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Prompt antiviral treatment has the potential to reduce influenza virus transmission to close contacts, but rigorous data on the magnitude 
of treatment effects on transmission are limited. Animal model data indicate that rapid reductions in viral replication after antiviral treat-
ment reduce the risk of transmission. Observational and clinical trial data with oseltamivir and other neuraminidase inhibitors indicate 
that prompt treatment of household index patients seems to reduce the risk of illness in contacts, although the magnitude of the reported 
effects has varied widely across studies. In addition, the potential risk of transmitting drug-resistant variants exists with all approved classes 
of influenza antivirals. A controlled trial examining baloxavir treatment efficacy to reduce transmission, including the risk of transmitting 
virus with reduced baloxavir susceptibility, is currently in progress. If reduced transmission risk is confirmed, modeling studies indicate 
that early treatment could have major epidemiologic benefits in seasonal and pandemic influenza.
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Seasonal and pandemic influenza viruses can cause explo-
sive outbreaks of illness leading to considerable morbidity of 
varying severity. Person-to-person transmission is facilitated by 
several factors, including high infectious virus titers in the res-
piratory tract immediately before and at illness onset, a short in-
cubation period, and the potential for spread via multiple routes 
(eg, respiratory droplets, aerosols, and hand contamination–self 
inoculation) and in various transmission settings (eg, house-
holds, schools, acute, and chronic care facilities) [1]. As with se-
vere acute respiratory syndrome coronavirus 2, many questions 
remain about the relative importance of different transmission 
routes, transmission risk from asymptomatic or presymptomatic 
persons, and the impact of superspreading events.

Currently, the principal strategies to reduce transmission, in 
addition to virus-specific immunization, are nonpharmaceutical 
interventions (NPIs) directed at the individual (eg, cough et-
iquette, hand hygiene, masking, case isolation, and physical 
distancing) and at the facility or community level (eg, school 
closures, curtailing mass gatherings, and travel restrictions)  

[2, 3]. The effectiveness of NPIs in reducing influenza trans-
mission has been debated and often has been limited by 
poor compliance and delayed application. Household- and 
dormitory-based trials indicate that prompt, consistent use of 
masking and hand hygiene may reduce secondary illnesses in 
close contacts [3, 4], and modeling studies indicate that timely 
school closures or holidays impact the magnitude of local out-
breaks. Of note, wide-scale use of NPIs, including masking 
and community mitigation strategies like stay-at-home orders, 
business closures, and travel restrictions in response to the se-
vere acute respiratory syndrome coronavirus 2, pandemic, have 
markedly diminished the circulation of seasonal influenza vir-
uses in most countries at present [5]. These observations in-
dicate that sustained adherence to social distancing NPIs can 
reduce seasonal influenza virus transmissibility and that of 
other respiratory viruses.

Despite the incomplete protection afforded by current influ-
enza vaccines, immunization has the direct benefit of reducing 
the risk of influenza illness and complications in recipients. 
Increased vaccine coverage may provide indirect protection in 
nonimmunized persons and in those with inadequate immune 
responses to vaccine, especially when targeted to those cen-
tral to influenza virus transmission like school-aged children. 
While the extent of seasonal influenza vaccine coverage has 
been associated with reductions in hospitalizations and deaths, 
there is little evidence that it has reduced the overall duration of 
seasonal outbreaks.

Two complementary pharmacologic strategies to reduce res-
piratory virus transmission to contacts are chemoprophylaxis 
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and rapid antiviral treatment of ill persons to reduce their in-
fectiousness. The rationale for the latter is based on the use of 
a sufficiently potent antiviral to quickly reduce infectious virus 
titers in the respiratory tract and also diminish symptoms (eg, 
coughing, runny nose, sneezing) that contribute to the gener-
ation of infectious secretions. To date, 3 classes of inhibitors 
that target the influenza viral M2 ion channel (adamantanes), 
neuraminidase (eg, oseltamivir, zanamivir), or cap-dependent 
endonuclease (baloxavir) have been shown to be effective for 
both chemoprophylaxis [6, 7] and for treating outpatients with 
influenza due to susceptible strains, although the magnitude of 
the antiviral efficacy differs across these agents. This commen-
tary focuses on the body of evidence from studies that have ad-
dressed the effects of influenza antiviral treatment on reducing 
virus transmissibility. We review data from nonclinical, clinical, 
and modeling studies, and we consider the potential reductions 
in seasonal and pandemic influenza morbidity and mortality 
rates associated with increased therapeutic antiviral use.

