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ABSTRACT The organization of actin and myosin in vascular endothelial cells in situ was 
studied by immunofluorescence microscopy. Examination of perfusion-fixed, whole mounts 
of normal mouse and rat descending thoracic aorta revealed the presence of axially oriented 
stress fibers containing both actin and myosin within the endothelial cells. In both species, 
the proportion of cells containing stress fibers varied from region to region within the same 
vessel. Some endothelial cells in mouse mesenteric vein and in rat inferior vena cava also 
contained stress fibers. Quantitative studies of the proportion of endothelial cells containing 
stress fibers in the descending thoracic aorta of age-matched normotensive and spontaneously 
hypertensive rats revealed significant differences. When animals of the same sex of the two 
strains were compared, the proportion was approximately two times greater in the sponta- 
neously hypertensive rats. The proportion of endothelial cells containing stress fibers was 
about two times greater in males than in females of both strains. These observations suggest 
that multiple factors, including anatomical, sex, and hemodynamic differences, influence the 
organization of the endothelial cell cytoskeleton in situ. 

Stress fibers in tissue-cultured cells are linear, phase-dense, 
cytoplasmic fibrils that are demonstrable by light microscopy 
and consist of bundles of microfilaments (3). Immunofluores- 
cence techniques have revealed actin and myosin, as well as 
accessory contractile proteins, within these structures (15, 24, 
25, 40), but their functional significance in vitro has remained 
unclear (4). Furthermore, on only a few occasions have similar 
structures been observed in situ (6, 32, 42-44). 

Using immunofluorescence microscopy, work in this labo- 
ratory (6) demonstrated stress fibers in the scleroblasts located 
near the edge or over the radial ridge of the fish scale. 
Inasmuch as these regions are likely to experience great shear- 
ing forces, this suggested that in situ stress fibers play a role 
in cellular adhesion. Stress fiber-like structures were also 
observed within other cells but their function was interpreted 
as being different from that of the fibers found in the sclero- 
blasts. As early as 1953, Palade (29) observed filaments within 
the basal cytoplasm of capillary endothelial cells. Subse- 
quently, many investigators, using transmission electron mi- 
croscopy, reported the presence of micro filaments (presum- 
ably containing actin; see reference 11) in the endothelial cells 
of various blood vessels in normotensive animals (20). In 
certain endothelial cells, these microfilaments were organized 
into bundles (7). Cross-striated microfilament bundles (simi- 
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lar in appearance to the stress fibers of certain tissue-cultured 
cells) have been observed in the arterial endothelium (aorta 
and cerebral arteries) of hypertensive rats (17, 19). However, 
similar structures were not found in normotensive rats; thus, 
it was postulated that cross-striated microfllament bundles 
are an adaptive response of the endothelial cell to hyperten- 
sion (17). Similar cross-striated microfilament bundles were 
found in certain fibroblasts Cmyofibroblasts") present in heal- 
ing wounds (18). On the basis of their structural resemblance 
to myofibrils, these stress fiber-like structures were postulated 
to be contractile (for a review, see reference 20). 

We chose vascular endothelium as a model system for 
investigating the functional significance of stress fibers in situ. 
Not only is there a large body of published reports on endo- 
thelial cell biology, but this tissue offers unique advantages 
for such a study. For example, hemodynamic forces might be 
expected to influence the cytoskeleton of the endothelial cell, 
inasmuch as such forces have been shown to influence endo- 
thelial cell shape both in vivo and in vitro (9, 33, 37). 
Furthermore, the availability of spontaneously hypertensive 
rats (28) permits the study of endothelial cells in an animal 
model in which both the genetic and hemodynamic factors 
are relatively well defined (13, 30, 39, 45). 

The present study was undertaken to determine whether 
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only the arterial endothelial cells of hypertensive animals 
contain stress fibers and whether there are factors that influ- 
ence the expression c~f this structure within the endothelial 
cell. The aorta and other large blood vessels can be fixed by 
perfusion in situ, and their endothelial lining can be examined 
as a whole-mount preparation. By this approach, large num- 
bers of endothelial cells can be examined in their native 
position. Using immunofluorescence microscopy with anti- 
bodies to actin and to myosin, we demonstrated the presence 
of stress fibers within the endothelial cells of normal mouse 
and rat thoracic aorta. Furthermore, we noted clear differ- 
ences between the cytoskeletal organization of arterial endo- 
thelial cells in normotensive and spontaneously hypertensive 
rats. Our observations suggest that the expression of stress 
fibers in the vascular endothelium is influenced by multiple 
factors, including anatomical location, sex, genetic make-up, 
and hemodynamic forces. 

