
RESEARCH Open Access

Extracting biomedical events from pairs of text
entities
Xiao Liu*, Antoine Bordes, Yves Grandvalet

From BioNLP Shared Task 2013
Sofia, Bulgaria. 9 August 2013

Abstract

Background: Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic
papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts,
which require heavy processing for their registration into organized databases. This organization is instrumental for
information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology,
medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that
extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of
Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities
of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents
also describe distinctive dependencies, making text-mining in molecular biology a specific discipline.

Results: We address biomedical event extraction as the classification of pairs of text entities into the classes
corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier
relying on Support Vector Machines. This recursive process extracts events involving other events as arguments.
Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires
shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches,
our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated
joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP
challenges yielding the best result reported so far on the 2013 edition.

Background
Huge amounts of electronic biomedical documents are
generated daily; for example, over one million published
papers have been collected on Medline in 2013. Auto-
matically organizing their content in dedicated databases
enables advanced search and eases information retrieval
for researchers in biology, medicine or other related
fields. Nowadays, these data sources are mostly in the
form of unstructured free text, which is complex to
incorporate into databases. Hence, many text-mining
research initiatives are organized around the issue of
automatically extracting information from biomedical

text. Efforts specifically dedicated to biomedical text are
necessary because standard natural language processing
tools cannot be readily applied to extract biomedical
events since such texts, articles or reports involve
domain-specific jargon, shorthands, such as “IL-1, -2,
-3” for the Interleukin proteins [1].
This paper tackles the problem of event extraction

from biomedical documents. Building on previous
advances in named entity recognition (for detecting
gene or protein mentions for instance), this task consists
in associating to these entities the related events
expressed in the text. Such events are of multiple types
and involve at least one text entity as argument and
another as trigger; they can be quite complex since
some events have several arguments, and recursive in* Correspondence: xiao.liu@utc.fr

Sorbonne universités, Université de technologie de Compiègne, CNRS,
Heudiasyc UMR 7253, 57 avenue de Landshut, CS 60319, 60203 Compiègne
cedex, France

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

© 2015 Liu et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:xiao.liu@utc.fr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

the sense that arguments can themselves be events. An
example of an event is given in Figure 1.
Biomedical event extraction is attracting more and more

attention, especially thanks to the organization of recur-
rent dedicated BioNLP challenges [2-4]. We propose here
RUPEE (for RecUrsive Pairwise Event Extractor), a new
approach which relies on a single multi-class classifier for
recursively detecting events from (trigger, argument) pairs.
Compared to standard pipeline approaches based on
sequences of classifiers [5,6], we avoid the intermediate
problem of associating isolated triggers to event types,
relying on a tricky multi-label classification problem.
Instead, we directly extract compounds of events in the
form of (trigger, argument) pairs, simply relying on a
multi-class problem, whereby (trigger, argument) pairs are
associated to event types. Considering pairs of text entities
also allows us to characterize examples by sophisticated
joint features, such as shortest path in the dependency
parse tree, and hence to detect triggers more accu-
rately than with pipeline models. Pipeline models elimi-
nate early text entities that act unusually as triggers;
extracting the (trigger, argument) pairs allows to retrieve
these triggers provided they are recognized to be strongly
related to an argument. Our performance analysis of the
Results section explicitely tests the added value of the pair-
wise approach. Besides, compared to Markov random fields
[7], RUPEE is a discriminant model that does not represent
the full joint distribution of words and events. We thus have
a simpler inference process, which results into drastically
reduced training times: roughly 15 times faster for proces-
sing about 800 training documents (on the same machine).
In short, we propose in this work a happy medium

between pipeline and joint models. Our approach builds
on our previous proposal [8], where we detected triggers
directly from (trigger, argument) pairs. Here, we upgrade
our scheme by adding a recursive classification process
that considerably improves the detection of complex
events. As shown in the Results section, RUPEE reaches
the best performance reported so far on the BioNLP 2013
Genia task and the second best performance on the
BioNLP 2011 Genia task, with a reduced training duration
compared to the previously released models.

Biomedical event extraction
Biomedical event extraction aims at extracting event for-
mulas from sentences, defined as sequences of tokens

(words, numbers, or symbols). We first introduce the
main concept of the task and present the data provided
by the BioNLP challenges.
Definitions
Terminology regarding biomedical events, triggers, etc.
varies from one task or data set to another; in the fol-
lowing, we use the definitions used by the Genia (GE)
task 1 of the BioNLP challenges. An event is defined as
a formula constituted of two kinds of elements: an event
trigger and one or several arguments. The event trigger
is a text entity to be extracted, whereas arguments can
be proteins, genes or other events. We define a text
entity as a character string, which can be a part of word
or several consecutive words. All the entity statements
mentioned in this paper refer to text entity. In the data
settings of the GE task, gene/protein mentions are
already annotated in the text. Nine types of events, listed
in Table 1, are defined in the BioNLP GE task. These
nine types may be merged into three broader categories:
first, the single theme argument events (SVT); then the
Binding events (BIN), which may take up to two theme
arguments; and finally, regulation events (REG), which
may take up to two arguments, a theme and an optional
cause. REG events are possibly recursive because their
arguments may be either proteins or events. Thirteen
types of events were defined in the BioNLP 2013 chal-
lenge, but we only dealt with the nine types originally
defined in the previous challenges, because the newly
defined types were represented by too few examples for
proper training.
Figure 1 illustrates biomedical event extraction in the

GE task framework: given three proteins “Tax”, “CBP”
and “p300”, one must detect two events of the Binding
category, both associated to the “recruit” trigger:
(“recruit”, theme: “Tax”, theme_2:“CBP”) and (“recruit”,
theme: “Tax”, theme_2: “p300”). A key part of the task
is to detect the trigger entities among the candidate
sequences of tokens.

Figure 1 Sentence and associated events. Excerpt from the
BioNLP 2013 Genia task.

