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Abstract: Cordycepin (3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris,
has attracted much attention due to its therapeutic potential and biological value. Cordycepin
interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant,
polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the
discovery of novel targets and the development of new drugs to enhance the therapeutic potency and
reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external
drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the
biological application of cordycepin, for example, as a ligand, has been used to uncover molecular
structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing
fungi have yielded significant information related to the biosynthesis of high levels of cordycepin.
Here, we summarized the medicinal targets, biological applications, cytotoxicity, delivery carriers,
stability, and pros/cons of cordycepin in clinical applications, as well as described the metabolic
mechanisms of cordycepin in cordycepin-producing fungi. We posit that new approaches, including
single-cell analysis, have the potential to enhance medicinal potency and unravel all facets of metabolic
mechanisms of cordycepin in Cordyceps militaris.

Keywords: cordycepin; medicinal targets; biological value; metabolic mechanisms

1. Introduction

Cancer, a major threat to public health, is an important cause of death. Recently, the World Health
Organization reported that 18.1 million new cases of cancer and 9.6 million cancer deaths occurred
in 2018 [1]. In China, cancer has been the leading cause of death since 2010 [2]. Notably, cordycepin
(3′-deoxyadenosine [3], COR), discovered in the broth of Cordyceps militaris [4], has received a large
amount of attention due to its enormous therapeutic potential, as well as its effects on intracellular
signal transduction and cell adhesion [5]. COR interferes with many pathological processes via
the inhibition of mRNA polyadenylation [6,7] and the regulation of a variety of targets involved in
various cellular processes, such as anticancer(apoptosis and autophagy induction, leukemic stem cell
(LSC) elimination, cell cycle arrest, and antimetastatic, anti-invasion, and antiproliferation activities),
anti-inflammatory, antioxidant, antipathogenic, insecticidal, antihyperlipidemic, antihepatotoxic,
antifibrotic and neuroprotective activities, skin photoaging protection, skeletal muscle fatigue
repression, protection from ischemia/reperfusion-induced injury and bone protection (Figures 1–4).
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Several potential reasons may account for the multiple bioactivities of COR: (i) Cordycepin triphosphate
(COR-TP) may be initially generated through the phosphorylation of COR [8], which is incorrectly
recognized as ATP binding to targeted enzymes and replaces ATP due to the highly structural similarity
between COR-TP and ATP. Enzymes also erroneously recognize COR as adenosine, which causes
abnormal purine metabolism. (ii) COR and/or COR-TP inhibit targets by replacing ATP binding to
targeted protein kinases with the highly structural similar COR-TP [9] and/or the activation of protein
phosphatases [10]. (iii) COR and/or COR-TP directly activate protein kinases, such as AMPK [11]
potentially because of an increase in the AMP/ATP ratio. (iv) COR and/or COR-TP interrupt mRNA
polyadenylation because of the erroneous recognition of COR-TP as ATP by PolyA polymerase [7].
In addition, COR has the potential to act as a ligand [12] and a RNA elongation inhibitor [13], and it
can specifically inhibit transcription efficiency [14].

Figure 1. Cellular targets of cancer affected by cordycepin via various signal pathways. Note:
A1R: adenosine A1 receptor. A3R: adenosine A3 receptor. GPCR: G protein-coupled receptor. TJA:
tight junction activity. IL: interleukin. SOD: Superoxide Dismutase. NOS:nitric oxide synthase.
CHK1: Checkpoint kinase 1. GPX: Glutathione peroxidase. EGFR: epidermal growth factor receptor.
AVOs: acidic vesicular organelles. P-: phosphorylated. MMPs: matrix metalloproteinases, such as
MMP-2 and MMP-9. AP-1 and NF-κB: transcription factors that bind to the promoter of MMP-9
gene and play an important role in regulating MMP-9 [15]. LC3-II: an autophagosome marker, and
the cytoplasmic form LC3-I (18 kDa) is converted to LC3-II during autophagy [16]. DR3: death
receptor3. TPA: 12-O-tetradecanoylpho-bol-13-acetate. PARP: Poly (adenosine-diphosphate-ribose)
polymerase. HC: histopathology condition. HIF-1α: hypoxia-inducible factor 1α. MDR: multiple
drug resistant. AMPK: adenosine 5′-monophosphate-activated protein kinase. MD: mitochondrial
disfunction. The blue numbers in square brackets represent references associated with in vivo results.
These abbreviations are also used in this paper.
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Figure 2. Cellular targets of tumor affected by cordycepin via various signal pathways. Note:
ROS: reactive oxygen species. C/EBPβ: CCAAT/enhancer binding protein β, which can bind
to BZLF1 promoter and activate the transcription of BZLF1 [17]. MD: mitochondrial disfunction.
These abbreviations are also used in this paper.

Figure 3. Anti-inflammatory and anti-oxidant targets affected by cordycepin via various signal pathways.
Note: SOD: superoxide dismutase. GSH-Px: glutathione peroxidase. MDA: malondialdehyde.
6-OHDA-INT:6-hydroxydopamine-induced neurotoxicity. VC: Vitamin C. VE: Vitamin E. IL-1β:
interleukin-1 beta. iNOS: inducible nitric oxide synthase. PGE2: prostaglandin E2. NO: nitric oxide.
COX-2: cyclo-oxygenase. NF-κB: nuclear factor kappa-B. iNOS: inducible nitric oxide synthase.
IgE: immunoglobulin E. ICAM-1: intercellular cell adhesion molecule-1. HO-1: heme oxygenase-1.
These abbreviations are also used in this paper.
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Figure 4. Other medicinal value and biological applications. Note: COR can also inhibit excitatory
synaptic transmission [18] and have neuroprotective effects [19]. ER-COR has antiplatelet effects [20].
The [α-32P]-COR-TP is used for 3′-end radiolabeled RNA fragments [21].

However, the large-scale production of COR is a significant challenge. Hence, COR serves as an
important marker for the quality control of C. militaris. The COR content of C. militaris is significantly
higher than that of other currently known fungi. The maximum production of COR obtained in
liquid-cultured C. militaris by mutant G81-3 and in the fruiting body of wild C. militaris reached
14.3 g/L [22] and 9.45 mg/g [23], respectively. For the same C. militaris, the COR content in the fruiting
body was significantly higher than that in the mycelia [24]. Notably, the COR biosynthetic mechanism
in C. militaris was completely elucidated [24] through a comparative analysis of the conserved genes
of two phylogenetically distant and COR-producing species, Aspergillus nidulans [25] and C. militaris.
Intriguingly, pentostatin (PTN), which protects COR from deamination by adenosine deaminase (ADA),
was first discovered in the fruiting body of C. militaris (FB-CM) rather than in the mycelia [24].

Although the medicinal potential of COR [26–28], the COR analogs in mushrooms [29] and
the pharmacological effect of COR on male reproduction [30] have been extensively reviewed, little
attention has been paid to the medicinal targets, cytotoxicity, delivery carriers, stability, and biological
applications of COR, the metabolic mechanisms in COR-producing fungi, and the pros/cons of COR in
clinical applications, and the clinical potential of the external use of COR. In fact, these aspects are
thought to be significant issues for the medicinal applications of COR. In addition, the mechanisms of
disease treatments with chemotherapeutic agents, such as COR, are sophisticated. It is essential to
improve the efficiency of chemotherapeutics agents, to design analogs suitable for clinical treatment,
and to develop novel therapeutic strategies via in-depth understanding of COR. Therefore, this review
briefly summarizes these aspects. In addition, we discuss new approaches that will greatly contribute
to uncovering the metabolic mechanisms of all facets of COR in C. militaris.

