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Prompt antiviral treatment has the potential to reduce influenza virus transmission to close contacts, but rigorous data on the magnitude

of treatment effects on transmission are limited. Animal model data indicate that rapid reductions in viral replication after antiviral treat-

ment reduce the risk of transmission. Observational and clinical trial data with oseltamivir and other neuraminidase inhibitors indicate
that prompt treatment of household index patients seems to reduce the risk of illness in contacts, although the magnitude of the reported
effects has varied widely across studies. In addition, the potential risk of transmitting drug-resistant variants exists with all approved classes

of influenza antivirals. A controlled trial examining baloxavir treatment efficacy to reduce transmission, including the risk of transmitting

virus with reduced baloxavir susceptibility, is currently in progress. If reduced transmission risk is confirmed, modeling studies indicate
that early treatment could have major epidemiologic benefits in seasonal and pandemic influenza.
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Seasonal and pandemic influenza viruses can cause explo-
sive outbreaks of illness leading to considerable morbidity of
varying severity. Person-to-person transmission is facilitated by
several factors, including high infectious virus titers in the res-
piratory tract immediately before and at illness onset, a short in-
cubation period, and the potential for spread via multiple routes
(eg, respiratory droplets, aerosols, and hand contamination-self
inoculation) and in various transmission settings (eg, house-
holds, schools, acute, and chronic care facilities) [1]. As with se-
vere acute respiratory syndrome coronavirus 2, many questions
remain about the relative importance of different transmission
routes, transmission risk from asymptomatic or presymptomatic
persons, and the impact of superspreading events.

Currently, the principal strategies to reduce transmission, in
addition to virus-specificimmunization, are nonpharmaceutical
interventions (NPIs) directed at the individual (eg, cough et-
iquette, hand hygiene, masking, case isolation, and physical
distancing) and at the facility or community level (eg, school
closures, curtailing mass gatherings, and travel restrictions)
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[2, 3]. The effectiveness of NPIs in reducing influenza trans-
mission has been debated and often has been limited by
poor compliance and delayed application. Household- and
dormitory-based trials indicate that prompt, consistent use of
masking and hand hygiene may reduce secondary illnesses in
close contacts [3, 4], and modeling studies indicate that timely
school closures or holidays impact the magnitude of local out-
breaks. Of note, wide-scale use of NPIs, including masking
and community mitigation strategies like stay-at-home orders,
business closures, and travel restrictions in response to the se-
vere acute respiratory syndrome coronavirus 2, pandemic, have
markedly diminished the circulation of seasonal influenza vir-
uses in most countries at present [5]. These observations in-
dicate that sustained adherence to social distancing NPIs can
reduce seasonal influenza virus transmissibility and that of
other respiratory viruses.

Despite the incomplete protection afforded by current influ-
enza vaccines, immunization has the direct benefit of reducing
the risk of influenza illness and complications in recipients.
Increased vaccine coverage may provide indirect protection in
nonimmunized persons and in those with inadequate immune
responses to vaccine, especially when targeted to those cen-
tral to influenza virus transmission like school-aged children.
While the extent of seasonal influenza vaccine coverage has
been associated with reductions in hospitalizations and deaths,
there is little evidence that it has reduced the overall duration of
seasonal outbreaks.

Two complementary pharmacologic strategies to reduce res-
piratory virus transmission to contacts are chemoprophylaxis
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and rapid antiviral treatment of ill persons to reduce their in-
fectiousness. The rationale for the latter is based on the use of
a sufficiently potent antiviral to quickly reduce infectious virus
titers in the respiratory tract and also diminish symptoms (eg,
coughing, runny nose, sneezing) that contribute to the gener-
ation of infectious secretions. To date, 3 classes of inhibitors
that target the influenza viral M2 ion channel (adamantanes),
neuraminidase (eg, oseltamivir, zanamivir), or cap-dependent
endonuclease (baloxavir) have been shown to be effective for
both chemoprophylaxis [6, 7] and for treating outpatients with
influenza due to susceptible strains, although the magnitude of
the antiviral efficacy differs across these agents. This commen-
tary focuses on the body of evidence from studies that have ad-
dressed the effects of influenza antiviral treatment on reducing
virus transmissibility. We review data from nonclinical, clinical,
and modeling studies, and we consider the potential reductions
in seasonal and pandemic influenza morbidity and mortality
rates associated with increased therapeutic antiviral use.