NONCLINICAL STUDIES

A limited number of animal model studies have investigated 
the effect of antiviral treatment on reducing viral shedding and 
virus transmission to contact animals. To our knowledge, only 
4 studies have specifically evaluated the effect of antiviral treat-
ment on the likelihood of onward transmission, all of which 
used either the ferret or the guinea pig model (Table 1). Three of 
these studies focused on the Food and Drug Administration–ap-
proved antivirals oseltamivir and baloxavir [8–10], and 1 evalu-
ated the effect of an investigational anti-hemagglutinin head 
monoclonal antibody [11]. When this plant-produced human 
anti-hemagglutinin antibody was administered to guinea pigs 
24 hours after infection with A/H1N1pdm09 virus, viral shed-
ding duration was reduced by day 3 after inoculation compared 
with controls, and onward transmission to cohoused contacts 
was completely prevented compared with control-treated ani-
mals, all of which were infected [11] (Table 1).

Of the 3 studies evaluating the effect of oseltamivir in ferrets 
[8–10], only 1 demonstrated reductions in onward transmis-
sion [9]. That study examined transmission of A/H1N1pdm09 
and zoonotic A/H7N3 and A/H7N9 viruses after infection 
by ocular-aerosol or ocular-aerosol plus respiratory-aerosol 
inoculation. Oseltamivir treatment started 2 hours after in-
fection reduced viral replication in ferrets inoculated with 
a low dose of A/H1N1pdm09 or A/H7N3, but not A/H7N9 
viruses. Subsequent direct contact transmissions (ie, through 
cohousing in the same cage) of A/H1N1pdm09 virus and A/
H7N3 virus was prevented [9]. A higher dose of oseltamivir 
and a lower dose of virus inoculum may have contributed to 
the protective antiviral effect observed in this study compared 
with 2 studies that observed no protective effect of oseltamivir 
[8, 10] (Table 1).

Oseltamivir treatment of donor ferrets had no effect on the 
likelihood of infecting cohoused sentinel animals, but baloxavir 
treatment resulted in reduced transmission of A/H1N1pdm09 
viruses by direct contact and also by indirect (ie, airborne) 
spread [10] (Table 1). Higher viral inocula to donor ferrets 
reduced the efficacy of baloxavir in preventing direct contact 
transmission. The effect of baloxavir treatment on viral shed-
ding was rapid, such that reduced transmission frequency was 
observed regardless of whether ferrets were cohoused immedi-
ately or 24 hours after treatment. When baloxavir treatment was 
delayed until 48 hours after infection, some reduction in trans-
mission to contact ferrets was still observed. This may be an 
important finding given that influenza-infected patients often 
are delayed in seeking treatment.

Animal models have also been used to assess the replica-
tion and transmission fitness of antiviral-resistant influenza 
virus variants. Early studies in ferrets (before 2007)  showed 
that the oseltamivir-resistant variant R292K (A/H3N2) did 
not readily transmit compared with wild-type (WT) viruses 
[12, 13], although H275Y (A/H1N1) and E119V (A/H3N2) 
variants were able to transmit among ferrets by direct contact 
[12, 13]. Between 2007 and 2009, seasonal A/H1N1 viruses 
with the oseltamivir-resistant H275Y variant became wide-
spread globally due to the acquisition of several compensatory 
mutations [14], and were confirmed to transmit efficiently in 
animal models [15, 16]. Although these oseltamivir-resistant 
variants were ultimately displaced by oseltamivir-sensitive pan-
demic A/H1N1pdm09 virus, clusters of oseltamivir-resistant A/
H1N1pdm09 virus have been identified [17], and ferret models 
suggested that these variants can replicate and transmit effi-
ciently [18]. Likewise, some baloxavir-resistant viruses with 
polymerase acidic/I38X substitutions also appear to transmit 
with similar efficiency as WT viruses in ferrets [19, 20], al-
though competitive fitness experiments evaluating the effect 
of the polymerase acidic/I38T substitution in A/H1N1pdm09 
and A/H3N2 viruses detected a minor reduction in fitness com-
pared with their respective WT viruses [21].