MATERIALS AND METHODS 

Animals :  Normal adult male and female CD-I mice weighing 35--45 g 
were purchased from Charles River Breeding Laboratories (Wilmington, MA). 
Normal adult female Sprague-Dawley rats weighing 125-140 g were obtained 
from the same source. Eight-week-old male and female Wistar-Kyoto rats 
(normotensive control strain) and spontaneously hypertensive rats (Okamoto- 
Aoki type [28]) weighing 140-150 g were purchased from Taconic Farms 
(Germantown, NY). The females of both strains were routinely ovariectomized 
by the supplier and were used within 1 wk of the surgery. All animals were 
maintained on a diet of Purina rat laboratory chow (Ralston Purina Co., St. 
Louis, MO) and tap water ad libitum. 

Perfusion Fixation: The perfusion fixation procedure of Forssmann 
et al. (12) was followed. The animals were anesthesized by an intraperitoneal 
injection of either tribromoethanol (0.2 ml of a 2.1% solution/10 g of body 
weight) or chloral hydrate (0.5 ml of a 7.4% solution/100 g of body weight), 
the abdominal aorta was cannulated, and the inferior vena cava (infrarenal or 
hepatic region) was cut. Following a brief (5 s) perfusion with "rinse solution ~ 
(0.9% NaCI, 2.5% polyvinylpyrrolidine, Mr 40,000 [Sigma Chemical Co. St. 
Louis, MO], 0.025% heparin [Sigma Chemical Co.], 0.5% procaine-HC1 [Sigma 
Chemical Co.], pH 7.4), 100-200 ml of a fixative mixture consisting of 2% 
formaldehyde, 0.1% picric acid, 50 mM sodium eacodylate (pH 7.4) was 
introduced. All animals were perfused at 90 mm Hg hydrostatic pressure for 
15 min to ensure controlled distension of the blood vessel wall during ftxation. 
Exclusion of the rinse solution made perfusion more difficult, and the quality 
of the immunofluorescent image was poor, but stress fibers nevertheless were 
clearly visible. Both anesthetics yielded similar fixation quality and cytoskeletal 
staining patterns. However, as will be discussed in Results, the concentration 
of formaldehyde significantly influenced the cytoskeletal staining patterns ob- 
tained. After the perfusion, the descending thoracic aorta (from the lower arch 
to the diaphragm) was excised, pinned down on dental wax, and flooded with 
phosphate-buffered saline (0.85% NaCI, 10 mM sodium phosphate, pH 7.4 
[PBS]). The adventitia was carefully removed, and the vessel was cut open 
lengthwise between the intercostal arteries (i.e., along its dorsal aspect). The 
original direction of blood flow was noted. The vessel was cut crosswise into 
multiple segments 2-3 mm in width, and each segment was processed for 
immunofluorescence microscopy as described below. No attempt was made to 
strip off the intimal lining or to otherwise make an endothelial "Hiutchen" 
preparation (34). The mesenterlc vein and inferior vena cava (infrarenal por- 
tion) were handled in a similar manner. Fig. 1 illustrates some of these 
procedures. 

Antibodies: Antibodies were raised in rabbits and characterized as 
previously described. The anti-myosin antibody is directed against human 
platelet myosin (15). This antibody has also been conjugated to tetramethyl- 
rhodamine and was used in the double-label experiment. The anti-actin anti- 
body is directed against fish skeletal muscle actin and was affinity purified (6). 
The antitubulin antibody is directed against vinblastine-induced tubulin crystals 
from sea urchin eggs (16). Rhodamine-labeled goat anti-rabbit IgG was pur- 
chased from Miles-Yeda, Rehovot, Israel (lot 17179), and fluorescein-labeled 
sheep anti-rabbit IgG was purchased from Wellcome Reagents, Ltd., Becker- 
ham, England (lot K5592). 

Immuno f l uo rescence  Procedures: After dissection, the fixed aor- 
tic segments were washed three times with PBS (5 min per wash), permeabilized 
by treatment with -20"C acetone for 5 rain, and washed three times with PBS 
( 1 min per wash) to remove the acetone. The segments then were incubated at 

FIGURE 1 Preparation of rat thoracic aorta segments. (a) After in 
situ perfusion fixation, the aorta was excised and pinned out on 
dental wax with the direction of blood flow indicated. Several 
intercostal arteries can be seen (arrowheads). (b) The adventitia was 
carefully dissected away, and the vessel was incised along its dorsal 
aspect between the paired openings (arrows) of the intercostal 
arteries and pinned down. (c) Serial segments, 2-3 mm wide, were 
cut and prepared for immunofluorescence microscopy, and their 
original axial position and flow orientation were noted. Bar, 10 mm. 