NONCLINICAL STUDIES

A limited number of animal model studies have investigated
the effect of antiviral treatment on reducing viral shedding and
virus transmission to contact animals. To our knowledge, only
4 studies have specifically evaluated the effect of antiviral treat-
ment on the likelihood of onward transmission, all of which
used either the ferret or the guinea pig model (Table 1). Three of
these studies focused on the Food and Drug Administration-ap-
proved antivirals oseltamivir and baloxavir [8-10], and 1 evalu-
ated the effect of an investigational anti-hemagglutinin head
monoclonal antibody [11]. When this plant-produced human
anti-hemagglutinin antibody was administered to guinea pigs
24 hours after infection with A/HIN1pdmO09 virus, viral shed-
ding duration was reduced by day 3 after inoculation compared
with controls, and onward transmission to cohoused contacts
was completely prevented compared with control-treated ani-
mals, all of which were infected [11] (Table 1).

Of the 3 studies evaluating the effect of oseltamivir in ferrets
[8-10], only 1 demonstrated reductions in onward transmis-
sion [9]. That study examined transmission of A/HIN1pdm09
and zoonotic A/H7N3 and A/H7N9 viruses after infection
by ocular-aerosol or ocular-aerosol plus respiratory-aerosol
inoculation. Oseltamivir treatment started 2 hours after in-
fection reduced viral replication in ferrets inoculated with
a low dose of A/HIN1pdm09 or A/H7N3, but not A/H7N9
viruses. Subsequent direct contact transmissions (ie, through
cohousing in the same cage) of A/HIN1pdmO09 virus and A/
H7N3 virus was prevented [9]. A higher dose of oseltamivir
and a lower dose of virus inoculum may have contributed to
the protective antiviral effect observed in this study compared
with 2 studies that observed no protective effect of oseltamivir
[8, 10] (Table 1).

Oseltamivir treatment of donor ferrets had no effect on the
likelihood of infecting cohoused sentinel animals, but baloxavir
treatment resulted in reduced transmission of A/HIN1pdm09
viruses by direct contact and also by indirect (ie, airborne)
spread [10] (Table 1). Higher viral inocula to donor ferrets
reduced the efficacy of baloxavir in preventing direct contact
transmission. The effect of baloxavir treatment on viral shed-
ding was rapid, such that reduced transmission frequency was
observed regardless of whether ferrets were cohoused immedi-
ately or 24 hours after treatment. When baloxavir treatment was
delayed until 48 hours after infection, some reduction in trans-
mission to contact ferrets was still observed. This may be an
important finding given that influenza-infected patients often
are delayed in seeking treatment.

Animal models have also been used to assess the replica-
tion and transmission fitness of antiviral-resistant influenza
virus variants. Early studies in ferrets (before 2007) showed
that the oseltamivir-resistant variant R292K (A/H3N2) did
not readily transmit compared with wild-type (WT) viruses
[12, 13], although H275Y (A/HIN1) and E119V (A/H3N2)
variants were able to transmit among ferrets by direct contact
[12, 13]. Between 2007 and 2009, seasonal A/HINI1 viruses
with the oseltamivir-resistant H275Y variant became wide-
spread globally due to the acquisition of several compensatory
mutations [14], and were confirmed to transmit efficiently in
animal models [15, 16]. Although these oseltamivir-resistant
variants were ultimately displaced by oseltamivir-sensitive pan-
demic A/HIN1pdm09 virus, clusters of oseltamivir-resistant A/
HIN1pdm09 virus have been identified [17], and ferret models
suggested that these variants can replicate and transmit effi-
ciently [18]. Likewise, some baloxavir-resistant viruses with
polymerase acidic/I38X substitutions also appear to transmit
with similar efficiency as WT viruses in ferrets [19, 20], al-
though competitive fitness experiments evaluating the effect
of the polymerase acidic/I38T substitution in A/HIN1pdm09
and A/H3N2 viruses detected a minor reduction in fitness com-
pared with their respective WT viruses [21].