2. Anticancer Activity in Similar Signaling Pathways

2.1. Induction of Apoptosis and Promotion of Autophagy

Apoptosis, a type of programmed cell death (type I cell death), is characterized by marked changes
inmorphology and other biochemical markers, that involves the activation of caspases via extrinsic (cell



Molecules 2019, 24, 2231 5 of 26

membrane receptors), intrinsic mitochondrial-related and endoplasmic reticulum (ER) stress-related
pathways. COR suppresses the growth of cancer cells by blocking formation of the polyA tail on mRNA
at the transcriptional level and affects various targets in different signaling pathways [7] (Figure 1
and Table S1). Studies have shown that COR induces the apoptosis of cancer cells via cell membrane
receptors [31], mitochondria [32] and PI3K/Akt [33] signal pathways. Mechanistically, COR not only
activates death receptor 3(DR3) [34], adenosine G protein-coupled receptors (GPCRs) [31], tumor
suppressor p53 [35] and pro-apoptotic proteins (Bax and caspases) [32] but also inhibits anti-apoptotic
proteins (BCL-2 and BCL-xL) [36] and PI3K/Akt [33].

COR induces the apoptosis of cancer cells via extrinsic pathways, including the activation
of DR3/caspase-8/caspase-1 pathway in the in vitro colonic cancer cell line HT-29 [34] and the
stimulation of adenosine A1 receptor (A1R)/adenosine A3 receptor (A3R)/intracellular calcium
(IC)/calpain/caspase7/poly adenosine-diphosphate-ribose polymerase (PARP) pathway in the in vitro
thyroid cancer cell line CGTH W-2 [31], and by increasing the level of tumor necrosis factor-α (TNF-α)
bound to tumor necrosis factor receptor (TNFR) in hepatocellular cancermice in vivo [37]. Notably,
COR stimulates A1R and A3R to a greater extent than it stimulates the adenosine A2A receptor (A2AR)
and adenosine A2B receptor (A2BR) [31].

In addition, COR stimulates apoptosis of cancer cells through intrinsic pathways, such as
mitochondrial, PI3K/Akt and autophagy pathways. For the mitochondrial pathway, COR not
only affects the proapoptotic/anti-apoptotic proteins in mitochondria but also causes mitochondrial
dysfunction. Previous work reported that COR induces the apoptosis of breast cancer cells in vitro
via the Bax/cytochrome c(cyt c)/caspases-9/caspases-3/PARP pathway in the MDA-MB-231 cell
line [32]. Notably, COR stimulates mitochondrial dysfunction by modulating the intracellular level of
gaseous signaling molecules, such as increasing reactive oxygen species (ROS) and decreasing nitric
oxide(NO). Mitochondrial dysfunction induces the release of Bax and Cyt c from the mitochondria
to the cytoplasm and activates a downstream pathway that includes caspases. Previous studies
demonstrated that COR induces the apoptosis of cancer cells by enhancing intracellular ROS via the
ROS/caspase-8/caspase-9/caspase-3/caspase-5/caspase-7 pathway in human leukemia cell lines (U937
and THP-1) in vitro [38] and via an antioxidant protein-mediated pathway (GPX/superoxide dismutase
(SOD)/Catalase/ROS/Bax/BCL-2/caspase-9/caspase-3) in brain cancer cell lines (SH-SY5Y and U-251)
in vitro [36]. Nevertheless, COR decreases ROS levels in the mononuclear cells of peripheral blood
samples from both healthy subjects and subjects with Kawasaki disease [39]. This finding suggests
that COR exhibits contrasting effects under different conditions. In addition, COR induced apoptosis
in vitro in the human lung cancer cell line A549 by inhibiting the intracellular NO via the nitric
oxide synthase (NOS)/NO/EKR/GSK-3β/Slug/Bax /caspase-3/PARP pathway [40]. Furthermore, COR
stimulates apoptosis by inhibiting the PI3K/Akt pathway (PI3K/Akt/hTERT/telomerase) inleukemia
cell line (U937 and THP-1) in vitro [33] and induces autophagy (type II cell death) in the breast cancer
cell line MCF-7 in vitro [32].

2.2. Cell Cycle Arrest

The cell cycle is regulated by cyclins, cyclin-dependent kinases (CDKs) and cyclin-dependent
kinase inhibitors (CDKIs). The complex of a cyclin and the corresponding CDK, which is inhibited by
CDKIs, arrests the cell cycle. Previous research demonstrated that COR promotes cancer cell cycle
arrest at certain cell cycle phases by inhibiting cyclins (cyclins D1 [41,42], E [42] and B1 [43]), repressing
CDKs(cdc2) [43] and inducing CDKIs (p21 and p27) [42] (Figure 1 and Table S1). Additionally,
previous work demonstrated that COR arrests the cancer cell cycle at the G1 phase in vitro via the
PI3K/Akt pathway (Akt/GSK-3b/β-catenin/cyclinD1) in the leukemia cell line U937 [41] and the CDKIs
(p21/p27)/Cyclin(D1 and E) pathway in the leukemia cell line BCRC60176 [42]. In addition, COR
promotes cancer cycle arrest at the G2/M phase via the checkpoint kinase 1 (CHK1)/cylinB1-cdc2 complex
pathway in the cervical cancer cell line (HeLa) in vitro [43]. Notably, COR induces cell cycle arrest
at the G0/G1 phase in in vitro lung cancer cell line H1975 via decreasing the level of phosphorylated
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epidermal growth factor receptor (EGFR), subsequently causing a decrease in phosphorylated AKT
and phosphorylated ERK1/2. COR binds to the tyrosine kinase domain of EGFR and interferes with
ATP binding to prevent EGFR phosphorylation [9]. Therefore, COR and its derivatives, as novel EGFR
inhibitors, have the potential for further medicinal applications.

2.3. Suppression of Metastasis, Invasion, Proliferation and Mesenchymal Stem Cells

Cancer, a type of malignant tumor, is formed from benign tumors through a series of processes
that involve embryonic cells, mesenchymal stem cells, fibroblasts, fibrocytes and malignant tumor
cells. In contrast to benign tumors, cancer is characterized by rapid progression, including metastasis,
invasion and proliferation. The malignant properties of tumors are not only controlled by cancer cells
but also driven by microenvironment of the tumor cells [44], including a variety of nonmalignant
cells (macrophages, fibroblasts, inflammatory cells and mesenchymal stem cells) [44], the paracrine
signaling exchange of cytokines [45], cell adhesion factors (β-catenin and N-cadherin) [46], growth
factors [45], tumor cell release factors [47] and transforming growth factor-beta (TGF-β) [48].