CLINICAL STUDIES

Households are important sites for transmission of influenza 
viruses, and randomized controlled trials (RCTs) have dem-
onstrated that timely use of antiviral postexposure prophylaxis 
(PEP) is highly effective in reducing illness risk in contacts [6, 
7]. Several household-based studies have attempted to deter-
mine whether antiviral treatment of ill index patients (IPs) is 
associated with reduced influenza virus transmission to close 
contacts (Table 2 and Figure 1). 
An early RCT gave all household members with influenza ill-
ness an adamantane (amantadine or rimantadine) or placebo. 
The authors concluded that “We evaluated the overall frequency 
of infection among families…; it was ~30% lower among those 
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given an antiviral agent, a result suggesting that early treatment 
may not only be effective for ameliorating symptoms of influ-
enza but also for reducing spread (unpublished data)” [29]. 
However, they cautioned that the data were pooled from 3 lo-
cations and 3 years of study and “must not be regarded as de-
finitive.” A subsequent randomized placebo-controlled trial in 
which IPs and their contacts within a household were given ei-
ther rimantadine or placebo found no reductions in secondary 
attack rates (SARs) in the rimantadine households because of 
the emergence and transmission of adamantane-resistant vari-
ants from treated IPs to their contacts [30].

Four subsequent RCTs of neuraminidase inhibitors (NAIs) 
(inhaled zanamivir and oseltamivir in 2 RCTs each), testing 
the efficacy of PEP, provided data that confirmed high prophy-
lactic efficacy against illness in household contacts with both 
antivirals [31]. IPs were treated with the same antiviral used for 
PEP in 2 of the studies, and this modeling analysis of pooled 
data estimated that the effect on reducing infectiousness was 
19% (95% confidence interval, −160% to 75%) for zanamivir 
and 80% (43%–93%) for oseltamivir. However, these trials 
were conducted in different seasons and with differing study 
designs, meaning that the large effect found with oseltamivir 
might have been due to these differences and other unidentified 
confounding factors between the trials.

One prospective observational study included 384 antigen-
positive outpatients and their household contacts during 
periods of influenza activity in 2007–2008 [22]. Among the 331 
households with a single IP, influenza confirmed by reverse-
transcription polymerase chain reaction or viral culture devel-
oped in 8.1% of 989 contacts. Compared with contacts of IPs 
who did not take oseltamivir, contacts of IPs taking oseltamivir 
within 24 hours of symptom onset had a nonsignificantly lower 
risk of laboratory-confirmed infection (adjusted odds ratio 
[OR], 0.54) and clinical influenza (adjusted OR, 0.52) (Table 2). 
Lesser effects were found in contacts of IPs starting treatment 
later. Of note, oseltamivir treatment in IPs did not significantly 
decrease viral shedding in this study. 

A trial conducted during the 2008–2009 season, comparing 
combined oseltamivir and inhaled zanamivir treatment with 
each respective monotherapy in 267 IPs, found no significant 
difference in the frequencies of secondary illness in household 
contacts between the arms (12.5% overall) [32]. However, when 
the analysis was limited to 136 IPs treated within 24 hours 
after symptom onset, a significantly lower proportion of con-
tacts developed illness in the combination arm (4%) than in the 
oseltamivir (17%) or zanamivir (15%) arms. A  large placebo-
controlled trial of oseltamivir treatment in household IPs aged 
≥1 year in Bangladesh during 2008–2010 found that illness was 
somewhat less frequent in the contacts of oseltamivir-treated 
IPs (8%) than in those of placebo recipients (10%) (OR, 0.77 
[95% confidence interval, .60–.98]; P =  .03), although no sig-
nificant difference in reverse-transcription polymerase chain R
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reaction–confirmed influenza was found (4% vs 5%), perhaps 
because of limited contact sampling [27]. Of note, this trial 
documented significant reductions in the frequency of infec-
tious virus detection in oseltamivir-treated children [27].

Some evidence on the effect of antiviral treatment on house-
hold transmission comes from studies during the 2009 pan-
demic. A  retrospective survey of 1547 households in Japan 
found a contact SAR of 11.4% overall [24]. Multivariable anal-
ysis showed that inhaled zanamivir treatment within 24 and 
24–48 hours after illness onset, primarily administered to teen-
agers, significantly reduced the risk of household transmission 
to 0.57 and 0.58, respectively, compared with the effect of re-
ceiving delayed or no treatment, whereas the corresponding 
effects of oseltamivir on transmission risk were nonsignificant 
(Table 2). An observational study in 135 households found that 
oseltamivir treatment on either day of illness onset or the next 
day was associated with a nonsignificant 42% reduction in the 
odds of ≥1 secondary infections or influenzalike illness in a 
household and a 50% reduction in individual contacts, com-
pared with later or no treatment [23].