Table 1. Classes and types of events with their
arguments (P stands for Protein, E for Event)

Class Type Principal arg Optional arg

Gene expression theme (P)

S Transcription theme (P)

V Protein catabolism theme (P)

T Phosphorylation theme (P)

Localization theme (P)

B

I Binding theme (P) theme_2 (P)

N

R Regulation theme (P/E) cause (P/E)

E Positive regulation theme (P/E) cause (P/E)

G Negative regulation theme (P/E) cause (P/E)

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 2 of 13

Data
Three BioNLP GE tasks have been organized: in 2009,
2011, and 2013. Each time, three separate data sets were
produced for training, development, and test purposes.
These data sets were created from extracts of articles
from PubMed; training and development sets contain
fully annotated texts, with events (triggers and argu-
ments) and their types, whereas test sets contain texts
annotated with protein mentions alone. Extracts from
either titles, abstracts or full articles have been used,
following the repartition reported in Table 2. We con-
ducted our experiments using the test data from 2011
and 2013 editions. When evaluating on data from 2011,
we used the corresponding training and development
sets; when evaluating on data from 2013, we gathered
the training and development sets from 2011 and 2013.
Working with texts extracted from titles, abstracts, or

full papers has consequences, as it has been previously
shown that the distribution of events varies according to
the position in articles [9]. More problematic, we
remarked that annotations are also affected by the posi-
tion: for instance, the trigger “overexpress” is always
labeled Gene_expression and Positive_regulation in
abstracts and titles, whereas it is exclusively labeled by
only one of those types in full papers. Figure 2 illustrates
other difficulties that arise due to the manual annotation
of data: in S1, “enhanced and prolonged” is split as two
triggers, whereas it is labeled as a single trigger in S2; in
S3, two Gene_expression events are related to the same
protein, with nested triggers “expression” and “biallelic
expression”; in S4, the trigger “dependent” is labeled as
Regulation, whereas in S5 it is labeled as Positive_regu-
lation in a similar context, which does not give any hint
on the positiveness of the regulation. Clearly, there are
some fluctuations in the annotations, which may repre-
sent several legitimate ground truths, but they are hardly
reproducible by a classification algorithm. These fluctua-
tions are likely to affect the evaluation in a fair way
regarding the comparison of classifiers, but in an
adverse way regarding sheer performance. The annota-
tion of REG events is particularly subtle and some of
the confusions made by automatic systems may reflect
the actual uncertainty about ground truth that arises
from the ambiguity of some sentences. Even if the con-
sistency of gold annotations has not been assessed in
the Genia task, we may assume that it is omparable to

the one of the the ID (Infectious Diseases) task, which is
very similar to the Genia task. This consistency was
found to be below 75% in a previous study [10].

Methods
We describe now our model RUPEE; it directly extracts
pairwise interactions between entities, thereby contrast-
ing with the usual pipeline approaches, which require
detecting triggers as an intermediate problem. RUPEE
proceeds in two steps:
Main (trigger, theme) pair extraction that detects

the triggers with one of their arguments;
Post-processing that adds extra arguments to BIN

and REG events.

Recursive pairwise model
This section first details the first step, which is the main
innovative part of our system.
Direct extraction of simple events
We process entities differently depending on whether
they are marked as proteins in the annotation or not; the
latter are termed candidate entities. In a given sentence
S, we denote CS = {ci}i the set of candidate entities, which
is built from the sentence tokens, and AS = {aj}j the set of
candidate arguments (that is, the proteins identified by a
named-entity recognizer beforehand). The set of event
types (augmented by None) is denoted Y.
The first steps of a pipeline model consist in predict-

ing whether candidate entities ci ∈ CS are triggers or
not and then, whether arguments aj ∈ AS can partici-
pate to a subset of events from Y. Instead, our pairwise
model directly addresses the problem of classifying the
(candidate, argument) pairs pij = (ci, aj) as events of type
from Y. This classification is based on Support Vector
Machines (SVMs), where the multi-class problem is bro-
ken down in a series of one-vs-rest binary problems, one
for each event type. The final decision associated to
each pair pij is simply taken as the event (including
None) whose score is maximal. As a result, classifying a
pair Pij as not-None jointly detects the event trigger ci
and its argument aj.
Recursive extraction of complex events
For simple SVT and BIN events, the set AS of possible
arguments is restricted to proteins, but the events of
class REG may have other events as arguments, thus AS

has to be enriched. Considering all possible events
would be intractable, so that the set of possible argu-
ments is updated dynamically in the process of extract-
ing events. As these new argument can only be assigned
to some specific event types (that is, REG events), in
practice it is simpler to update the set of pairs that
remain to be assessed.
Assume that an event has been actually predicted, that

is, that pab = (ca, ab) has been classified as ŷαβ �= None;

Table 2. Statistics of corpora of BioNLP GE tasks

Training Development Test

Year Tit./Abs. Full Tit./Abs. Full Tit./Abs. Full

2009 800 0 150 0 260 0

2011 800 108 150 109 260 87

2013 0 222 0 249 0 305

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 3 of 13

the predicted event is denoted êαβ = (cα , aβ , ŷαβ). We
then create all pairs with it as argument, {(ci, ca)|ci ∈
CS}, and add them to PS, so as to detect recursive
events. We assume that recursive events constitute a
directed acyclic graph, where the ancestor of a candidate
entity cannot be used as its argument. The dynamic
updating process is thus constrained to prevent the
creation of cycles.
Algorithm 1 Extracting events with RUPEE
input sentence S, candidate entities Cs = {ci}i, labeled

proteins As = {aj}j and binary classifiers fk for each event
type k
1: initialize candidate pairs
Ps = {(ci, aj), ci ∈Cs, aj ∈ As}

2: initialize extracted events εs=∅
3: for pab ∈ Ps do
4: score sk

αβ = fk(pαβ) for each event type k

5: store ŝαβ = maxksk
αβ and ŷαβ = arg maxks

k
αβ

6: end for
7: while PS ≠ ∅n do
8: select the pair pαβ ∈ PS such that

pαβ = arg maxαβ ŝαβ

9: update PS ← PS − {pαβ }
10: if ŷαβ �= None then
11: create event êαβ = (cα , aβ , ŷαβ)

12: update ES ← ES ∪ {̂eαβ }
13: update PS ¬ PS ∪ {(ci, ca)|ci ∈ Cs}
14: censor pairs in PS to avoid cycles
15: compute ŝ and ŷ for the new {(ci, ca)} pairs
16: end if
17: end while
18: return extracted events ΕS
Algorithm 1 summaries our event extraction algorithm

RUPEE. For all events with a single argument, predicting y
variables directly responds to the event extraction problem.
When appropriate, additional optional arguments are added
after all pairwise events have been extracted, by the post-
processing. Working on pairs allows us to take into account
interactions, in particular through dedicated features
describing the links between the trigger and its argument.
Fitting the pairwise model
The prediction process described above relies on a
multi-class classifier. We stress again that, since pairs
are assigned to a single class, there is no need to address
the more difficult multi-label problem encountered in
standard pipeline approaches. An entity may still be
assigned to several events, possibly of different types,
through the allocation of labels to several pairs compris-
ing this entity. We now report some important details
on the learning process of RUPEE.

Figure 2 Examples of ambiguous annotations.