As shown in Figure 1 and Table S1, Previous studies demonstrated that COR represses the
metastasis of glioblastoma cancer cells via the inhibition of the integrin β1 receptor pathway
(integrin β1 receptor/FAK/paxillin/Akt) by lysosomal degradation in in vitro cell lines (ANM, U87MG
and LN229) in vitro [10]. Noteworthily, COR can activate protein phosphatases to inhibit targets
(integrin β1 receptor, FAK, paxillin and Akt) [10]. In addition, COR inhibits migration and
invasion via MMP-mediated pathways in vitro, for example, COR suppressed the AKT pathway
(AKT/MMP-9/MMP-2) in the prostate cancer cell line LNCaP [49], repression of MMP-9/MMP-2 in
in vitro lung cancer cell line CL1-0 [50] and inhibited the AP-1 pathway (TPA/AP-1/MMP-9) in the breast
cancer cell line MCF-7 [51]. In addition, COR has been demonstrated to repress epithelial-mesenchymal
transition via the upregulation of E-cadherin and downregulation of N-cadherinin in vivo oral
cancer-bearing mice [52].

In addition, as shown in Figure 1 and Table S1, COR inhibits proliferation by activating the
adenosine 5′-mono-phosphate-activated protein kinase (AMPK) pathway (AMPK/mTORC1/MDR
/HIF-1α) in vitro in the gallbladder cancer cell line GBC-SD [11], by inducing the p38 MAPK pathway
(p38 MAPK/ERK) in vitro in the renal cancer cell line 786-O [53], and by inactivating tyrosinases in vitro
in the lung cancer cell lines (A549 and Caalu-3) [54]. Notably, AMPK is generally activated in response
to a high adenosine 5′-monophosphate AMP/ATP ratio [55]. It is speculated that COR may cause an
increase in the AMP/ATP ratio, which induces AMPK. The speculation requires further investigation.
Moreover, COR inhibits the progression of leukemia by inhibiting leukemic stem cells (LSCs) and
suppressing leukemia-stromal interactions (LSIs). Both LSCs and LSIs can develop resistance to
chemotherapeutics. Mechanistically, COR induces apoptosis of leukemia cells via the autocrine
signaling pathway in in vitro cell lines (U937/K562) by decreasing cell adhesion factors (β-catenin and
N-cadherin) and via the paracrine signaling pathway in vivo in the U937/K562-inoculated mice by
inducing Dickkopf-1 (DKK1, a wnt/β-catenin inhibitor [56]), and restraining the NFκB pathway [46].
The anticancer properties of COR in other in vivo studies are shown in Figure 1/Table S1 and are
labelled in the square brackets using the blue numbers associated with the corresponding references.

3. Antitumor Activity

3.1. Apoptosis Inhibition, mTOR Repression and Cell Cycle Arrest

The inhibition effect of COR on benign tumor cells is less pronounced than that on highly
aggressive cancer cells [57]. COR does not impact healthy and noncancerous cells [54]. COR induces
apoptosis of tumor cells through mitochondria (caspases) and the mTOR and autophagy pathways, as
well as by inhibiting ER stress-induced injury (Figure 2 and Table S2). COR promotes the apoptosis
of tumor cells through various pathways in vitro, for example, COR represses the transcription
of MET in the multiple myeloma cell line MM.1S [58], activates the ROS-mediated mitochondria
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pathway (ROS/caspase-8/caspase-3/PARP) and induces autophagy in the Leydig tumor cell line MA-10
in a dose-dependent manner [59] and stimulates p53 signaling (A2AR/p53/caspase-7/PARP) in the
glioma cell line C6 (malignant tumor cell) [60]. In addition, COR can bidirectionally regulate mTOR
signaling under different conditions. The literature indicates that COR represses tumor growth in vitro
by inhibiting mTOR pathway (AKT/mTOR) in the Leydig tumor cell line MA-10 [59]; however, in
the healthy renal cell line NRK-52E and in other cell types, COR induces the mTORC1 pathway
(elF2α/mTORC1/p65 of NF-κB), which then sensitizes cells to TNF-α-induced apoptosis [61]. Similar to
previous work [61], COR was found to suppress ER stress-induced apoptosis in vitro in the NRK-52E
cell line [62]. In other words, COR kills TNF-α-treated NRK-52E cells and has a protective effect on
NRK-52E cells against ER stress-induced apoptosis, suggesting that COR bidirectionally regulates
apoptosis. In addition, COR promotes the cell arrest of tumor cells at the G2/M phase in vitro by
inducing TGFβ2-mediated extrinsic pathway (TGFβ2/p38/p53/p21) in the Leydig tumor cell line
MA-10 [59].

3.2. Suppression of Tumor Growth via the GPCR/PKC Signaling Pathway

MAPK cascades are important stress-responsive signaling pathways that govern a wide variety
of functions implicated in tumor growth. MAPK signaling pathways consist of three components:
MAPKs, MAPK kinases and MAPK kinase kinases. GPCRs, including adenosine receptors, can activate
the MAPK pathway [63]. Phospholipase C (PLC) is induced by GPCR and stimulates protein kinase C
(PKC) to activate the downstream event. COR inhibits tumor cell growth through MAPK pathways
(Figure 2 and Table S2). COR significantly promotes steroidogenesis via the PKC/JNK/ERK1/2 pathway
rather than via the PKA/PI3K/p38 MAPK pathway in vitro in the Leydig tumor cell line MA-10 [64]. In
addition, COR inhibits tumor growth via the PKC/p38 MAPK/transcription factor (C/EBPβ) pathway
in vivo in Epstein-Barr virus-infected mice [17].

4. Anti-Inflammatory and Anti-Oxidant Activities in Different Cell Lines

4.1. Anti-Inflammatory Activity

COR has been demonstrated to exhibit anti-inflammatory activity in different cell lines [39,65,66].
Mechanistically, this effect is ascribed to the protection of IκB-α from degradation, which inhibits
NF-κB, and to the inactivation of MAPK [67]. The effect of COR on NF-κB, AMPK and MAPK directly
or indirectly cause the downregulation of proinflammatory and inflammatory factors (PGE2 [65,66],
COX-2 [65,66], Inos [66], IL-1β [65,66], and TNF-α [65]) and the upregulation of anti-inflammatory
factors (interleukin proteins) [68] (Figure 3 and Table S3). COR exhibits anti-inflammatory properties
via various signaling pathways in vitro in different cell lines. In RAW 264.7 cell lines, COR inhibits
inflammation in vitro via the activation of the LKB1 pathway (LKB1/AMPK/NF-κB and ROS) during
the treatment of Kawasaki disease [39] and represses lipopolysaccharide (LPS)-induced inflammation
by inhibiting TNF-α and PGE2 [65]. In IL-1β-induced human osteoarthritis chondrocytes in vitro,
COR exhibits anti-inflammatory effect via the inhibition of the p65 NF-κB pathway (IκB-α/p65
NF-κB/COX-2/PGE2/iNOS/NO/MMP-13 /IL-6) [66]. Moreover, the anti-inflammatory properties
of COR have been observed in the HMC-1 cell line, where COR inhibits inflammatory factors
(IL-13/IL-6/TNF-α/IL-1β) in atopic dermatitis treatment [69], and in vitro in rat spinal cord dorsal root
ganglia neurons, where COR inhibits caspase-9 and MMP-9 in local anesthesia-induced spinal cord
neurotoxicity [70].