CLINICAL STUDIES

Households are important sites for transmission of influenza
viruses, and randomized controlled trials (RCTs) have dem-
onstrated that timely use of antiviral postexposure prophylaxis
(PEP) is highly effective in reducing illness risk in contacts [6,
7]. Several household-based studies have attempted to deter-
mine whether antiviral treatment of ill index patients (IPs) is
associated with reduced influenza virus transmission to close
contacts (Table 2 and Figure 1).

An early RCT gave all household members with influenza ill-
ness an adamantane (amantadine or rimantadine) or placebo.
The authors concluded that “We evaluated the overall frequency
of infection among families...; it was ~30% lower among those
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Figure 1. Summary of main outcomes in observational studies and 1 published randomized trial examining the effects of antiviral treatment on influenza infection risk
in household contacts. See Table 2 for details of study design and findings. Abbreviations: Cl, confidence interval; NAI, neuraminidase inhibitor; OR, odds ratio. Footnotes:

2Adjusted OR. *Treatment within 24 hours. “Multivariate analysis.

reaction—confirmed influenza was found (4% vs 5%), perhaps
because of limited contact sampling [27]. Of note, this trial
documented significant reductions in the frequency of infec-
tious virus detection in oseltamivir-treated children [27].

Some evidence on the effect of antiviral treatment on house-
hold transmission comes from studies during the 2009 pan-
demic. A retrospective survey of 1547 households in Japan
found a contact SAR of 11.4% overall [24]. Multivariable anal-
ysis showed that inhaled zanamivir treatment within 24 and
24-48 hours after illness onset, primarily administered to teen-
agers, significantly reduced the risk of household transmission
to 0.57 and 0.58, respectively, compared with the effect of re-
ceiving delayed or no treatment, whereas the corresponding
effects of oseltamivir on transmission risk were nonsignificant
(Table 2). An observational study in 135 households found that
oseltamivir treatment on either day of illness onset or the next
day was associated with a nonsignificant 42% reduction in the
odds of >1 secondary infections or influenzalike illness in a
household and a 50% reduction in individual contacts, com-
pared with later or no treatment [23].

Two studies using a large, Japanese health insurance claims
database have compared household influenza transmission
rates among families where the IP was treated with oseltamivir
or an inhaled NAI [26] during the 2010-2011 season or with
baloxavir or an NAI during the 2018-2019 season [28]. The first
study found a significantly lower proportion of families with
household transmission when the IP was treated with inhaled

zanamivir (11.6%) or inhaled laninamivir (11.0%) compared
with oseltamivir (14.3%) (Table 2). In the more recent study,
baloxavir treatment was associated with lower household trans-
mission than oseltamivir (17.98% vs 24.16%) (Table 2). In fam-
ilies in which the IP was treated with the inhaled zanamivir
or laninamivir, household transmission was similar to that of
baloxavir, at 18.41% and 17.43%, respectively. In both studies,
comparisons were likely complicated by known (different IP
ages or administration routes) and unknown confounding fac-
tors. A small retrospective study in Japan assessing the effect
of IP treatment with baloxavir or oseltamivir on household
transmission found a SAR of 9.0% in the baloxavir and 13.5%
in the oseltamivir households (P = .34) (Table 2), indicating
that baloxavir was at least as effective as oseltamivir in reducing
transmission [33].