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 4 of 13

For each event type, a series of binary linear SVMs is
fitted to the available training data, using the Scikit-
learn implementation [11]. As events are rare, each bin-
ary classification problem is highly imbalanced. We thus
use different losses for positive and negative examples
[12,13], resulting in two hyper-parameters C+/C- that
are selected by cross-validation from a set of candidate
values (C+ ∈ {0.001, 0.01, 0.1,1,10,100} and C- ∈
{0.001,0.01, 0.05,0.1,1,10}). The selected C+/C-pair maxi-
mizes the cross-validated F-score of the corresponding
event type (taken in isolation).
For the SVT and BIN events, the training sets are all

composed of the possible (candidate, argument) pairs
Ps = {pij = (ci, aj)|ci ∈ Cs, aj ∈ As} readily extracted from
all training sentences, and they only differ in the defini-
tion of the positive and negative class, according to the
true label associated to each pair.
Creating the training sets for REG events is more com-

plicated: since they can take events as arguments, new
pairs are added to PS by considering all the events already
detected, as sketched in Algorithm 1. Hence, the sets of
training examples are not deterministically known before
training, but depend on predictions of all other classifiers.
Training directly on them requires to use either online
algorithms or complex search-based structured predic-
tion procedures as in [14]. In this paper, we prefer to use
instead the true labels yαβ during the training phase of
REG and None classifiers: the training sets are then the
enriched sets of possible (candidate, argument) pairs
Cs, ∃β : yαβ �= None} Cs, ∃β : yαβ �= None}. This allows
to know all training examples beforehand and hence to
use standard batch SVM algorithms. The drawback is
that, since extracted events in test are imperfect, this cre-
ates a divergence between training and testing scenarios,
which can lead to degraded performance. However, as
our experiments show, this effect is marginal compared
to the advantages of using fast reliable batch training
algorithms for SVMs.

The final decision rule simply consists in predicting
the class corresponding to the highest SVM score. This
simple scheme could be improved, either by using
multi-class classifiers or by using more refined combina-
tions optimizing a global criterion as in [8]. Though this
route deserves to be thoroughly tested, we conjecture
that only marginal gains should be expected since, as
the confusion matrix of Table 3 shows, the vast majority
of errors are due to the detection of an event when
there is none or to the absence of detection of an exist-
ing event: when an event is rightly detected, its correct
type is predominantly predicted.
Computational considerations
The pairwise structure leads to a simple inference pro-
cedure, with a slight increase in computational complex-
ity compared to pipeline models. We denote m = card
(CS), the number of candidate entities, n = card (AS),
the number of annotated proteins and m’ the number of
detected triggers. The complexity of a pipeline model is
O (m’(n + m’)), whereas that of RUPEE is O (m(n +
m’)). Our complexity is bigger than the pipeline model
but cheaper than joint models such as the one intro-
duced in [7], whose complexity is O(m(n2 + m)).

Post-Processing
We now describe the post-processing carried out once
the (trigger, theme) pairs are detected and labeled as
events. The goal is to look whether secondary argu-
ments should be added to these extracted events.
Binding theme fusion
This step attempts to merge several pairs labeled as
Binding to create multiple arguments events. We take
the set of extracted Binding events {(ca, ab)} that share
the same trigger ca, and all combinations {(ca, ab , ag)| g
≠ b} are classified by a binary SVM. Once a combination
(ca, ab , ag) is predicted as a correct merge, it is added
to predicted events while both pairs (ca, ab) and (ca, ag)
are removed.

Table 3. Confusion matrix for RUPEE on the BioNLP 2013 GE task, computed by cross-validation on the training and
development sets

Predicted / True None Gene exp Trans Pro cat Phosp Local Bind Regu Pos reg Neg reg

None 223460 404 163 27 42 60 296 390 799 397 226038

Gene expression 440 2741 13 0 0 17 2 1 43 5 3262

Transcription 186 16 565 0 0 0 0 4 15 0 786

Protein catabolism 30 0 0 150 0 0 0 0 1 0 181

Phosphorylation 76 0 0 0 413 0 0 0 0 0 489

Localization 114 20 0 0 0 398 4 0 1 2 539

Binding 507 0 0 0 0 1 1470 2 0 1 1981

Regulation 453 0 0 0 0 0 1 813 33 4 1304

Positive regulation 1245 42 10 0 0 0 2 67 2456 7 3829

Negative regulation 555 7 2 1 1 0 0 46 11 1176 1799

227066 3230 753 178 456 476 1775 1323 3359 1592

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 5 of 13

Regulation-Cause assignment
This step looks for optional cause arguments that may
be added to the extracted REG events. Given an
extracted event (ca , ab) and a candidate argument set
AS = {ag} containing all the proteins of the sentence S as
well as all events extracted by the classifier, all combina-
tions {(ca, ab, ag)|g ≠ b} are classified by a binary SVM.
Since cause argument could be another event, we
extract them incrementally in a dynamic process alike
(trigger, theme) pair extraction, also with constraints
avoiding the creation of cycles.

Features
This section details our features as well as the data pre-
processing used by RUPEE.
Pre-Processing
Tokenization and sentence splitting have a substancial
impact on the results of the dependency parsing as well
as the way we handle compound words that contain
protein names. We split the data in sentences using
both the nltk toolkit [15], and the sentence splitting pro-
vided for the BioNLP GE task. As the best pipeline
model TEES and the best joint model UCLEED use
fine-grained tokenizations, we conjectured that fine-
grained tokenizations could provide relevant features.
Coarse tokenizations are useful to maintain some bio-
medical jargon that also convey essential information.
Compared to using dependency parse trees based solely
on coarse tokenizations, adding features from the
dependency parse trees based on fine-grained tokeniza-
tions improves the total F-score of our RUPEE model by
more than 2% on the BioNLP 2013 test set. Hence, two
tokenizations are used for different features. The main
difference between coarse and fine-grained tokenizations
is that some compound words are split by handcrafted
rules in fine-grained tokenization. For example, given a
sentence “inhibit NF-kappaB-dependent pro-inflamma-
tory gene transcription”, “NF-kappaB-dependent” is split
into two words “NF-kappa” and “dependent” in fine-
grained tokenization, but kept as a single word in coarse
tokenization. Tokenization1, provided by the organizers
of the BioNLP GE task, is a coarse tokenization that is
used to characterize when a candidate entity and a pro-
tein are in the same token, the parsing results provided
by organizers are all based on this tokenization. Tokeni-
zation2 is fine grained, based on the Stanford parser
[16] that is slightly modified for primary tokenization. It
supplies the dependency parse, candidate entity match
and most of our features. We used stems (obtained by
the Snowball stemmer provided in nltk) as base forms
for the tokens. In order to get the parse trees based on
the fine-grained tokenization, we computed them using
a phrase structure parser [17], along with the post-pro-
cessing of the Stanford corenlp package [18].