4.2. Anti-Oxidant Activity

Endogenous enzymes that scavenge free radical and act as antioxidants become dysfunctional with
age, which causes the aberrant accumulation of ROS. Previous work demonstrated that the anti-oxidant
activity of COR and adenosine from water extracts of C. militaris is limited [71,72]. Mechanistically,
as shown in Figure 3 and Table S3, COR exhibits anti-oxidant activity via a decrease in intracellular



Molecules 2019, 24, 2231 8 of 26

ROS by regulating antioxidant and oxidant enzymes and antioxidants, including decreasing the level
of NADPH oxidase in vitro in the tubulointerstitial fibrosiscell line HK2 [73], decreasing the level of
malondialdehyde (MDA) and activating SOD and glutathione peroxidase (GSH-Px) to protect cell line
PC12 against 6-hydroxydopamine-induced neurotoxicity in in vitro studies of Parkinson’s disease [74].
In addition, COR decreases ROS in vivo in radical-induced oxidative damaged rats [75].

The anti-inflammatory and anti-oxidant properties of COR in other in vitro and in vivo studies
are shown in Figure 3 and Table S3.

5. Other Medicinal Values and Biological Applications

5.1. Insecticidal Activity and Inhibition of the Growth of Pathogenic Microorganisms

COR, which is very similar to adenosine but lacks a 3′-hydroxyl group, can be erroneously
identified and replaces nucleosides and interrupts the polyadenylation of mRNA, causing dysfunction
and inhibiting the growth of pests and pathogenic microorganisms (Figure 4 and Table S4). Previous
work demonstrated that COR inhibited the growth of pathogenic microorganisms, including
Bacillus subtilis [76], adenovirus [77,78], murine leukovirus [79], murine sarcoma virus [80], Newcastle
disease virus [81], human poliovirus [82], tobacco mosaic virus [83], vaccinia virus [84], hepatitis C
virus [85], Clostridium paraputrificum and Clostridium perfringens [86] and Candida [87]. The effect of
COR on human immunodeficiency virus (HIV) is not well understood, and additional investigations
are needed to tackle this issue. Notably, the efficacy of a mosaic adenovirus serotype 26-based HIV-1
vaccine that exhibits excellent immune responses, safety and tolerability in humans and rhesus monkeys
are being evaluated in phase 2b clinical trials in sub-Saharan Africa [88].

In addition, COR exhibits insecticidal effects (Figure 4 and Table S5). COR can induce cell
death in pests, including Plutella xylostella [89], Trypanosoma brucei [90] and Trypanosoma evansi [91].
The combination of COR (2 mg/kg) and PTN (0.2 mg/kg) has significant therapeutic potency and
decreases toxicity in T. evansi-infected mice [92]. Notably, COR induces programmed cell death rather
than repression of chitin synthesis in vivo in larvicidal P. xylostella [89]. In addition, COR exhibits
antifungal activity, such as against different Candida isolates [87]. Considering that chitin is the major
component of the fungal cell wall, a combination of COR and chitin synthase inhibitors is a promising
strategy in insecticidal and antifungal applications.

5.2. Inhibition of External Factor-Induced Injury

External factors often result in a series of secondary pathological effects and/or alter the function
of healthy tissues and organs, causing longterm disability or death. Studies have revealed that COR
enhances injury repair via several pathways [93,94].

Skin aging is a degenerative physiological process induced by both internal and external factors [93].
Previous work demonstrated that COR suppresses skin photoaging [95], inhibits fibrosis and exhibits
antioxidant properties [94] (Figure 4 and Table S5). In previous skin photoaging studies, COR represses
skin photoaging in vitro by blocking UVB-induced NF-κB activation, and the NF-κB inactivation
subsequently downregulates MMP-1 and MMP-3 expressions. The inhibition of MMP is a promising
strategy in skin cancer and photoaging therapy [95]. Moreover, COR represses lung fibrosis by
increasing E-cadherin expression and decreasing vimentin levels [96] and inhibits kidney fibrosis
by inactivating targets (CAGA box, BRE and Smad1/2/3) and stimulating eIF2α [97]. In addition,
COR plays a significant role in suppressing atopic dermatitis [69]. Therefore, COR has cosmeceutical
potential with additional medicinal applications.

Trauma induces many physiological changes that subsequently cause complications, such as
ischemia injury. As shown in Figure 4 and Table S5, previous work indicated that COR inhibits ischemic
injury in vivo in myocardial infarction [98] and cerebral ischemia injury [99]. Notably, remote ischemic
preconditioning can also protect target tissues/organs from injury and has notable developmental
potential because of its clinical safety, simplicity, and acceptance. Pre-treating target tissues/organs
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with COR coupled with remote ischemic preconditioning is considered to be an efficient and promising
strategy to overcome ischemic injury. In addition, trauma may also cause physiological complications,
including pathogenic microorganism infection, physiological changes in local blood vessels, and
provisional or chronic pain. COR can markedly inhibit growth of specific pathogenic microorganisms,
restrain these physiological changes and repress neuropathic pain due to its multiple bioactivities.
COR suppresses the proliferation of vascular smooth muscle exclusively [100]. In addition, COR can
markedly suppress hyperactivity of nerve tissue by interrupting the L-type Ca2+ channel-mediated
transduction of compound nerve action [101], blunting the peripheral nociceptors [102] and significantly
suppress chronic pain by decreasing the level of PEG2 [103]. In addition, COR markedly decreases
skeletal muscle fatigue-induced muscle strain [104]. These results suggest that COR has the potential to
be used as an external drug for trauma and muscle strain as well as for remote ischemic preconditioning.

5.3. Inhibition of Internal Factor-Induced Injury

Compared with external factors, internal factors, which include ER stress, over-adipogenesis
in tissues/organs, alcohol-induced dysfunction of tissues/organs and neurological disorders, may
cause several serious pathological changes, such as ER stress-induced injury, hepatotoxicity and
neurodegeneration. As shown in Figure 4 and Table S5, COR protects against ER stress-induced injury
by inducing eIF2α and inhibiting GADD34 [62]. In addition, COR suppresses adipogenesis-induced
and alcohol-induced hepatotoxicity [105,106], inhibits hyperlipidemia by activating AMPK [107,108]
and inhibits depression by promoting GluR1 expression [109].

5.4. Promotion of Chondrogenesis and Inhibition of Bone Loss

Currently, osteoporosis represents a marked public health challenge. Previous work revealed that
COR protects against osteoporosis as a result of increased bone generation and inhibited bone loss
(Figure 4 and Table S5). Mechanistically, COR alleviates osteonecrosis via a decrease in ROS [110],
protects the femoral head from alcohol-induced injury by activating β-catenin and Runx2 [111] and
induces chondrogenesis through the stimulation of PI3K and MMP-13 [112].