Taken together, the available studies suggest that prompt
NALI or baloxavir treatment of household IPs likely reduces the
risk of secondary illness in close contacts, albeit to a limited
extent. However, most studies have not been designed to an-
swer this question rigorously, and the magnitude of reported
reductions are inconsistent across reports. The best contem-
porary data derive from the oseltamivir trial in Bangladesh
which included a large number of pediatric IPs but may have
underestimated the effects of treatment owing to the crowded
housing conditions and sometimes delayed antiviral use [27].
Moreover, the risk of transmission of resistant variants from
treated IPs, especially young children, to close contacts is an
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important question that has not been addressed adequately in
most human influenza antiviral studies to date. More data are
needed in household and other higher transmission-risk set-
tings such as long-term care facilities, including studies of an-
tiviral combinations.

Because of the more rapid and greater antiviral treatment effi-
cacy of baloxavir compared with oseltamivir [34-36], baloxavir
might exert greater effects on virus transmission. However, the
higher frequency of treatment-emergent viruses with reduced
baloxavir susceptibility compared with NAlIs, particularly in
younger children, raises concern about the transmission of
such variants to contacts [37, 38]. An ongoing, randomized
placebo-controlled phase III trial is assessing baloxavir efficacy
in reducing onward transmission of influenza virus from IPs
aged 5-64 years to their household contacts (NCT03969212)
and may give important evidence on the value of this strategy.
The primary end point is secondary transmission based on
viral RNA detection in contacts up to day 5, and secondary end
points include monitoring for baloxavir variants with reduced
susceptibility and illness occurrence.

MODELING STUDIES

Multiple modeling studies have addressed the potential soci-
etal benefits of antiviral treatment in reducing healthcare uti-
lization, deaths, and the economic consequences of seasonal
and pandemic influenza [39] and the potential negative con-
sequences of antiviral resistance emergence [40]. Several have
concluded that mass targeted chemoprophylaxis might extin-
guish an emerging novel influenza virus [41] and that targeted
chemoprophylaxis in households and schools could reduce
transmission [41], but these are beyond the scope of this review.

Epidemiologic models primarily work on the assumption
that patient infectiousness is equated with the presence of virus
shedding [42], and exploring different relationships between
viral load and infectiousness can be used to infer the impact
of antiviral drugs. For example, infectiousness may be assumed
to be constant over the time that viral load exceeds a defined
threshold, and antivirals that shorten this interval would be
predicted to reduce infectiousness. Alternatively, infectiousness
can be assumed to be proportional to viral load (usually on alog
or natural scale); this can be affected by antivirals that alter this
time course. Another assumption is where the time dependence
of infectiousness is ignored and instead antivirals are assumed
to cause an overall reduction of transmission, which may be es-
timated from clinical studies.

The impact of antiviral treatment on population-level in-
fluenza transmission was examined using a hierarchical
mathematical model to link within-host viral replication
dynamics to between-host transmission [43]. Using data
from the phase 3 baloxavir treatment trial [34] to charac-
terize the model, the impact of initiating antiviral treatment
at various time points after symptom onset was predicted,
on the assumption of a logarithmic relationship between
viral load and patient infectiousness. The model predicted
that treatment within 48 hours of symptom onset would
cause baloxavir-treated patients to be noninfectious within
2 days of treatment, whereas oseltamivir-treated patients
would remain infectious for 4-5 days. When scaled up and
applied to existing epidemiologic data from the 2017-2018
influenza season in the United States, it predicted substan-
tial reductions in infections and deaths averted depending on
the extent and timing of antiviral treatment levels (Table 3).
Of note, this model did not consider the possible impact of

Table 3. Estimates of the Potential Impact of Antiviral Treatment on Clinical Outcome Measures Based on the 2017-2018 US Influenza Season®