37"C with 50 #l/segment of affinity-purified anti-actin (50 #g/ml) or antimyosin 
(anti-serum diluted 100 times in PBS) in a moist atmosphere for 30--45 min. 
After three 5-min washings with PBS, the labeled secondary antibody (diluted 
100 times in PBS) was applied, and a comparable incubation (37"C for 30-45 
min) was performed in darkness. For the double-label experiment, the first 
incubation was with anti-actin, the second with fluorescein-labeled sheep anti- 
rabbit IgG, and the third (37"C for 30-45 rain) with rhodamine-labeled anti- 
myosin (120 #g/ml; three dyes/IgG). After three 5-rain washings in PBS, the 
aortic segments were mounted in 90% glycerol in PBS. For each segment, its 
axial position and its orientation with respect to the in vivo direction of blood 
flow were noted. 

Several control stainings were carried out to establish the specificity of the 
endothelial cell staining patterns. For anti-myosin, preimmune serum and 
antigen-absorbed immune serum were used as the primary antibody instead of 
the specific antibody. In the case of anti-actin, the antigen-absorbed immune 
IgG preparation was tested. In these controls, there was only a faint general 
fluorescence over the entire specimen. The vessel segments also were tested for 
autofluorescence as well as for the nonspecific binding of the fluorescein-labeled 
sheep anti-rabbit and the rhodamine-labeled goat anti-rabbit antibodies. Low- 
intensity autofluorescence, as well as some nonspecific binding of the labeled 
secondary antibodies, was noted; however, these did not interfere with the 
visualization of the specific staining patterns. Staining the endothelium with an 
anti-smooth muscle myosin antibody (31) that does not cross-react with endo- 
thelial myosin (23) gave only a faint fluorescence in the plane of the endothe- 
lium. 

Fluorescence microscopy was performed with a Leitz Orthoplan microscope 
equipped with a Ploemopak 2 illuminator with a Leitz L-2 filter block, and a 
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Zeiss 63 x Planapo phase-contrast objective lens (NA 1.4, oil). Fluorescent 
images were photographed with a Leitz Orthomat automatic camera with Tri- 
X film (Eastman Kodak Co., Rochester, N-Y). The film was exposed at ASA 
1000 and developed with Acufine developer (Acutine, Inc., Chicago, IL). A 
scale with 10-t~m divisions was photographed at the same primary magnification 
to calibrate the micrographs. 

FIGURE 2 Region of descending thoracic aorta examined. The 
superimposed rectangle indicates the region of the ventral aortic 
wall in which the majority of the microscopic observations were 
made. For quantitative, comparative studies in normotensive and 
hypertensive rats, six randomly selected areas within the rectangle 
were examined. Bar, I mm. 

Quantitative Methods: For the quantitative study comparing the 
proportion of aortic endothelial cells containing stress fibers, 12 Wistar-Kyoto 
rats (6 males, 6 females), and 12 spontaneously hypertensive rats (6 males, 6 
females) were used. In each animal, 1,000-1,500 endothelial cells were exam- 
ined in six randomly selected, 150 x 250-#m areas located along the ventral 
aspect of the thoracic aorta at the levels of the ostia of the first through sixth 
intercostal arteries (Fig. 2). All counts were made directly on the epifluorescence 
microscope and were verified independently by a second observer. Length (>4 
#m) and the appearance of striations with the antimyosin antibody were the 
two main criteria used to identify a stress fiber. 

RESULTS 

Actin and Myosin Organization in Vascular 
Endothelium In Situ 

G E N E R A L  E X P E R I M E N T A L  A P P R O A C H :  Fig. 1 illus- 
trates the basic features of the dissection procedure used to 
prepare segments of mouse and rat thoracic aorta and other 
blood vessels for immunofluorescence microscopy. After in 
situ perfusion fixation, the dissected segments were examined 
by epifluorescence illumination as "whole mounts." This 
preserved the original anatomical relationships of the endo- 
thelial lining. Examination by phase-contrast microscopy re- 
vealed that broad areas of the intima remained intact in these 
preparations. Approximately 250 vessel segments were ex- 
amined from 13 male and female CD-1 mice, 3 female 
Sprague-Dawley rats, and 24 male and female Wistar-Kyoto 
and spontaneously hypertensive rats. 