Candidates
For each sentence S, the set CS is built with a gazetteer:
candidate entities are recursively added by searching
first the longest token sequences (from Tokenization2)
from the gazetteer. For entities with several tokens, a
representative head token is selected by a heuristic
based on the dependency parse.
Three types of tokens are considered: the head token,

its parent and child nodes in the dependency tree, and
the tokens belonging to a neighboring window of the
entity. The size k of the word window is a hyper-para-
meter of our model. Table 4 lists all features which
include stems, part-of-speech (POS) tags, etc. Special
care was taken to design the feature for head token
since it plays an extremely important role in candidate
entities. We hence employed features and heuristics to
deal with compound-words, hyphens and prefixes,
inspired by such tools developed in the code of the
UCLEED system and based on Tokenization2. Protein
names and POS in tokens are substituted by the token
PROT, e.g. transforming “LPS-activated” into “PROT-
activated”. In the end, there is total of a 35,365 candi-
date features.
Arguments
Table 4 also lists the argument features, which are a sub-
set of those for candidate entities. Most head word fea-
tures are removed, but base forms and POS of the
neighboring tokens and of the parent node in the depen-
dency tree are still included. Assigning label from SVT or
BIN event classes to a (ci, eab) pair should never occur,
because only regulation events could have another event
as argument. Therefore, we add a feature that indicates
whether the argument is a protein or a trigger entity.
Proteins are also described using features extracted from
the Uniprot knowledge base [19]. We first queried the
knowledge base using the protein name strings marked
in annotation to create a map from protein names to pro-
tein IDs, then retrieve the protein interaction information
from the IntAct knowledge base [20]. Since the protein
name strings were usually an imperfect match, we col-
lected the top 5 IDs for each protein name string and
supposed that protein name strings that share the same
top 5 IDs have identical interaction knowledge. There is
total of 4,349 argument features.
Pairwise relations
Our pairwise approach is able to take advantage of the
joint features listed in Table 4, which code interactions
between candidate triggers and arguments. Hence, we
have a feature indicating if both elements of a pair
belong to the same token (based on Tokenization1).
But the most important joint features come from the

shortest path linking candidates and arguments in the
dependency parse tree of the sentence. Incorporating
such dependency information into the pairwise model

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 6 of 13

relies on the process encoding the path into feature vec-
tors. Many formatting methods have been proposed in
previous works. Following [21], our system uses a com-
bination of E-walks (edge walks) which encode the path
into (dep-tag, token, dep-tag) triplets; and V-walks

(vertex walks), which encode the path into (token, dep-
tag, token) triplets. In these triplets, tokens are described
by stem and POS tags, and dep-tags are the dependency
labels. Figure 4 illustrates this formatting: from the
dependency parse given on top, three V-walk and two

Table 4. Features used by our system. Most are based on Tokenization2 except when specified

Features Examples

Candidate
entity features

Base form (stem) of the head token. regul for tokens “regul*” (e.g. “regulation” in Figure 3).

Base form of the head token without ‘-’ or ‘/’
before of after.

depend for token “-dependent”

Sub-string after ‘-’ in the head token. dependent for token “-dependent”

POS of the head token. VBZ for token “requires” in Figure 3

First token of the entity is after ‘-’ or ‘/’. -First for entity “-independent pathways”

Last token of the entity is before ‘-’ or ‘/’. Last- for entity “phobol ester-”

Head token has a special prefix: “over”, “up”,
“down”, “co”

up for “upregulation”

Concat. of base form and POS of parents of the
head token in dependency parse.

NSUBJ¬requir/VBZ for “regulation” in Figure 3

Concat. of base form and POS of children of the
head token in dependency parse.

NSUBJ®regul/NN, DOBJ®recruit/NN for “requires” in Figure 3

Base forms of k neighboring tokens around the
entity.

Base forms from the 2nd previous token to the 2nd next token are PROT,
promot, PROT, PROT for “requires” in Figure 3

POS of k neighboring tokens around the entity. POS from the 2nd previous token to the 2nd next token are JJ, JJ, IN,
DT for “regulation” in Figure 3

Neighborhood of the entity has ‘-’ or ‘/’. Features from the 2nd previous token to the 2nd next token are NONE,
NONE, hyphen, hyphen for “requires” in Figure 3

Sentence has “mRNA”. True if “mRNA” exists in any position of the sentence

Entity is connected with another string using
Tokenization1.

PROT-expression and PROT-express for token “Tax-expression”

Argument
features

Argument is a protein. True if the argument entity overlaps any protein

POS of the head token. NN for “NF-kappa” in Figure 3

Features extracted from IntAct when the argument
is a protein.

association, physical association for protein name “c-Rel”

Base forms of k neighboring tokens around the
argument.

Base forms from the 1st previous token to the 1st next token are requir,
PROT for “NF-kappa” in Figure 3

POS of k neighboring tokens around the argument. POS from the 1st previous token to the 1st next token are VBZ, IN for “NF-
kappa” in Figure 3

Concat. of base form and POS of parents of the
head token in dependency parse.

NSUBJ¬requir/VBZ for “regulation” in Figure 3

Joint features Token sequence between candidate and argument
has proteins.

[PROT] ... PROT ... [trigger] and
[PROT] ... PROT ... [recruit]
for ("NF-kappaB”, “recruitment”) in Figure 3

V-walk features between candidate and argument
with base forms.

regul PREP OF←−−−−−−promot, promot NN−→ PROT for example in Figure 4

E-walk features between candidate and argument
with base forms.

START−−−→ regul PREP OF−−−−−−→, PREP OF−−−−−−→, prompt NN−→ NN−→ PROT END−−→ for
example in Figure 4

V-walk features between candidate and argument
with POS.

NN, PREP OF←−−−−−− NN, NN, NN−→ PROT for example in Figure 4

E-walk features between candidate and argument
with POS.

START−−−→ NN PREP OF−−−−−−→ NN NN−→, NN−→ PROT END−−→ for example in Figure 4

Candidate and the argument share a token using
Tokenization1.

ARG-express for “Tax” and “expression” in “Tax-expression”

Most are based on Tokenization2 except when specified.

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 7 of 13

E-walk features are defined. These are inserted in the
feature vector using a bag-of-words process, thus losing
any relative ordering information. These imperfect
representations lose a lot of information and can even
add noise, especially when the path is long. Therefore,
we applied heuristics from the UCLEED system to
remove some uninformative edges from the dependency
parse. Moreover, dependency parse features are added
only for pairs for which the (candidate, argument) path
length is below a threshold whose value is a hyper-
parameter. There is a total of 176,106 pairwise features.