Treatment Impact®

Outcome by Timing of Treatment®

Oseltamivir

Baloxavir

Antiviral treatment <24 h after
symptom onset in 30% of patients

Infections (63.3 million)
(10.4-18.8 million)

Hospitalizations (>900 000)
(87 100-157 100)

Deaths (>79 000)

Antiviral treatment <48 h after
symptom onset in 30% of patients

Infections (63.3 million)
(9.6-17.5 million)

Hospitalizations (>900 000)
(80 100-145 800)

Deaths (>79 000)

Reduced by 23% (16%-30%) or 14.3 million

Reduced by 13% (10%—-17%) or 119 500

Reduced by 5% (4%—-7%) or 3978 (2899-5228)

Reduced by 20% (15%-28%) or 12.9 million

Reduced by 12% (9%-16%) or 107 400

Reduced by 5% (3%-6%) or 3576 (2666-4854)

Reduced by 33% (26%-41%) or 21.1 million
(16.4-26.2 million)

Reduced by 20% (15%-24%) or 176 000
(137 200-218 500)

Reduced by 7% (6%-9%) or 5858 (4567-7274)

Reduced by 31% (23%-40%) or 19.3 million
(14.3-25.2 million)

Reduced by 18% (13%-23%) or 161 400
(119 800-210 400)

Reduced by 7% (5%-9%) or 5373 (3988-7005)

“The estimated impact of antiviral treatment is based on the model described by Du et al (2020) [43]. This model does not take into account the possible effects of changes in social inter-
actions or the possible effects of treatment emergence and transmission of influenza virus variants with reduced antiviral susceptibility.

°Estimated numbers for the 2017-2018 US influenza season from the US Centers for Disease Control and Prevention.

“Parenthetical ranges represent 95% credible intervals.
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treatment-emergent variants with reduced antiviral suscep-
tibility [43].

Another study examined the correlation between viral
shedding and patient infectiousness using 3 separate epi-
demiologic models, which assume that infectiousness is
proportional to either natural or logarithmic viral titers,
or to a semimechanistic dose-response transformation of
viral titer that is intermediate between the natural and log-
arithmic models [44]. Pairing of either the logarithmic or
dose-response models with clinical pharmacokinetic-phar-
macodynamic parameters led to a predicted reduction of ap-
proximately 40% in household transmission with baloxavir
versus oseltamivir treatment, if treatment was given within
24 hours of symptom onset. This reduction dropped to ap-
proximately 20% if treatment took place within 24-48 hours.
Importantly, these modeling simulations were correlated
closely with observations from the phase 3 RCT of baloxavir
PEP [6], and post hoc estimates, comparing baloxavir with
NAIs, found that transmission was reduced by 47% if treat-
ment was within 24 hours and by 18% if it was within 24-48
hours [44].

Results from the ongoing baloxavir trial will help refine
such models. In addition, studies need to examine the poten-
tial of “infection blocking” antivirals, for example, routinely
giving PEP to asymptomatic contacts of case patients to prevent
presymptomatic transmission and determining whether a “herd
antiviral” effect might be possible with sufficient treatment cov-
erage in an outbreak.

CONCLUSIONS

Definitive data on the effect of antiviral treatment on virus
transmission during seasonal or pandemic influenza are cur-
rently lacking, but an ongoing study of baloxavir will address
this important question. The available animal model data
indicate that more rapid reductions in viral shedding with
antiviral treatment correlate with a lower likelihood of trans-
mission to susceptible contacts. Observational and clinical
trial data confirm that early antiviral treatment of IPs can re-
duce infection risk and illness in household contacts, although
the magnitude of the effect has varied widely across studies
and is highly dependent on timing. Epidemiologic models in-
dicate that prompt antiviral treatment could have major indi-
rect benefits in reducing virus transmission. Validation and
refinement of current models, including incorporation of the
effects of treatment-emergent antiviral resistance, will im-
prove their predictive value in various settings, including sea-
sonal and pandemic influenza scenarios.
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