MOUSE T H O R A C I C  A O R T A :  The immunofluorescent 
pattern produced by the staining of the descending thoracic 
aorta of CD-I mice with the anti-actin antibody consisted of 
cortical staining, which delineated the cell shape, and promi- 
nent fibrillar staining within the cytoplasm (Fig. 3a). The 

FIGURE 3 Indirect immunofluorescent localization of actin and myosin in the endothelial lining of mouse thoracic aorta. The 
arrow indicates the direction of blood flow in vivo. (a) Anti-actin staining pattern. Note the localization of fibers in the proximal 
end of each cell. In this particular field, the majority of the cells have actin-containing cytoplasmic fibers. (b) Anti-myosin staining 
pattern. (c) Enlargement of a single cell stained with anti-myosin to demonstrate the striated pattern along individual cytoplasmic 
fibers. The periodicity of the striations (measured from the center of the bands) is approximately 0.5 ~m. Micrometer division, 10 
#m. 
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cells examined were located in the center of the aortic seg- 
ments (a similar area is indicated in Fig. 2), and they typically 
were ellipsoid, with their long dimension parallel to the vessel 
axis. The cytoplasmic fibrillar staining pattern showed several 
interesting features. First, individual actin-containing fibers 
were of uniform width (,--0.7 ttm) but varied in length from 
4 to 25 ttm. Second, they were aligned with the major axis of 
the cell, and, thus, appeared to be oriented parallel to the 
macroscopic direction of blood flow. Third, the majority of 
these fibers were located in the "proximal" end (in relation to 
the blood flow) of the cell and usually did not extend down- 
stream beyond the nucleus. Fourth, the number of fibers 
observed within a given cell varied but rarely was greater than 
10. Finally, the proportion of cells containing these fibers 
(defined as the ratio of endothelial cells containing such fibers 
to the total number of endothelial cells examined) varied from 
region to region along the descending thoracic aorta. In some 
areas, this ratio was as high as 0.4. 

There were no discernible qualitative differences in the 
anti-actin staining patterns of male and female mice. For this 
species, no attempt was made to determine whether there 
were any quantitative differences between the sexes in the 
expression of these fibers. As indicated in Materials and 
Methods, the pattern of anti-actin staining, however, was 
significantly influenced by fixation conditions. Concentra- 
tions of formaldehyde greater than 2% (2, 3.7, 4, and 6% 
solutions were tested) gave more punctate cytoplasmic stain- 
ing, with a marked reduction in the number of cells containing 
actin fibers; the staining intensity, however, was the same for 
all concentrations. The picric acid, while not essential, did 
improve the contrast of the image slightly but had no effect 
on the number of stress fibers visualized. 

Anti-myosin staining of mouse aortic endothelium also 
showed both a cortical and a cytoplasmic fibrillar component 
(Fig. 3 b). As seen with anti-actin, myosin-containing cyto- 
plasmic fibers were most prominent in the proximal portion 
of the cells and had a definite axial alignment with the 
direction of blood flow. These structures exhibited a banded 
or striated staining pattern (Fig. 3 c) similar to that seen in the 
stress fibers of tissue-cultured cells. The periodicity of these 
striations, as measured from the center of the bands, is -~0.5 
#m, which is slightly less than that found in tissue-cultured 
cells. Consistent with the anti-actin results, not every cell 
exhibited a cytoplasmic fibrillar staining pattern with anti- 
myosin. However, this reagent did produce a more diffuse 
cytoplasmic staining than anti-actin, permitting visualization 
of axially oriented, ovoid endothelial cell nuclei. Inasmuch as 
fibers were not found in every cell examined, this staining 
characteristic was useful in documenting the presence of 
individual cells in which cytoplasmic fibers were not visible. 
Directly staining this tissue with rhodamine-labeled anti- 
myosin produced identical results, although the fluorescence 
intensity was lower. 