5.5. Biological Applications of COR and COR-TP

COR structurally resembles adenosine, except that COR lacks a 3′ hydroxyl group, which
significantly enhances the ability of COR to form transition metal complexes in the form of di-, tri-
and tetra-dentate ligands [12]. COR and COR-TP have many biological applications (Figure 4 and
Table S5). COR has been used as a ligand in molecular replacement experiments that are used to
identify the molecular structure of SAHase in Bradyrhizobium elkanii [113]. Furthermore, since COR
inhibits the PolyA formation of mRNA, the presence of COR can cause premature transcription
termination. Previous research used COR as an RNA elongation inhibitor, and bromine in BrUTP was
used to elucidate the structure of active rRNA gene in the nucleolus. Pretreated with COR, premature
rRNA elongation in isolated nucleoli incubated with BrUTP was terminated. The release of inhibition
enabled the immediate elongation, and the starting sites of BrUTP incorporation were identified by
immunogold labelling detection method [13]. Therefore, COR efficiently inhibits premature rRNA
elongation and can be used to control the transcriptional reaction. In addition, COR-TP, which exhibits
a high level of structural similarity to ATP, may be derived from COR before directly blocking RNA
synthesis in mutant Saccharomyces cerevisiae [8], and COR interferes with the efficiency of mRNA
polyadenylation rather than terminating mRNA elongation [6]. Mechanistically, the structure of human
poly(A) polymeraseγ, which catalyzes the polyadenylation of mRNA, is identified using COR-TP
(chain terminator) and Ca2+ (divalent cation) which bind to the active site of poly(A) polymeraseγ [114].
The binding of COR-TP and Ca2+ to poly(A) polymeraseγ may contribute to illuminating the reasons
of COR-induced eryptosis in a Ca2+-dependent manner [115] and the COR-TP-mediated interruption
of polyadenylation [58]. Hence, COR and COR-TP are considered specific inhibitors of RNA synthesis
in various applications, such as the use of COR to investigate of the amounts of rhythmic RNAs [116].
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6. Pros and Cons of COR in Clinical Applications

6.1. Pros of COR in Clinical Applications

COR exerts curative effects, including significant(+++), less pronounced(++), slight(+) and no
curative potency(-), on different types of diseases by affecting many molecular targets involved in
various cellular signaling processes. A number of the advantages of COR in clinical applications are
shown in Table 1.

Table 1. Pros of COR in clinical applications.

Potential Applications COR Actions

Specific inhibitor of mRNA
polyadenylation [7,117] (+++) Inhibition of PolyA formation of mRNA.

Anticancer activity(+++)

Inhibition of leukemia [7,33,35,38,41,42,46,118–120], thyroid cancer [31], breast
cancer [32,51,57], lung cancer [9,40,50,54,121], prostate cancer [49,122], hepatocellular
cancer [37,123,124], colonic cancer [34], gallbladder cancer [11,125], renal cancer [53], cervical
cancer [43], glioblastoma cancer [10], oral cancer [52], brain cancer [36] and glioma [60].

Antitumor activity(++) Inhibition of multiple myeloma [58], renal tumor [61], leydig tumor [59,64] and EBV-infected
tumor growth-infected tumor growth [17].

Anti-inflammatory
activity(+++)

Inhibition of human osteoarthritis [66], Kawasaki disease [39], lipopolysaccharide
(LPS)-induced inflammation [65,126], asthma [67], intervertebral disc degeneration-induced
inflammation [127], traumatic brain injury-induced inflammation [68], airway
inflammation [128], spinal cord injury-induced inflammation [129], atopic dermatitis [69], local
anesthesia (lidocaine) induced spinal cord neurotoxicity [70] and acute lung injury-induced
inflammation [130].

Anti-oxidant activity(+) Inhibition of radical-induced oxidative damage [75], tubulointerstitial fibrosis [73] and
Parkinson’s disease [74].

Pathogen growth inhibition

Inhibition of Bacillus subtilis(+++) [76], adenovirus(++) [77,78], murine leukovirus(++) [79],
murine sarcoma virus(+++) [80], Newcastle disease virus(+++) [81], human poliovirus
(+++) [82], tobacco mosaic virus(+++) [83], vaccinia virus(+++) [84], Hepatitis C virus by
terminating PolyA formation of D(+) RNA(+++) [85], Clostridium paraputrificum(+++) [86],
Clostridium perfringens(+++) [86] and Candida(++) [87].

Other medicinal potential
Induction of cell death of Plutella xylostella(++) [89–92], chondrogenesis(++) [112] and insulin
sensitivity(+++) [107].

Inhibition of skin photoaging(+++) [95], hyperlipidemia(++) [107,108], endoplasmic
reticulum-induced injury(+++) [62], fibrosis(++) [96,97], proliferation of vascular smooth
muscle(++) [100], adipogenesis-induced hepatotoxicity(+++) [105], pain(+++) [101–103,131],
depressant(+++) [109], hypoxia-induced neuronal injuries(++) [132], myocardial
infarction(+++) [98], cerebral ischemia injury(+++) [99], skeletal muscle fatigue(+++) [104],
bone loss(+++) [110], hyperuricemia(+++) [133].

Simple structure, but high
potency

Derivatives of COR are easy to design as a result of the simple structure of COR. Previous
work demonstrated that COR exhibits higher potency than zhankuic acid A, adenosine [124]
and N(6)-(2-hydroxyethyl)adenosine [65].

Ligand
COR and COR-TP can be used as ligands in the molecular replacement experiments that solve
the molecular structures of SAHase in B. elkanii [113] and human Poly(A) polymeraseγ [114],
respectively.

RNA elongation inhibitor COR was used as an RNA elongation inhibitor and bromine in BrUTP was used to elucidate
the structure of active rRNA genes in the nucleolus [13].

Multiple targets recognized
by COR

COR can recognize many medicinal targets. In addition, COR can inhibit PolyA formation,
activates protein kinases [11] and stimulates protein phosphatases [10].

6.2. Cons of COR in Clinical Applications

(a) Possible toxicity to healthy cells: COR is toxic to malignant cancer cells [57] and nontoxic to
healthy cells [54,134]. However, previous have also stated that COR exhibits toxicity towards
healthy erythrocytes [115] and impairs healthy organs (liver, and kidney) in vivo in mice [91].

(b) Unfavorable pharmacokinetics: Since COR quickly loses its activity due to in vivo ADA
and stomach acid conditions [24], COR has a short half-life and is rapidly eliminated [135].
The resistance of ADA to COR represents a significant issue because ADA can deaminize the
adenosine analog COR.
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(c) Low solubility in water: The solubility of COR plays a vital role in drug storage and efficient
therapeutic efficiency. The low solubility of COR in water causes low chemical stability, poor oral
bioavailability and low cellular uptake. Previous work demonstrated that phosphate-buffered
saline (PBS, pH 4.0) is a suitable solvent for COR in intravenous and oral treatments at low
doses. Propylene glycol (PPG) is more applicable than PBS at pH 4.0 as a COR solvent for oral
treatments [136].

(d) Complex mechanisms of action: COR inhibits and/or induces multiple medicinal targets in a
dose-dependent, condition-dependent and nonspecific manner: Different concentrations of COR
exhibit diverse effects on MA-10 mouse Leydig tumor cells (MLTCs). A low concentration of
COR activates the caspase-3/caspase-6/caspase-7/caspase-8/PARP pathway in MMLTCs, while
a high dose of COR markedly increases the levels of p-AKT and p-mTOR and stimulates only
caspase-3 rather than caspase-6/caspase-7/caspase-8 [59]. In addition, since COR is less reactive to
PARP than to a specific inhibitor of PARP, COR is considered to exhibit PARP-inhibitory activity
rather than specifically inhibit PARP [57]. In addition, COR exerts bidirectional regulatory activity
under disparate stress-induced conditions [61,62] and in different cell types [59,61].

(e) Drug resistance: Multidrug resistance, one of the major obstacles, markedly decreases the curative
potency of anticancer agents and the treatment of other diseases.

(f) Clinical safety and potency: The safety and efficacy of COR as a TdT-positive leukemia treatment
is currently being evaluated in phase II clinical trials [137]. Currently, the clinical application of
COR in the treatment of TdT-positive leukemia is not permitted.