Two studies using a large, Japanese health insurance claims 
database have compared household influenza transmission 
rates among families where the IP was treated with oseltamivir 
or an inhaled NAI [26] during the 2010–2011 season or with 
baloxavir or an NAI during the 2018–2019 season [28]. The first 
study found a significantly lower proportion of families with 
household transmission when the IP was treated with inhaled 

zanamivir (11.6%) or inhaled laninamivir (11.0%) compared 
with oseltamivir (14.3%) (Table 2). In the more recent study, 
baloxavir treatment was associated with lower household trans-
mission than oseltamivir (17.98% vs 24.16%) (Table 2). In fam-
ilies in which the IP was treated with the inhaled zanamivir 
or laninamivir, household transmission was similar to that of 
baloxavir, at 18.41% and 17.43%, respectively. In both studies, 
comparisons were likely complicated by known (different IP 
ages or administration routes) and unknown confounding fac-
tors. A  small retrospective study in Japan assessing the effect 
of IP treatment with baloxavir or oseltamivir on household 
transmission found a SAR of 9.0% in the baloxavir and 13.5% 
in the oseltamivir households (P  =  .34) (Table 2), indicating 
that baloxavir was at least as effective as oseltamivir in reducing 
transmission [33].

Taken together, the available studies suggest that prompt 
NAI or baloxavir treatment of household IPs likely reduces the 
risk of secondary illness in close contacts, albeit to a limited 
extent. However, most studies have not been designed to an-
swer this question rigorously, and the magnitude of reported 
reductions are inconsistent across reports. The best contem-
porary data derive from the oseltamivir trial in Bangladesh 
which included a large number of pediatric IPs but may have 
underestimated the effects of treatment owing to the crowded 
housing conditions and sometimes delayed antiviral use [27]. 
Moreover, the risk of transmission of resistant variants from 
treated IPs, especially young children, to close contacts is an 

Figure 1. Summary of main outcomes in observational studies and 1 published randomized trial examining the effects of antiviral treatment on influenza infection risk 
in household contacts. See Table 2 for details of study design and findings. Abbreviations: CI, confidence interval; NAI, neuraminidase inhibitor; OR, odds ratio. Footnotes: 
aAdjusted OR. bTreatment within 24 hours. cMultivariate analysis. 
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important question that has not been addressed adequately in 
most human influenza antiviral studies to date. More data are 
needed in household and other higher transmission-risk set-
tings such as long-term care facilities, including studies of an-
tiviral combinations.

Because of the more rapid and greater antiviral treatment effi-
cacy of baloxavir compared with oseltamivir [34–36], baloxavir 
might exert greater effects on virus transmission. However, the 
higher frequency of treatment-emergent viruses with reduced 
baloxavir susceptibility compared with NAIs, particularly in 
younger children, raises concern about the transmission of 
such variants to contacts [37, 38]. An ongoing, randomized 
placebo-controlled phase III trial is assessing baloxavir efficacy 
in reducing onward transmission of influenza virus from IPs 
aged 5–64  years to their household contacts (NCT03969212) 
and may give important evidence on the value of this strategy. 
The primary end point is secondary transmission based on 
viral RNA detection in contacts up to day 5, and secondary end 
points include monitoring for baloxavir variants with reduced 
susceptibility and illness occurrence.

MODELING STUDIES

Multiple modeling studies have addressed the potential soci-
etal benefits of antiviral treatment in reducing healthcare uti-
lization, deaths, and the economic consequences of seasonal 
and pandemic influenza [39] and the potential negative con-
sequences of antiviral resistance emergence [40]. Several have 
concluded that mass targeted chemoprophylaxis might extin-
guish an emerging novel influenza virus [41] and that targeted 
chemoprophylaxis in households and schools could reduce 
transmission [41], but these are beyond the scope of this review.

Epidemiologic models primarily work on the assumption 
that patient infectiousness is equated with the presence of virus 
shedding [42], and exploring different relationships between 
viral load and infectiousness can be used to infer the impact 
of antiviral drugs. For example, infectiousness may be assumed 
to be constant over the time that viral load exceeds a defined 
threshold, and antivirals that shorten this interval would be 
predicted to reduce infectiousness. Alternatively, infectiousness 
can be assumed to be proportional to viral load (usually on a log 
or natural scale); this can be affected by antivirals that alter this 
time course. Another assumption is where the time dependence 
of infectiousness is ignored and instead antivirals are assumed 
to cause an overall reduction of transmission, which may be es-
timated from clinical studies.