To determine whether the anti-actin and anti-myosin fi- 
brillar staining represented the same or different fiber systems, 
a double-label experiment was performed. If the actin and 
myosin colocalized in the same fibers, then these structures 
might more accurately be referred to as "in situ stress fibers." 
When the same tissue segment was stained indirectly for actin 
and then directly for myosin (see Materials and Methods for 
details), both antibodies stained the same fibrillar structures 
(Fig. 4), providing further morphological evidence that these 
structures are stress fibers. Inherent in this experimental de- 

FIGURE 4 Colocalization of actin and myosin in stress fibers in 
endothelial cells of the mouse thoracicaorta. (a) Anti-actin staining. 
The numbered arrows indicate eight stress fibers within this cell. 
(b) Anti-myosin staining pattern of the same microscopic field as in 
a. The eight stress fibers identified in a can be found here, indicating 

'that both antigens are located in the same structures. Micrometer 
division, 10 #m. 

sign is the possibility that the fluorescein-labcled sheep anti- 
rabbit IgG used for the indirect labeling of actin could uncou- 
ple from the anti-actin antibody and bind to the rhodamine- 
labeled anti-myosin antibody, giving a spurious colocalization 
pattern. This potential problem was tested for by staining 
cultured bovine aortic endothelial cells indirectly for tubulin 
and directly for myosin by a similar experimental method. 
The two cytoskeletal patterns (microtubules and stress fibers) 
were not superimposable, showing that:our experimental con- 
ditions do not result in spurious colocalization of the two 
antigens. 

MOUSE MESENTERIC VEIN: B e c a u s e  the endothelial 
lining of the thoracic aorta is subjected to relatively high levels 
of shear stress, a relatively low shear stress vessel such as the 
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mesenteric vein also was studied. Mouse mesenteric vein 
endothelial cells had more rounded nuclei and exhibited a 
range of cell shapes, varying from ellipsoid to polygonal. 
Furthermore, their immunofluorescent anti-myosin staining 
pattern revealed a stress fiber organization different from that 
observed in the thoracic aorta. Occasional stress fibers were 
discernible, but there was no apparent orientation of cyto- 
skeletal elements with the direction of blood flow. 

S P R A G U E - D A W L E Y  RAT T H O R A C I C  AORTA AND IN-  

F E R I O R  VENA CAVA: In contrast to that of the mouse, 
female Sprague-Dawley rat vascular endothelium showed 
qualitatively similar anti-myosin staining patterns in the de- 
scending thoracic aorta and the inferior vena cava. Unfortu- 
nately, in all strains of rat examined in this study, the anti- 
actin antibody produced only a faint staining pattern. Stress 
fibers were deafly discernible by microscopy, but the low- 
intensity staining made photography difficult. In the descend- 
ing thoracic aorta, anti-myosin again showed cortical staining 
as well as a striated staining pattern along the stress fibers. In 
contrast to mouse, the proportion of endothelial cells contain- 
ing stress fibers within this vessel was low, and rarely exceeded 
0. I. In the inferior vena cava (infrarenal region), endothelial 
cells again were variously shaped and had more rounded 
nuclei. In contrast to the endothelial cells of the mouse 
mesenteric vein, however, certain of these endothelial cells 
appeared to contain occasional axially oriented stress fibers. 

Normotensive vs. Spontaneously 
Hypertensive Rats 

C O M P A R I S O N  OF P R O P O R T I O N  OF E N D O T H E L I A L  

CELLS C O N T A I N I N G  STRESS FIBERS:  The studies pre- 
sented thus far demonstrate that stress fibers are present in 
normal mice and rats. They also reveal that stress fibers are 
encountered much more frequently in arterial than in venous 
endothelium, which suggests that blood pressure or, more 
generally, hemodynamic factors influence the expression of 
stress fibers in endothelial cells in vivo. To investigate whether 
hemodynamic factors affect the extent of stress fiber devel- 
opment in endothelial cells, comparative studies were per- 
formed with Wistar-Kyoto (normotensive) and spontaneously 
hypertensive rats, strains that are genetically related but whose 

blood pressures (28) are different. 
The proportion of endothelial cells containing stress fibers 

in the descending thoracic aorta was determined in male and 
female Wistar-Kyoto and spontaneously hypertensive rats at 
8 wk of age. The data were gathered from cells lining the 
ventral aspect of the aorta (away from the orifices of the 
intercostal arteries), where the blood flow could be expected 
to be laminar (Fig. 2). There were marked strain- and sex- 
related differences in endothelial cell stress fiber expression 
(Table I). Spontaneously hypertensive rats of both sexes 
showed a greater than twofold higher proportion of endothe- 
lial cells containing stress fibers than sex-matched, normoten- 
sive Wistar-Kyoto rats. In addition, within each strain, the 
proportion of endothelial cells containing stress fibers was 
significantly greater in males than in females. Statistical treat- 
ment of the data (Student's t test) revealed that the differences 
between the two strains within the same sex and the differ- 
ences between the sexes within the same strain are significant 
(P < 0.01). The number of stress fibers per cell was relatively 
low (averaging five or fewer per cell) in both strains; in both 
the Wistar-Kyoto and the spontaneously hypertensive rats, 
however, aortic endothelial cells with 6 - l0  stress fibers occa- 
sionally were found. 