6.3. Medicinal Strategies for Promoting COR Efficiency and Safety

(a) Inhibition of deamination by ADA. Three strategies have been used to approach this problem.
(i) combined use of COR and ADA inhibitor; (ii) natural and designed ADA-resistant derivatives
of COR; and (iii) nanocarrier for ADA-resistance. In strategy i, the combination of COR and
an ADA inhibitor markedly improves the stability of COR. Efficient ADA inhibitors, such as
actinomycin D [116], erythro-9-(2-hydroxy-3-nonyl)-adenine [135] and PTN [24], significantly
enhance the bioavailability of COR. In strategy ii, multiple natural derivatives of COR in
mushrooms [29] and their therapeutic value [138] have been extensively reviewed. In addition,
designed ADA-resistant derivatives of COR can overcome treatment failure, such as the
high bioavailability pro-cordycepin(N-acyloctanoylcordycepin), which is 4(time of maximum
concentration)/30(maximum concentration)/68(area under concentration) times higher than that
of COR [139], and ADA-resistant 2-fluoro-3′-deoxyadenosine has similar cytotoxicity (IC50) values
of 2.44 ± 0.69 µM (this compound alone) and 2.13 ± 0.87 µM (this compound co-incubated with
ADA inhibitor PTN) while COR has markedly different IC50 values of 0.10 ± 0.03 µM(COR
co-existing with PTN) and over 100 µM (COR alone) on MOLT4 cells in vitro [140]. Interestingly,
an efficient and eco-friendly biotransformation system for generating 5′-O-acetylcordycepin at
the 25-g scale and a 96.2% isolated yield in solvent 2-methyltetrahydrofuran was developed,
and Novozym 435 (an immobilized Candida antarctica lipase B) used in this system retains 63%
of its original activity after 7 recycling batches [141]. In strategy iii, a nanocarrier composed of
layered double hydroxides was developed to prevent COR from deamination by ADA, such as
[Mg–Al–cordycepin] nanohybrids. At the same concentration, this nanohybrid inhibit the growth
of U937 cells at a rate that is 3.185 times higher than that of COR [142].

(b) Bypassing gastric acid conditions. The bioactivity of COR quickly decreases under gastric
acid conditions. Hence, COR carriers, including gelatin type A nanoparticles [134] and
transferrin-conjugated liposomes [143] have been developed to approach this problem.

(c) Decreasein toxicity. Several potential strategies are available to decrease the toxicity of COR:
(i) low dose of treatment; (ii) natural and designed derivates; (iii) COR carriers for region-targeted
treatment and the specific accumulation of COR. In strategy i, an appropriate dose of COR should
be selected. In strategy ii, few studies have discovered and designed novel derivatives of COR,
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such as designed N-octanoylcordycepin which exhibits lower metabolic velocity and higher
bioavailability than COR [139]. In strategy iii, appropriate region-targeted drug carriers, such as
transferrin-conjugated liposomes for COR delivery to liver cancer cells [143] and gelatin type A
nanoparticle for COR delivery to lung cancer cells [134], increase the specific accumulation of
COR at the desired region, decrease the total dose of COR and reduce unintended extravasation
into healthy regions.

(d) Overcoming drug resistance. Drug resistance presents a serious challenge when diseased cells
develop resistance to COR over time through various mechanisms that markedly reduce the
curative potency of COR. Previous work uncovered several mechanisms of novel drug resistance,
such as extracellular vesicles that mediate drug resistance due to direct exportation [144], cytotoxic
drugs sequestration [145], and decreased effective concentration of the drug. COR resistance can
be promoted through extracellular vesicle-mediated pathways. In addition, the combination of
COR and other agents can efficiently overcome drug resistance. Water or ethanol extract rich in
COR of fruiting bodies and/or mycelium of C. militaris (ER-COR) is also a potential strategy to
conquer drug resistance.

(e) The low cost and high potency of ER-COR. The proliferation of renal carcinoma cells is more
efficiently suppressed by the ER-COR from FB-CM than the ER-COR from mycelia [119]; moreover,
ER-COR stimulated apoptosis more effectively than COR alone in vitro in human leukemia
cells [53]. These effects may also be due to other components of FB-CM, such as PTN [24] and
adenosine. In addition, ER-COR can strengthen immunity by increasing the level of cytokines
(IL-2/IFN-γ/TNF-α) in vitro in splenocytes and cytokines (IL-2/IFN-γ/TNF-α/IL-10) in vivo in
immunosuppressed mice [146]. Nevertheless, the bioactive components of ER-COR are distinct
due to their recognition of different targets. In vitro studies of human hepatocellular carcinoma
cells revealed that the inhibitory effects of COR on ERp57 are more efficient than those of zhankuic
acid A and adenosine, while the inhibition of PGK-1 mediated by COR is less pronounced than
that mediated by zhankuic acid A and adenosine [124].

7. Metabolic Mechanisms of COR in COR-Producing Fungi

7.1. Scientific Name of the Caterpillar Fungus Called DongChongXiaCao in Chinese

The teleomorph and anamorph of DongChongXiaCao have been scientifically named according
to the rule “One Fungus=One Name” [147]. Although the teleomorph of DongChongXiaCao
was previously named Sphaeria sinensis Berk. [148] and Cordyceps sinensis (Berk.) Sacc. [149,150],
Ophiocordyceps sinensis is the modern taxonomic name for DongChongXiaCao [151]. This fungus is found
only on the Qinghai-Tibet Plateau of China [152]. Although approximately twenty names have been used
in the past [153], Hirsutella sinensis is the scientific name of the anamorph of DongChongXiaCao [154].

7.2. COR-Producing Fungi

Cordyceps and Ophiocordyceps are the primary COR-producing fungi (Table 2). The C. militaris
fungus produces a higher level of COR than other fungi. Mutant G81-3 [22] and wild CICC 14014 [155]
strains of C. militaris produced a maximum of 14,300 and 7350 µg/mL COR, which would be efficient
for industrial applications. Notably, the total amino acid content of the mycelia of O. sinensis, which
does not contain detectable levels of COR, exceeds that of the FB-CM. The COR content in the
FB-CM reached 1.743 mg/g, while no COR [156] or trace amounts of COR [157] were detected in the
fruiting body of O. sinensis. In addition, the fruiting bodies of both C. sinensis and Ophiocordyceps
xuefengensis, which are very similar [158], produce trace amounts of COR [159,160]. Intriguingly,
previous work has emphasized that massive amounts of COR is produced during the development
of FB-CM but not during the development of the mycelia [24]. Therefore, a comparative analysis of
similar groups (Cordyceps vs Ophiocordyceps) or the same fungus at different development phases would
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contribute to the elucidation of the key factors involved in COR metabolic pathways(biosynthesis and
cellular detoxification).

Table 2. COR production of different strains of Cordyceps and Ophiocordyceps from 2007 to 2018.