Related work
Besides rule-based approaches, such as NCBI [22] or
BioSEM [23], and pattern-based approaches such as
NICTA [24], current approaches heavily rely on
machine learning. These statistical approaches fall into
two main categories: pipeline incremental models and
global joint methods. Pipeline approaches [25-27] are
the simplest way to tackle the problem of event extrac-
tion. A sequence of specific classifiers is run on the text
to successively
(P1) detect event triggers,
(P2) assign arguments to triggers,
(P3) detect triggers whose arguments can be events,
(P4) assign arguments to these latter triggers.
Steps (P3) and (P4) can be ran multiple times. Such

systems are relatively easy to set up and experienced
many successes: the TEES system [28,29,5] won the
BioNLP GE task in 2009 and ranked 2nd in 2013,
whereas the EVEX system won in 2013 [30,6]. However,
all these methods suffer from error cascading. Besides,

prediction must be formalized as a multi-label classifica-
tion problem because some words can participate in the
definition of several events of different types. Detecting
triggers in isolation of their arguments in steps (P1) and
(P3) are ill-posed intermediate problems, since the
notion of trigger is intrinsically tied to its argument.
The latter brings contextual information that is indispu-
tably relevant for detection. Besides, rich features coding
for (trigger, argument) pairs [21] are used by pipeline
models only for assigning arguments (that is, edge
detection step in TEES and TEES 2.1), whereas they
could be useful for trigger detection as well.
Global joint approaches [31,16,22,24,23] aim at solving

the event extraction task at once, so as to resolve the
drawbacks of pipeline models. In [16], event annotations
are converted into pseudo-syntactic representations and
the task is solved as a syntactic extraction problem by tra-
ditional statistical parsing methods. In [31,7,32,33], some
models are proposed based on the maximization of a glo-
bal score taking into account the annotations of nodes and
edges in a graph representing each sentence. This maximi-
zation problem is formalized as an integer linear program
with consistency constraints, and solved via dual decom-
position. Such joint models perform very well (winner of
the BioNLP 2011 GE task), but suffer from high comput-
ing costs, as all possible combinations of words are consid-
ered as potential events. In the following, we show that
RUPEE is able to reach slightly better accuracies than joint
models while being computationally much cheaper. A
method based on the search-based structured prediction
paradigm [14] has already been proposed as an intermedi-
ate step between joint and pipeline approaches, by turning
the structured prediction problem into a sequence of mul-
ticlass classification tasks. Our experiments demonstrate
that, despite being conceptually simpler, our recursive
pairwise model can outperform it as well.

Results
In this section, we demonstrate the performance of
RUPEE in the framework of the GE tasks of the BioNLP
challenges. More precisely, we use the annotated data
collected for these tasks and report the results returned
by the evaluation servers on the test sets of the 2013 GE
task, and also of the 2011 edition so as to compare to
joint methods.
To assess the efficiency of our modeling choices, we

also implemented a pipeline counterpart system, follow-
ing the structure of the TEES approach [28,29,5] but
using our feature set, together with a pre-processing and
a post-processing that best match our system. This pipe-
line system comprises four steps:
Trigger classification, which assigns event types from

Y to candidate entities ci ∈CS using a multi-class SVM
classifier;

Figure 4 E-walks and V-walks. Examples of encodings of the
dependency parse tree.

Figure 3 Example Sentence with Part-Of-Speech Tags and
Dependency Parse.

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 8 of 13

Edge detection, which identifies the edges between
extracted triggers and proteins and between REG trig-
gers and all the triggers; labels from Yedge = {theme,
cause, None} are assigned to those pairs;
Binding theme fusion, which merges several pairs

labeled as Binding to create multiple arguments events,
following the post-processing used for our algorithm
and described in the Methods section;
Regulation-cause assignment, where two predicted

pairs (ci, theme: ab), (ci, cause : ag) may be merged into
a single (ci, theme : ab, cause : ag).

Genia shared task 2013
For the BioNLP 2013 GE task, the hyper-parameters of
RUPEE have been optimized on the GE task develop-
ment set (except for the regularization parameters of
the SVMs, which are selected by cross-validation), after
training on the corresponding training sets: token win-
dow size is 2 for candidate entities and 1 for arguments,
the threshold for dependency path is 4. Using these
hyper-parameter values, the final model submitted for
test evaluation on the GE task server has been trained
on all documents from training and development sets of
BioNLP 2011 and 2013 GE tasks. Detailed descriptions
of the BioNLP 2011 and 2013 GE data are respectively
given in [3] and [4].
Table 5 lists the detailed test F-scores, as returned by

the official challenge test server (using the default
approximate span & recursive matching evaluation set-
ting). We compare our model RUPEE to the winner of
the challenge, EVEX [6], and of the best runner-up,
TEES 2.1 [5], which are both pipeline approaches.
RUPEE is slightly below TEES 2.1 on BIN events, but

overall, it outperforms all competitors significantly (by
more than 3%), with a wide margin on REG events.
Note that, since the test set is blinded, it is difficult to
estimate standard errors properly. However, crude

estimates of standard errors derived from the numbers
returned by the evaluation server (namely, number of
positive, true positive, and estimated examples) are
about 1%. We thus expect lower differences to be signif-
icant, since there should be some overlap between the
mistakes of the different methods.
The pipeline counterpart of RUPEE has an overall per-

formance similar to EVEX and TEES 2.1, while being
better for SVT and worse for BIN and REG events.
These disparities are due to the differences in features
and in processing details. The benefits of the pairwise
structure and the recursive process are demonstrated by
the considerable improvement upon the pipeline coun-
terpart of RUPEE (using the same features, pre- and
post-processing). In particular, the recursive prediction
process run on REG events brings about a very substan-
tial improvement (more than 8%).

Genia shared task 2011
The best performing methods on the BioNLP 2013 GE
task were pipeline approaches, but the joint models that
were performing better in the previous challenge were
not competing in 2013. As these joint models are quite
tricky to train, we compare RUPEE with joint models on
the BioNLP 2011 GE task, where trustworthy perfor-
mances have been publicly released. We train our model
using the training and development sets available at the
time of the challenge and we then get an evaluation on
the same test data using the official test server main-
tained online by BioNLP organizers. Table 6 lists the
results of RUPEE, its pipeline counterpart, and those of
UCLEED [7] and TEES [34], which are respectively the
best performing joint model and best pipeline on this
task. We also added SEARN [14], which is a hybrid
between them. The results for FAUST, UCLEED, TEES
and SEARN models are reproduced from [35,14].
As for 2013 data, RUPEE achieves a higher F-score on

all event classes compared to its pipeline counterpart.
The benefits of the pairwise structure and the recursive
process are larger here, thereby outperforming the over-
all F-score of TEES, which itself performs better than
our pipeline counterpart. Systematic improvements on
all event classes are also observed compared to the joint

