelerating the
progression of RGCs dysfunction (Xiang et al., 2018). Subtypes
of mGluRs share a common structural architecture with a
large extracellular domain preceded by the seven membrane-
spanning domains (Okamoto et al., 1994). mGluR1 and mGluR5
are coupled to the stimulation of the phosphatidylinositol
hydrolysis/calcium signal transduction, whereas the others are
linked to the inhibition of the CAMP cascade (Hayashi et al.,
1994). MCPG has been reported to be a non-specific antagonist
of group I (mGluR1 and mGluR5) and group II receptors
(mGluR2 and mGluR3) (Kohlmeier et al., 2013; Yang et al.,
2015), exhibiting little effect on either the NMDA receptor
or the AMPA/kainate receptor (Jane et al., 1993). Results in
Figure 2 directly demonstrate that iGluRs may be involved in
the glutamate-induced rise of calcium. Furthermore, RT-PCR
results also indicated that several iGluRs, such as NR1, NR2A,
NR3A, GluR1, GluR2, and GluR6 mRNA level were changed
after glutamate injury. NMDA receptor is a heteromeric ligand-
gated ion channel composed of multiple receptor subunits (NR1,
NR2, and NR3A). The NR1 subunit appears to be ubiquitous and
necessary in order to have a functional and calcium-permeable
receptor (Chen et al., 2004). Inclusion of NR3 subunits could
cause a five- to ten-fold decrease in calcium permeability of
traditional NR1/NR2 heteromers (Sasaki et al., 2002; Tong et al.,
2008). Thus, increased NR1 and decreased NR3A levels may
lead to the increased calcium concentration in retinal neuron
cultures after glutamate injury. G1uR2 determines the calcium
permeability of AMPA receptors (Chen et al., 2001; Harvey

et al., 2001). AMPA receptors composed of G1uR1, G1uR3 or
GluR4 (either alone or in combination) have permeability and
bidirectional rectification effects on calcium, while the channel
composed of G1uR2 and other subunits shows an opposite effect
(Gouaux, 2004; Topolnik et al., 2005). Our results also showed
a significant decrease of G1uR2 mRNA along with increased
calcium concentration. In addition, although mRNA levels of
NR1 and GluR1 were changed, the related protein expression
levels remained unchanged, probably due to the short glutamate
exposure time in our observation (Supplementary Figure S1).
In contrast, mGluRs appear not to be significantly related to the
regulation of calcium concentration in our model (Figure 2).
However, we cannot exclude the possibility that part of the
increased calcium could come from mGluRs, since inhibition
of mGluRs partially reduced the fluorescence of the calcium
indicator, although the difference is not significant. The reason
may be that AMPA/KA and NMDA receptors are expressed in
isolated retina cultures aged 3–8 days and are largely responsible
for calcium flux across neuronal membranes (Otori et al., 1998;
Madji Hounoum et al., 2016). Another plausible reason may be
that the expression of mGluRs in the neonatal retina is low, but
greater in adults (Ghosh et al., 1997). Since we used the neuronal
cultures at 7 days, it is possible that the relative stability of calcium
concentration in the MK+ CN group compared with the control
group is partly due to the low expression of mGluRs.

Glutamate is a major physiological neurotransmitter in the
central neuron system, its appropriate level at the synapses is
strictly controlled by glutamate uptake and cycling mechanisms
(Danbolt, 2001). Glutamate transporters in glial cells play a
major role in keeping extracellular glutamate concentration
below neurotoxic levels (Madji Hounoum et al., 2017). Glutamate
transporters could remove glutamate from the extracellular space
by taking glutamate up into neurons and glia cells, it also reported
to be involved in reverse uptake, releasing glutamate into the
extracellular space (Grewer et al., 2008). Under pathological
conditions, the impaired function of glutamate transporters
leads to the existence of a high concentration of glutamate
in the synaptic cleft, ultimately resulting in neuronal death
(Lewerenz and Maher, 2015). In this study, we cannot exclude the
possibility that part of the glutamate effect is in fact related to the
activity of the glutamate transporters since antagonist treatment
could not block all the changes in glutamate-induced calcium
concentration. However, in this study, we used retinal neuron
cultures in which few glial cells exist. Thus, it’s understandable to
presume that the functional roles of glial glutamate transporters
in our neuronal cultures can be neglected.