Strain Strain ID Yield Mesurement Strain Source References
CM (W)NBRC 9787 2500 AL D NITE, Japan [161]
CM (M)G81-3 8570 AL D UF, Japan [162]
CM (W)- 2.276 BS E UM-SAR, China [163]
CM (M)G81-3 8600 AL D UF, Japan [164]
CC (W)- 1.398 BS E SNJM-HB, China [165]
CM (W)- 1.743 BS E FNS and IE-UHF [156]
CM (W)14014 7350 AL D CCICC, China [155]
CM (M)G81-3 14300 AL D UF, Japan [22]
CM (W)- 7.04 BS E MDU, Taiwan [166]
CS (W)- 0.0068–0.029 BS E QH, HB and AH, china [159]
CM (W)BCRC 32219 1.7 AL D BCRC, Hsinchu, Taiwan [167]
CM (W)NBRC 10352-3 6200 AL D SU, Japan [168]
OX (W)HACM 001 0.0371 BS E XFM-HN, China [160]
CM (Md)KACC44455+SPNU1006 6.63 BS E KACC and SPNU, Korea [169]
CM (W)NBRC 103752 4920 AL D BRC, NITE, Tokyo, Japan [170]
CK (GS)Y9 0.7135 AS C SDU, China [171]
CM (W)CGMCC 3.16321 5.56 BS E Beijing, China [172]
CM (W)BCRC34380 3483 AL C Hsinchu, Taiwan [173]
CP (W)GZUCC 8552 5.311 AS C BM, Guizhou, China [174]
CM (W)CGMCC 3.16321 5.56 BS E Beijing, China [172]
CM (W)No.20130508 9.45 BS E Nanjing, China [23]
PH (W)Isolated strain 0.0346 AL D Qinghai, China [175]

Note: CM: Cordyceps militaris. CC:Cordyceps cicadae. CS:Cordycepssinensis. OX: Ophiocordycepsxuefengensis.
CK: Cordycepskyushuensis. CP: Cordycepspruinosa. PH: Paecilomyces hepialid. A: liquid fermentation. B: solid
fermentation. C: mycelia. D: extracellular. E: fruiting body. L: µg/mL. S: mg/g. (W): wild strain. (M): mutant strain.
(GS): genome shuffling strain. (Md): mated strain. A+B: mycelia of strain A mated with strain B. NITE: National
Institute of Technology and Evaluation. BRC: Biological Research Center. UF: University of Fukui. SNJM-HB:
Shennongjia Mountains, Hubei Province. FNS: Faculty of Natural Sciences. IE-UHF: Institute of Evolution,
University of Haifa. CCICC: The China Center of Industrial Culture Collection. MDU: Mingdao University. QH:
QinghaiProvince, China. HB: HubeiProvince, China. AH: Anhui Province, China. BCRC: Bioresource Collection
and Research Center. SU: Shizuoka University. XFM-HN: Xuefeng Mountains in Hunan Province. KACC: Korean
Agricultural Culture Collection. SPNU: Systems Plant Microbiology Laboratory of Pusan National University. SD:
Shandong University. BM: Leigong Mountains. UM-SAR: University of Macau, Macau SAR.

7.3. COR Metabolic Mechanisms in C. militaris under Hypoxia, Light and Heat Stress

The mycelia of C. militaris obtained under liquid surface culture conditions produced a
higher level of COR than the mycelia obtained under a submerged culture condition [22].
Mechanistically, cytochrome P450 oxidoreductases, including heme, are markedly enriched in
the static liquid surface culture, which indicate a hypoxic condition. Hypoxic conditions
significantly increase the levels of hypoxia-associated proteins, adenylosuccinate synthase and
phosphoribosyl-aminoimidazolesuccino-carboxamide synthase involved in purine nucleotide
metabolism [170]. Similar results that hypoxia stress significantly promoted gene expansion of
cytochrome P450 were observed during the fruiting of O. sinensis [176]. Since COR can modulate
intracellular ROS levels in diseased and healthy cells, COR biosynthesis may be associated with
intracellular ROS modulation in C. militaris. The detailed mechanism requires further investigation.

Certain types of light can induce COR biosynthesis via photoacceptor-mediated signal pathways
in C. militaris. Studies have demonstrated that the regulation of COR biosynthesis in C. militaris
is associated with blue-light receptors, including Cmwc-1(wc-1 in C. militaris) and CmCRY-DASH
(CRY-DASH in C. militaris). Cmwc-1 upregulates adenylosuccinate synthase by 4-fold and significantly
downregulates ADA in wild C. militaris [177,178], suggesting that this factor has a positive effect on
COR biosynthesis. Thus, CmCRY-DASH, required for FB-CM development, impairs COR biosynthesis
in a Cmwc-1-interdependent manner [179]. In addition, in C. militaris, the production of COR is
markedly increased under heat stress conditions compared with normal conditions as a result of the
upregulation of CCM_04437, which encodes a metal-dependent phosphohydrolase, and CCM_04438,
which encodes adenosine-triphosphate phosphoribosyl- transferase [172].
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7.4. Metabolic Mechanisms of COR in C. militaris and O. sinensis

COR biosynthetic mechanism: The biosynthetic mechanism of COR involved in purine
biosynthesis has attracted broad interest in the past seven decades. Previous work indicated that
adenine [180] and adenosine [181] are the direct precursors of COR biosynthesis and that the biosynthesis
of COR may resemble that of 2′-deoxynucleotides [182]. Based on the whole genome sequence of
C. militaris [183], COR is speculated to be produced through both de novo synthesis and a salvage
pathway. In studies that examined COR biosynthesis in C. militaris, adenylosuccinate synthase, encoded
by iron-induced purA, induced the formation of inosine monophosphate (IMP) which increased the
level of AMP, and COR is subsequently produced from AMP [184]. Similar work demonstrated that
COR may be formed from adenosine and its derivatives (AMP and adenosine-diphosphate) during
purine biosynthesis in C. militaris [185]. In addition, COR may also be generated from ribonucleotides
in a reaction catalyzed by ribonucleotide reductases (RNRs) in species of Cordyceps [186,187]. Thus,
RNRs specifically catalyze the transformation of nucleotides to 2′-deoxynucleotides rather than
the transformation of nucleotides to 3′-deoxynucleotides [188]. Previous studies that investigated
O. sinensis found that adenosine may be phosphorylated by adenosine kinase before reduction by
RNRs in the fruiting body [157]. As a result of the comparative analysis of C. militaris and O. sinensis,
it is speculated that COR is most likely produced via the phosphorylation of adenosine prior to
the unclear reduction process. Notably, the biosynthesis of COR was completely described by
comparing the conserved genes involved in the COR biosynthetic pathway of two COR-producing and
distantly related fungi (A. nidulans [25] and C. militaris). Mechanistically, the cns1 and cns2 enzymes
cocatalyze COR biosynthesis. The Cns3 enzyme first catalyzes the reaction that changes adenosine into
adenosine-3′-monophosphate (3′AMP). Next, 2′-carbonyl-3′-deoxyadenosine (2′-C-3′-dA) is generated
through the dephosphorylation of 3′-AMP by Cns2. Finally, COR is produced from 2′-C-3′-dA by
Cns1 [24].

The cellular detoxification of COR in C. militaris: Several potential pathways contribute to the
cellular detoxification of COR, including deamination by ADA, decreased intracellular PTN, removal
of PTN/COR out by transporters, and conversion of COR. Three out of the eight putative purine
deaminases encoded by genes in C. militaris (CCM_07169, CCM_09449 and CCM_02911) are similar
to SanADA3 [189]. Deaminases encoded by genes in C. militaris (CCM_09449 and CCM_02911)
resemble human liver ADA1 [24], which can efficiently deaminate COR in vitro in C57BL/6 mouse
erythrocytes [190]. Thus, the ADA that targets COR in C. militaris remain unknown. In addition, PTN,
which is transported by the adenosine-triphosphate-binding cassette (ABC) transporter Cns4 and is
expressed only in the FB-CM, not the mycelia, can prevent the deamination of COR by ADA through a
Cns3-mediated process [24]. In most cases, drug transporters pump superabundant toxic metabolites,
such as COR and PTN, out of cells to decrease cellular detoxification; however, the identity of the COR
transporter remains unclear. In addition, toxic COR may be converted to other components, such as
COR-TP. Thus, few studies have revealed the mechanisms of COR conversion.