Table 5. F-scores on the test set of the BioNLP 2013 GE
task

Event Type or Class TEES 2.1 EVEX Pipeline counterpart RUPEE

Gene expression 82.7 82.7 83.9 85.1

Transcription 55.0 55.0 61.7 62.8

Protein catabol 56.3 56.3 66.7 68.8

Phosphorylation 72.6 71.5 81.8 81.8

Localization 63.3 60.7 56.9 57.7

SVT TOTAL 74.9 74.5 79.0 79.6

BIN TOTAL 43.3 42.9 41.6 42.4

Regulation 23.0 23.4 23.1 31.8

Positive regul 38.7 39.2 36.5 46.3

Negative regul 43.7 43.9 38.1 43.6

REG TOTAL 38.1 38.4 35.1 43.2

ALL TOTAL 50.7 51.0 50.8 54.4

Table 6. F-scores on the test set of the BioNLP 2011 GE
task

Event
Class

FAUST UCLEED SEARN TEES Pipeline
counterpart

RUPEE

SVT 73.9 73.5 71.8 72.1 71.8 74.0

BIN 48.5 48.8 45.8 43.4 40.0 50.5

REG 44.9 43.8 43.0 42.7 35.7 45.1

ALL 56.0 55.2 53.5 53.3 50.0 55.6

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 9 of 13

model UCLEED and to the search-based structured pre-
diction approach of SEARN.
To our knowledge, RUPEE thus reaches the best over-

all performance reported so far on this data set for a
single model. FAUST [36] achieves the best F-score on
this task (56.0), but it stacks several models by using the
predictions of a number of variants of the Stanford
event parser [16] as input features in a modified
UCLEED model.
By combining the use of the simple pair structure

between triggers and arguments with a recursive predic-
tion process, RUPEE is able to outperform pipeline
models and to be at least at par with models relying on
much more sophisticated structures. For this task, it is
thus highly beneficial to consider pairwise interactions
from beginning to end, but more complex dependencies
seem not to be essential, especially since they come at a
higher computational cost.

Performance analysis
This section provides a more detailed analysis of the
performances of RUPEE. We first show results indicat-
ing that our direct approach, avoiding the intermediate
trigger detection problem, results in a series of specia-
lized event detectors that are more accurate than the
cascade of detectors of the pipeline counterpart. Then,
we show that the different solutions that can be reached
by tuning the precision-recall trade-off of our model
dominate their pipeline counterpart.
The errors made by a classifier can be summarized by a

confusion matrix, whose entries show which classes are
confused with each others. As the test data is blinded, we
computed the confusion matrix on the training and
development sets, using cross-validation class assign-
ments to get results representative of unknown test data.
Table 3 shows this confusion matrix, which is computed
as the sum of confusion matrices on left-out data during
cross-validation. Each row corresponds to the examples
of a given class, while each column corresponds to pre-
dictions into this class. None represents the “no event”
class.
The most striking characteristic shown by the confu-

sion matrix is the large number of zeros. In fact, the vast
majority of errors are either due to undetected events or
to false detections: once an event is rightly detected, pre-
dicting its class seems to be rather easy, and there is little
confusion between event types. The strongest deviation
to this general rule is for REG events, with some confu-
sions between the different regulation types, but they
incur a minor loss compared to undetected events and
false detections. In fact, our approach builds a collection
of specialized event detectors that by-pass the intermedi-
ate trigger detection problem of pipeline models. As
shown in Tables 5 and 6, this collection of specialized

detectors is more accurate than the the cascade of the
pipeline counterpart.
We now compare the precision-recall trade-offs that

can be reached by RUPEE and its pipeline counterpart.
As shown in Table 3, most classification errors are
either undetected events or false detections. We adjust
the detection rate by shifting the decision threshold on
the None class. As before, since the test data are
blinded, these curves are computed on the development
set of BioNLP 2013, for models adjusted on the BioNLP
2011 and 2013 training data.
Figure 5 displays the precision-recall curves for (trig-

ger, theme) pair extraction, that is, before the post-pro-
cessing that is common to the two approaches. The
positions and the F-scores of the actual classifiers are
marked in bold, and the level curves of F-scores are dis-
played in the background. Note that these F-scores are
not necessarily maximal since the classifiers are not cali-
brated on the test set. The maximal values of recall are
moderate, illustrating that present systems fail to
retrieve events. Clearly, except for the small values of
recall or precision that lead to very low F-scores,
RUPEE dominates the pipeline model.

Feature analysis
We demonstrate here the importance of the joint (trig-
ger, theme) features in our pairwise event detector. The
two main joint features are E-walk and V-walk, which
represent the dependency path between text entities: as
shown in Figure 4, E-walk encodes the path through the
(dep-tag, token, dep-tag) triplet, while V-walk encodes
the (token, dep-tag, token) triplet.
The importance of the joint features is measured by

the loss incurred by their withdrawal from the model.

Figure 5 Precision-recall curves of (trigger, theme) pairs
classification with level curves of F-score in the background,
computed on the BioNLP 2013 development set.

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 10 of 13

The precision-recall curves are displayed in Figure 6.
Without any joint features, we observe a huge drop in
performance, combined with a very bad calibration of
the classifier; without E-walk, we observe a significant
drop in performance; without V-walk, there is a small
drop, but this drop is due to bad calibration: the best
calibrated classifier without V-walk is better than the
best calibrated RUPEE classifier. Overall, the randomiza-
tion approach used by [37] concludes that all pairwise
differences are statistically significant at the 5% level,
except for the difference between the classifier with all
joint features and without V-walk features. Hence, joint
features are important and among them, E-walk plays a
major beneficial role, whereas V-walk has a marginal
effect. However, we believe that V-walk should benefit
RUPEE for larger training sets. Indeed, it is difficult to
learn regularities in V-walk with moderate training set
sizes, because the dictionary of tokens is large. As a con-
sequence, the two tokens of the (token, dep-tag, token)
lead to a huge feature space that is scarcely populated.

Training durations
In this last section, we propose to illustrate the lower
complexity of our approach compared to UCLEED by
providing durations for training both systems on
BioNLP 2011 GE. These timings do not involve prepro-
cessing but only running cross-validation on the training
set and evaluation on the development and test sets. For
UCLEED, we used the code (in java & scala), which is
available from [38] and we chose BioNLP 2011 GE
because this code was primarily designed to run on it.
Our code, in python, is publicly available from [39].
Experiments were conducted on the same computer,
with a quad-core Intel Xeon CPU and 16GB of RAM.

Both codes are multi-threaded and used all 4 threads
simultaneously. Under these conditions, UCLEED requires
around 8h30min to run its 10 epochs, while our code
completes training in about 30 min. In addition, we also
ran our pipeline counterpart system, which is implemen-
ted in the same language and uses the same libraries as
RUPEE, on the same machine. The pipeline counterpart
system took 20 min to train. Note that UCLEED might be
faster by using feature caching, but we had to disable it
because the 16GB RAM filled up, thereby further slowing
the process. In addition to the inference cost discussed
earlier, the overall computation cost also depends on the
training algorithms: both UCLEED and RUPEE use Sup-
port Vector Machines, with the online-learner MIRA [40]
for UCLEED and a dual coordinate descent method [41]
for RUPEE. We did not conduct a more thorough analysis
about the training durations since the implementation
choices such as programming languages and optimization
details such as stopping criteria can make large differences
on the computing durations.