CaMKII is a kinase that can be regulated by CaM, a
calcium-binding protein (Tatara et al., 2010). The interaction
of Pin1 and CaMKII has been reported (Tatara et al., 2010).
However, the regulatory role of CaMKII in Pin1 has not been
investigated. We would like to know whether intracellular
calcium directly participates in glutamate-induced CaMKII and
Pin1 expression. As observed, the in vitro results showed that
chelation of intracellular calcium with BAPTA-AM had no
statistically significant effect on CaMKII and Pin1 expression
after glutamate treatment. In addition, although the RN in
the BAPTA-AM group was slightly reduced, it was also not
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significant. The plausible explanations for this phenomenon
may be that: (1) loading cultured neurons with BABTA-AM
might cause ER-specific stress, which would trigger abnormal
proteins accumulation (Hofer and Machen, 1993; Pozzo-Miller
et al., 1997); and (2) BAPTA-AM is a fast process with a
half-time for maximal loading of a few minutes (Tymianski
et al., 1997; Paschen et al., 2003). In our study, the change
of calcium concentration lasted up to 1 h. Therefore, it could
be assumed that the effect of calcium on neurons exceeds
the effective function of BAPTA-AM. However, in vivo studies
showed that BAPTA-AM treatment was able to reduce RN in
retinal GCL and INL, and recover the visual function impaired
by glutamate. The reason of different results between in vitro
and in vivo studies may be that loading primary neuronal
cultures with BAPTA-AM can induce neurotoxic effects as
previously reported (Paschen et al., 2003). Another reason
may be that cultured neurons appear to be more sensitive to
excitotoxic injury than other neurons in vivo (Ullian et al.,
2004; Mitra et al., 2013). Therefore, BAPTA-AM application
tends to be sufficient to rescue the neuronal survival and visual
function in vivo.

It has been reported that KN-93 could prevent the activation
of CaMKII (Takeuchi and Yamamoto, 2015; Li J. et al., 2016).

In our next study, we found that inhibition of CaMKII
by KN-93 could reduce the activity of Pin1 and retinal
neuronal RN. In fact, our results were consistent with other
reports that inhibition of CaMKII reduced the activity of
calpain (Menconi et al., 2004; Kong et al., 2017). Pin1 has
been considered as a positive up-regulator of calpain in our
previous research (Cheng et al., 2018; Wang et al., 2018a).
Taking these reports together, it is reasonable to conclude that
CaMKII-Pin1-calpain activation is a key regulatory molecular
pathway responsible for retinal RN induced by glutamate.
In this pathway, Pin1 serves as a connecting link between
CaMKII and calpain (Figure 9). In addition, peptidyl-prolyl
cis/trans isomerase parvulin 17 (Par17) is another subtype of
the PPIases family. It has been reported that Par17 is able to
interact with CaM at the 25-residue elongation of the Par17
N-terminus (Burgardt et al., 2015). Whether Pin1 could directly
interact with CaM, the up-regulator of CaMKII, also needs to
be further investigated. Also, the sites of Pin1 that interact
with CaMKII and/or CaM need to be clarified by further
research. Overall, by using primary retinal neuronal cultures
and the rat model, we obtained novel evidence supporting the
CaMKII mediated Pin1 activation and RN under conditions of
excessive glutamate.

FIGURE 9 | Possible molecular pathway underlying the effect of glutamate in RN of retinal neurons. The role of iGluRs-CaMKII-Pin1-CAST/calpain pathway induced
by excessive glutamate in RN of retinal neurons.
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In conclusion, our results indicated that CaMKII is an
up-regulator of Pin1 and responsible for the RN induced by
glutamate. These results provide further understanding of the
regulatory pathway of RN and a complementary mechanism for
calpain activation mediated RN.
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FIGURE S1 | Expression of NR1 and GluR1 after antagonist and glutamate
treatment. (A) Western blot assay of NR1 and GluR1 protein expression in
glutamate group and iGluRs inhibition group. (B) The statistical analysis of NR1
and GluR1 expression. MK, CN and MC were used at a concentration of 10, 10,
and 50 µM 30 min before 15 min glutamate insult. To ensure consistency of the
results, experiments were repeated three times. Data were analyzed
using one-way ANOVA.
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