The impact of antiviral treatment on population-level in-
fluenza transmission was examined using a hierarchical 
mathematical model to link within-host viral replication 
dynamics to between-host transmission [43]. Using data 
from the phase 3 baloxavir treatment trial [34] to charac-
terize the model, the impact of initiating antiviral treatment 
at various time points after symptom onset was predicted, 
on the assumption of a logarithmic relationship between 
viral load and patient infectiousness. The model predicted 
that treatment within 48 hours of symptom onset would 
cause baloxavir-treated patients to be noninfectious within 
2  days of treatment, whereas oseltamivir-treated patients 
would remain infectious for 4–5 days. When scaled up and 
applied to existing epidemiologic data from the 2017–2018 
influenza season in the United States, it predicted substan-
tial reductions in infections and deaths averted depending on 
the extent and timing of antiviral treatment levels (Table 3).  
Of note, this model did not consider the possible impact of 

Table 3. Estimates of the Potential Impact of Antiviral Treatment on Clinical Outcome Measures Based on the 2017–2018 US Influenza Seasona

  
Outcome by Timing of Treatmentb

Treatment Impactc

Oseltamivir Baloxavir

Antiviral treatment ≤24 h after 
symptom onset in 30% of patients

  

 Infections (63.3 million) Reduced by 23% (16%–30%) or 14.3 million 
(10.4–18.8 million)

Reduced by 33% (26%–41%) or 21.1 million 
(16.4–26.2 million)

 Hospitalizations (>900 000) Reduced by 13% (10%–17%) or 119 500 
(87 100–157 100)

Reduced by 20% (15%–24%) or 176 000 
(137 200–218 500)

 Deaths (>79 000) Reduced by 5% (4%–7%) or 3978 (2899–5228) Reduced by 7% (6%–9%) or 5858 (4567–7274) 

Antiviral treatment ≤48 h after 
symptom onset in 30% of patients

 

 Infections (63.3 million) Reduced by 20% (15%–28%) or 12.9 million 
(9.6–17.5 million) 

Reduced by 31% (23%–40%) or 19.3 million 
(14.3–25.2 million)

 Hospitalizations (>900 000) Reduced by 12% (9%–16%) or 107 400 
(80 100–145 800) 

Reduced by 18% (13%–23%) or 161 400 
(119 800–210 400) 

 Deaths (>79 000) Reduced by 5% (3%–6%) or 3576 (2666–4854) Reduced by 7% (5%–9%) or 5373 (3988–7005) 
aThe estimated impact of antiviral treatment is based on the model described by Du et al (2020) [43]. This model does not take into account the possible effects of changes in social inter-
actions or the possible effects of treatment emergence and transmission of influenza virus variants with reduced antiviral susceptibility.
bEstimated numbers for the 2017–2018 US influenza season from the US Centers for Disease Control and Prevention.
cParenthetical ranges represent 95% credible intervals. 
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treatment-emergent variants with reduced antiviral suscep-
tibility [43].

Another study examined the correlation between viral 
shedding and patient infectiousness using 3 separate epi-
demiologic models, which assume that infectiousness is 
proportional to either natural or logarithmic viral titers, 
or to a semimechanistic dose-response transformation of 
viral titer that is intermediate between the natural and log-
arithmic models [44]. Pairing of either the logarithmic or 
dose-response models with clinical pharmacokinetic–phar-
macodynamic parameters led to a predicted reduction of ap-
proximately 40% in household transmission with baloxavir 
versus oseltamivir treatment, if treatment was given within 
24 hours of symptom onset. This reduction dropped to ap-
proximately 20% if treatment took place within 24–48 hours. 
Importantly, these modeling simulations were correlated 
closely with observations from the phase 3 RCT of baloxavir 
PEP [6], and post hoc estimates, comparing baloxavir with 
NAIs, found that transmission was reduced by 47% if treat-
ment was within 24 hours and by 18% if it was within 24–48 
hours [44].

Results from the ongoing baloxavir trial will help refine 
such models. In addition, studies need to examine the poten-
tial of “infection blocking” antivirals, for example, routinely 
giving PEP to asymptomatic contacts of case patients to prevent 
presymptomatic transmission and determining whether a “herd 
antiviral” effect might be possible with sufficient treatment cov-
erage in an outbreak.

CONCLUSIONS

Definitive data on the effect of antiviral treatment on virus 
transmission during seasonal or pandemic influenza are cur-
rently lacking, but an ongoing study of baloxavir will address 
this important question. The available animal model data 
indicate that more rapid reductions in viral shedding with 
antiviral treatment correlate with a lower likelihood of trans-
mission to susceptible contacts. Observational and clinical 
trial data confirm that early antiviral treatment of IPs can re-
duce infection risk and illness in household contacts, although 
the magnitude of the effect has varied widely across studies 
and is highly dependent on timing. Epidemiologic models in-
dicate that prompt antiviral treatment could have major indi-
rect benefits in reducing virus transmission. Validation and 
refinement of current models, including incorporation of the 
effects of treatment-emergent antiviral resistance, will im-
prove their predictive value in various settings, including sea-
sonal and pandemic influenza scenarios.
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