Conclusion
We introduced RUPEE, a recursive pairwise model
designed for biomedical event extraction. RUPEE
improves on the best current approaches of the BioNLP
2013 GE task. RUPEE breaks down the overall event
extraction task into the classification of (trigger, theme)
pairs, assigned to event types. These (trigger, theme)
pairs enable to use joint features in off-the-shelf classi-
fiers, without resorting to costly global inference models.
We also implemented a recursive procedure that deals
with regulation events, which may include other events
in their definition. All operations are run in a unified
framework, using a single event classifier.
RUPEE is fast and more accurate than the available

pipeline models or joint models. Given its simplicity and
scalability, we believe that RUPEE provides a strong
basis for large-scale event extraction projects. Several
refinements are still possible, for example by exploring
other types of features, or by enabling the direct proces-
sing of triplets that may be encountered in binding or
regulation events. Our experiments, which use different
features of dependency paths, show that current repre-
sentations of syntactic parse tree may be problematic
regarding their sparsity. Continuous vector representa-
tion of pairwise relations [42] and semantic composition
approaches [43] are very promising directions to gener-
ate features representing the relations between text enti-
ties. Also, bearing in mind that BioSEM [23] achieves
the best performance on Binding event extraction by
using complex patterns to deal with multi-argument
events, going beyond pairs should be beneficial. A
model that could extract higher-order relations would
be expected to perform better on multi-argument event.

Figure 6 Precision recall curve of (trigger, theme) pairs
classification with level curves of F-score in the background,
computed on the BioNLP 2013 development set.

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 11 of 13

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have designed the system. XL implemented it and carried out all
experiments. All authors have participated in the writing, read and approved
the final manuscript.

Acknowledgements
This work was carried out in the framework of the Labex MS2T funded by
the French National Agency for Research through the program “Investments
for the future” (ANR-11-IDEX-0004-02).

Declarations
The publication costs of this article were funded by the French National
Agency for Research through “young researchers” program (EVEREST-12-
JS02-005-01).
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 10, 2015: BioNLP Shared Task 2013: Part 1. The full contents of
the supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/16/S10.

Published: 13 July 2015

References
1. Kim JD, Ohta T, Pyysalo S, Kano Y, Tsujii J: Extracting bio-molecular events

from literature. Computational Intelligence 2011, 27(4):513-540.
2. Kim JD, Ohta T, Pyysalo S, Kano Y, Tsujii J: Overview of BioNLP’09 shared

task on event extraction. Proceedings of the BioNLP 2009 Workshop
Companion Volume for Shared Task Association for Computational
Linguistics, Boulder, Colorado; 2009, 1-9 [http://www.aclweb.org/anthology/
W09-1401].

3. Kim JD, Wang Y, Takagi T, Yonezawa A: Overview of genia event task in
BioNLP shared task 2011. Proceedings of BioNLP Shared Task 2011
Workshop Association for Computational Linguistics, Portland, Oregon; 2011,
7-15 [http://www.aclweb.org/anthology/W11-1802].

4. Kim JD, Wang Y, Yasunori Y: The genia event extraction shared task, 2013
edition - overview. Proceedings of the BioNLP Shared Task 2013 Workshop
Association for Computational Linguistics, Sofia, Bulgaria; 2013, 8-15.

5. Björne J, Salakoski T: TEES 2.1: Automated annotation scheme learning in
the BioNLP 2013 shared task. Proceedings of BioNLP Shared Task 2013
Workshop Association for Computational Linguistics, Sofia, Bulgaria; 2013.

6. Hakala K, Van Landeghem S, Salakoski T, Van de Peer Y, Ginter F: EVEX in
ST’13: Application of a large-scale text mining resource to event
extraction and network construction. Proceedings of BioNLP Shared Task
2013 Workshop Association for Computational Linguistics Sofia, Bulgaria; 2013.

7. Riedel S, McCallum A: Fast and robust joint models for biomedical event
extraction. Proceedings of the 2011 Conference on Empirical Methods in
Natural Language Processing Association for Computational Linguistics,
Edinburgh, Scotland; 2011, 1-12 [http://www.aclweb.org/anthology/D11-
1001].

8. Liu X, Bordes A, Grandvalet Y: Biomedical event extraction by multi-class
classification of pairs of text entities. Proceedings of the BioNLP Shared Task
2013 Workshop Association for Computational Linguistics, Sofia, Bulgaria;
2013, 45-49.

9. Kim JD, Nguyen N, Wang Y, Tsujii J, Takagi T, Yonezawa A: The genia event
and protein coreference tasks of the BioNLP shared task 2011. BMC
Bioinformatics 2012, 13(S-11):1.

10. Pyysalo S, Ohta T, Rak R, Sullivan D, Mao C, Wang C, Sobral B, Tsujii J,
Ananiadou S: Overview of the id, epi and rel tasks of bionlp shared task
2011. BMC bioinformatics 2012, 13(Suppl 11):2.

11. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M, Duchesnay E: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 2011,
12:2825-2830.

12. Morik K, Brockhausen P, Joachims T: Combining statistical learning with a
knowledge-based approach - a case study in intensive care monitoring.
Proceedings of the Sixteenth International Conference on Machine Learning
(ICML 1999) 1999.

13. Veropoulos K, Campbell C, Cristianini N: Controlling the sensitivity of
support vector machines. In Proceedings of the International Joint
Conference on Artificial Intelligence Dean, T 1999, 55-60.

14. Vlachos A, Craven M: Biomedical event extraction from abstracts and full
papers using search-based structured prediction. BMC bioinformatics
2012, 13(Suppl 11):5.

15. Bird S, Klein E, Loper E: Natural Language Processing with Python. O’Reilly,
Sebastopol, California; 2009 [http://www.nltk.org].

16. McClosky D, Surdeanu M, Manning CD: Event extraction as dependency
parsing. Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1 HLT ‘11
Association for Computational Linguistics, Stroudsburg, Pennsylvania; 2011,
1626-1635.

17. McClosky D, Charniak E, Johnson M: Automatic domain adaptation for
parsing. Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics HLT
‘10 Association for Computational Linguistics, Stroudsburg, Pennsylvania;
2010, 28-36.

18. De Marneffe MC, MacCartney B, Manning CD: Generating typed
dependency parses from phrase structure parses. Proceedings of LREC
2006, 6:449-454.

19. The UniProt Consortium: Uniprot: a hub for protein information. Nucleic
Acids Research 2015, 43(D):204-212.

20. Orchard S, et al: The MIntAct project - intact as a common curation
platform for 11 molecular interaction databases. Nucleic Acids Research
(D) 2014, 358-363.

21. Miwa M, Sætre R, Kim JD, Tsujii J: Event extraction with complex event
classification using rich features. J Bioinformatics and Computational
Biology 2010, 8(1):131-146.

22. Liu H, Verspoor K, Comeau DC, MacKinlay A, Wilbur WJ: Generalizing an
approximate subgraph matching-based system to extract events in
molecular biology and cancer genetics. ACL 2013, 2013:76.

23. Bui QC, Campos D, van Mulligen E, Kors J: A fast rule-based approach for
biomedical event extraction. Proceedings of the BioNLP Shared Task 2013
Workshop Association for Computational Linguistics, Sofia, Bulgaria; 2013,
104-108.