7.5. Comparative Analysis of the COR-Associated Mechanisms Involved in the Fruiting Body of C. militaris
and O. sinensis

Signal transduction in the fruiting body: Pheromone receptors, such as GPCRs, regulate fungal
fruiting-body formation. It is speculated that GPCR-mediated signaling pathways play an important
role in fruiting-body development. The cAMP-dependent protein kinase A (PKA) and MAPK pathways,
as well as many transcription factors (C2H2 zinic fingers), are involved in the fruiting of O. sinensis;
however, GPCR signaling are not involved [157]. In the development of the fruiting-body of C. militaris,
signal transduction is markedly more active in FB-CM than mycelia [191], suggesting a possible
relationship between the COR metabolic pathway and signal transduction. GPCRs, MAPK and
cAMP-dependent PKA signaling and the major transcription factor (Zn2Cys6) all exist in the fruiting
body of C. militaris. Notably, the level of GPCRs significantly increased during initial fruiting, and
MAPK signaling plays a more important role than PKA in FB-CM development [183]. Considering
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that the O. sinensis fungus retains a rather low COR-producing capacity while the fruiting body of
C. militaris can produce abundant COR, comparing the differential signaling involved in the fruiting
development between O. sinensis and C. militaris, GPCRs are expressed only in the fruiting body of
C. militaris, suggesting a potential relationship between COR metabolism and GPCRs. It is speculated
that COR may be biosynthesized at the initial fruiting phase and transported into the extracellular
matrix. Then, COR functions through an extracellular signaling may induce GPCRs and associated
cascade reaction in initial fruiting of C. militaris, which in turn regulates COR metabolism. In other
words, GPCR signaling pathways may play vital roles in COR metabolism. This hypothesis requires
further verification.

Gene expression during fruiting: A large amount of COR is produced during fruiting, and the
COR content in the fruiting body significantly exceeds that in mycelia. COR, as a bioactive component
with multiple functions, may be produced to help fungi survive disadvantageous factors (infection and
environmental extremes) and to form fruiting bodies. The gene expression levels of two species are
markedly different during fruiting. The number of protein-coding genes (9684) in FB-CM [183] is larger
than that (7939) in the fruiting body of O. sinensis [176]. The number of peroxidase genesis significantly
exceeded in O. sinensis compared with C. militaris, suggesting a higher ROS-scavenging ability in
O. sinensis. Additionally, haloperoxidase (heme) accounts for the most abundant among peroxidase
genes (rough 16.67%) in O. sinensis. Although the amount of proteases in O. sinensis is fewer than that in
C. militaris, a signal peptide, implicated in pathogen-host interactions, in O. sinensis obviously exceeds
that in C. militaris, indicating a stronger interactions between pathogen and host in O. sinensis [176].
Mechanistically, after insect hosts are infected by fungi, the insects produce large amounts of ROS to
kill the pathogenic fungi that simultaneously develop ROS-scavenging capacity [192], for example,
by increasing peroxidase expression in O. sinensis and by promoting COR biosynthesis in both fungi.
It is speculated that the C. militaris fungus may rapidly produce many COR molecules to defend
against unfavorable factors caused by insect hosts. In contrast, although the O. sinensis fungus retains
a COR-producing capacity, trace amounts of COR can not efficiently suppress insect-induced injury,
which directly results in increased ROS-scavenging peroxidases and pathogen-host interactions.

Fruiting of O. sinensis: O. sinensis was successfully obtained through artificial cultivation by
Sunshine Lake Pharma Co. Ltd. (Guangdong, China) [193]. Phylogenetic analysis revealed O. sinensis
and host insects originate at the same time and in similar geographic regions, southern Tibet/Yunnan,
China, suggesting a strong coevolution between host and parasite [194,195]. However, the coevolution
mechanisms remain unclear. Therefore, the following two issues still exist and need further investigation:
(i) the genetic coevolution of O. sinensis and host insects; (ii) the relationship between COR metabolism
and fruiting-body formation.

8. Summary and Outlook

Medicinal fungi produce a variety of bioactive metabolites which have medicinal potential for
treating human diseases. These natural metabolites, such as COR, are more readily accepted as therapy
by people and easy to obtain. Natural products of secondary metabolites that have the potential to treat
human diseases have been extensively reviewed [196]. The challenge is to investigate the fermentation
conditions and mutant strains for large-scale production. In addition, new natural products derived
from medicinal fungi require further investigation. Recent technologies have been developed to enable
the discovery of new drugs, including comparative metabolomics technologies [197]. Considering the
possible toxicity, resistance and efficiency of these potential drugs, designed derivatives of natural
products, such as ADA-resistant and low-toxicity COR, as well as organ-targeted nanoparticles for COR
delivery in vivo therapy, are also needed. Notably, a high-throughput and efficient nanomole-scale
system for synthesizing analogs of drugs has been developed. The nanomole-scale system can
simultaneously rank the affinity between analogs and targets without the need for purification via
mass spectrometry [198].



Molecules 2019, 24, 2231 16 of 26

To date, although the mechanism of COR biosynthesis in C. militaris has been completely described,
some topics require further investigation in C. militaris, such as the COR transport mechanism of COR,
ADA that deaminates COR, gene function of cns4, natural and mutant strains that produce high levels
of COR, GPCR signaling in COR metabolic pathway and effect of COR on fruiting development.

The heterogeneity of cancer cells has historically represented a challenge for cancer research.
To address this problem, single-cell analysis technologies have been developed in recent years.
The development of single-cell analysis technologies based on single-cell isolation methods will
remove the limitations in traditional technologies, such as single-cell sequencing technology in
cancer research [199] and gene regulation [200]. Intriguingly, a new single-cell RNA-sequencing
technology, which cost only $0.01 per cell and requires basic laboratory conditions, was developed [201].
Furthermore, the ability of single-cell imaging technologies to investigate the actions of drugs has
been systematically reviewed [202]. Recently, a sensitive, specific, efficient fluorescent acetylcholine
indicator for monitoring cholinergic action in vivo or in vitro biological processes was developed [203].
We posit that future research on COR will be greatly improved using single-cell analysis technologies,
suitable fluorescent indicators and imaging technologies. In brief, the goal of single–cell analysis,
including single–cell sequencing, in understanding the action of COR is to overcome the issues of
cellular heterogeneity from collective cell populations that can only exhibit the average level of these
heterogeneous cells, and the outcome is to understand the true mechanisms of COR action in both
disease’ cells and COR-producing cells.

Supplementary Materials: The following are available online. Table S1: Anti-cancer potential of COR,
Table S2: Anti-tumor potential of COR, Table S3: Anti-inflammatory and anti-oxidant potential of COR,
Table S4: COR inhibiting polyadenylation of mRNA in pathogens, Table S5: Other medicinal value and
biotechnological applications.
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