24. MacKinlay A, Martinez D, Yepes AJ, Liu H, Wilbur WJ, Verspoor K: Extracting
biomedical events and modifications using subgraph matching with
noisy training data. ACL 2013, 2013:35.

25. Sætre R, Miwa M, Yoshida K, Tsujii J: From protein-protein interaction to
molecular event extraction. Proceedings of the BioNLP 2009 Workshop
Companion Volume for Shared Task Association for Computational
Linguistics, Boulder, Colorado; 2009, 103-106 [http://www.aclweb.org/
anthology/W09-1414].

26. Cohen KB, Verspoor K, Johnson H, Roeder C, Ogren P, Baumgartner W,
White E, Hunter L: High-precision biological event extraction with a
concept recognizer. Proceedings of the BioNLP 2009 Workshop Companion
Volume for Shared Task Association for Computational Linguistics, Boulder,
Colorado; 2009, 50-58[http://www.aclweb.org/anthology/W09-1407].

27. Quirk C, Choudhury P, Gamon M, Vanderwende L: MSR-NLP entry in
BioNLP shared task 2011. Proceedings of BioNLP Shared Task 2011
Workshop Association for Computational Linguistics, Portland, Oregon; 2011,
155-163[http://www.aclweb.org/anthology/W11-1825].

28. Björne J, Heimonen J, Ginter F, Airola A, Pahikkala T, Salakoski T: Extracting
complex biological events with rich graph-based feature sets.
Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared
Task Association for Computational Linguistics, Boulder, Colorado; 2009,
10-18[http://www.aclweb.org/anthology/W09-1402].

29. Björne J, Ginter F, Salakoski T: University of Turku in the BioNLP’11 shared
task. BMC Bioinformatics 2012, 13(Suppl 11):4.

30. Landeghem SV, Björne J, Abeel T, Baets BD, Salakoski T, de Peer YV:
Semantically linking molecular entities in literature through entity
relationships. BMC Bioinformatics 2012, 13(S-11):6.

31. Riedel S, Chun HW, Takagi T, Tsujii J: A Markov logic approach to bio-
molecular event extraction. Proceedings of the BioNLP 2009 Workshop
Companion Volume for Shared Task Association for Computational
Linguistics, Boulder, Colorado; 2009, 41-49[http://www.aclweb.org/
anthology/W09-1406].

32. McClosky D, Riedel S, Surdeanu M, McCallum A, Manning CD: Combining
joint models for biomedical event extraction. BMC Bioinformatics 2012,
13(S-11):9.

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 12 of 13

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S10
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S10
http://www.aclweb.org/anthology/W09-1401
http://www.aclweb.org/anthology/W09-1401
http://www.aclweb.org/anthology/W11-1802
http://www.aclweb.org/anthology/D11-1001
http://www.aclweb.org/anthology/D11-1001
http://www.nltk.org
http://www.aclweb.org/anthology/W09-1414
http://www.aclweb.org/anthology/W09-1414
http://www.aclweb.org/anthology/W09-1407
http://www.aclweb.org/anthology/W11-1825
http://www.aclweb.org/anthology/W09-1402
http://www.aclweb.org/anthology/W09-1406
http://www.aclweb.org/anthology/W09-1406

33. Riedel S, McCallum A: Robust biomedical event extraction with dual
decomposition and minimal domain adaptation. Proceedings of BioNLP
Shared Task 2011 Workshop Association for Computational Linguistics,
Portland, Oregon; 2011, 46-50 [http://www.aclweb.org/anthology/W11-1807].

34. Björne J, Salakoski T: Generalizing biomedical event extraction.
Proceedings of BioNLP Shared Task 2011 Workshop Association for
Computational Linguistics, Portland, Oregon; 2011, 183-191 [http://www.
aclweb.org/anthology/W11-1828].

35. Kim JD, Nguyen N, Wang Y, Tsujii J, Takagi T, Yonezawa A: The genia event
and protein coreference tasks of the bionlp shared task 2011. BMC
Bioinformatics 2012, 13(Suppl 11):1.

36. Riedel S, McClosky D, Surdeanu M, McCallum AD, Manning C: Model
combination for event extraction in BioNLP 2011. Proceedings of BioNLP
Shared Task 2011 Workshop Association for Computational Linguistics,
Portland, Oregon; 2011, 51-55 [http://www.aclweb.org/anthology/W11-1808].

37. Chinchor N: The statistical significance of the MUC-4 results. In
Proceedings of the 4th Conference on Message Understanding (MUC-4).
Volume 6. Association for Computational Linguistics, Stroudsburg,
Pennsylvania; 1992:30-50.

38. UCLEED BioNLP Genia Event Parser. [github.com/riedelcastro/ucleed].
39. RecUrsive Pairwise Event Extraction for BioNLP Genia Task. [github.com/

XiaoLiuAI/RUPEE].
40. Crammer K, Singer Y: Ultraconservative online algorithms for multiclass

problems. The Journal of Machine Learning Research 2003, 3:951-991.
41. Hsieh CJ, Chang KW, Lin CJ, Keerthi SS, Sundararajan S: A dual coordinate

descent method for large-scale linear svm. Proceedings of the 25th
International Conference on Machine Learning ACM; 2008, 408-415.

42. Bordes A, Glorot X, Weston J, Bengio Y: Joint learning of words and
meaning representations for open-text semantic parsing. International
Conference on Artificial Intelligence and Statistics 2012, 127-135.

43. Dinu G, Pham NT, Baroni M: General estimation and evaluation of
compositional distributional semantic models. Proceedings of the
Workshop on Continuous Vector Space Models and Their Compositionality
Association for Computational Linguistics, Sofia, Bulgaria; 2013, 50-58.

doi:10.1186/1471-2105-16-S10-S8
Cite this article as: Liu et al.: Extracting biomedical events from pairs of
text entities. BMC Bioinformatics 2015 16(Suppl 10):S8.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Liu et al. BMC Bioinformatics 2015, 16(Suppl 10):S8
http://www.biomedcentral.com/1471-2105/16/S10/S8

Page 13 of 13

http://www.aclweb.org/anthology/W11-1807
http://www.aclweb.org/anthology/W11-1828
http://www.aclweb.org/anthology/W11-1828
http://www.aclweb.org/anthology/W11-1808
github.com/riedelcastro/ucleed
github.com/XiaoLiuAI/RUPEE
github.com/XiaoLiuAI/RUPEE

	Abstract
	Background
	Results

	Background
	Biomedical event extraction
	Definitions
	Data

	Methods
	Recursive pairwise model
	Direct extraction of simple events
	Recursive extraction of complex events
	Fitting the pairwise model
	Computational considerations

	Post-Processing
	Binding theme fusion
	Regulation-Cause assignment

	Features
	Pre-Processing
	Candidates
	Arguments
	Pairwise relations

	Related work

	Results
	Genia shared task 2013
	Genia shared task 2011
	Performance analysis
	Feature analysis
	Training durations

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