In addition to these quantitative differences, certain quali- 
tative differences between the two strains were apparent. In 
normotensive Wistar-Kyoto rats, the stress fibers tended to 
have a thinner or more wispy appearance, but they retained 
a cross-striated pattern. In spontaneously hypertensive rats, 
the majority of the stress fibers appeared thicker and had 
more prominent striations (Fig. 5). In addition, aortic endo- 

TABLE I 

Expression of Stress Fibers in Rat Aortic Endothelial Cells 

Proportion of Cells Containing 
Stress Fibers *m 

Strain* Male Female 

Wistar-Kyoto (normotensive) 0.188 + 0.009 0.098 _ 0.007 
Spontaneously hypertensive 0.460 _+ 0.013 0.217 + 0.009 

* 12 animals of each strain (6 males, 6 females); 8 wk old 
* Proportion = number of endothelial cells containing stress fibers/total 

number of endothelial cells examined (see text for details) 
i Data expressed as proportion _.+ 2 SD 

FIGURE 5 Anti-myosin staining pattern of the aortic endothelium in a male spontaneously hypertensive rat. Note the prominent 
stress fibers (arrowheads) in which striations are clearly visible. Micrometer division, 10 ~,m. 
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FIGURE 6 Photographic reduction of a montage of the anti-myosin staining pattern at the level of the sixth intercostal artery of 
a male spontaneously hypertensive rat showing regional variation in stress fiber expression. The inset indicates the location of the 
area shown. Region I: very few, if any, cells contain stress fibers. Region I1: almost all of the cells contain prominent stress fibers. 
Region II1: endothelial cell shape is variable and not all stress fibers are aligned with the long axis of the vessel (see enlargement 
of this region in Fig. 7). Region IV: almost all of the cells have prominent stress fibers. Micrometer division, 10 #m. 
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thelial cells in the spontaneously hypertensive rats tended to 
be more ellipsoid than their Wistar-Kyoto counterparts. 

R E G I O N A L  V A R I A T I O N  IN THE E X P R E S S I O N  OF 

STRESS FIBERS: AS the data summarized in Table I indi- 
cate, not every aortic endothelial cell examined contained 
stress fibers. In male spontaneously hypertensive rats, in which 
approximately one-half of the cells contained stress fibers, no 
clearly discernible pattern of "stress fiber-positive" cells within 
the region of the vessel examined (Fig. 2) was observed. 
Within the descending thoracic aorta there was a regional 
variation in the distribution of stress fiber-positive cells. Fig. 
6 is a montage of a 0.48 x 0.79-mm area of anti-myosin- 
stained aortic endothelium from a male spontaneously hyper- 
tensive rat at the level of the sixth intercostal artery. Although 
this montage was not taken from the area from which the 
data for determining the proportions were gathered (see Fig. 
2), it illustrates the regional variation found throughout the 
descending thoracic aorta in all animals examined. Four areas 
from Fig. 6 were selected to illustrate the regional variation 
of stress fiber expression. In region I, almost every cell was 
stress fiber-negative. In region II, almost every cell was stress 
fiber-positive. In region III, several cells in the middle of the 
field were not ellipsoid and contained stress fibers oriented 
perpendicular to the direction of blood flow within the vessel 
(see Fig. 7). In region IV, again, almost all cells are stress 
fiber-positive. Note that in regions I, II, and IV, the cells are 
similarly shaped, yet not all have stress fibers. As seen in the 
inset of Fig. 6, the lower portion of the area displayed in the 
montage was just proximal to the ostium of the intercostal 
artery. Although Fig. 6 illustrates that regional variation in 
stress fiber expression also exists in this area of the vessel, in 
general the proportion of stress fiber-positive cells in both 
normotensive and hypertensive animals appeared to increase 
as one approached the inflow tract of the intercostal artery. 

STRESS FIBERS IN VENOUS E N D O T H E L I U M :  St ress  

fibers were also present in venous endothelium (inferior vena 
cava) of both Wistar-Kyoto and the spontaneously hyperten- 
sive rats. As illustrated in Fig. 8, these stress fibers were 
oriented parallel to the long axis of the vessel. Regional 

FIGURE 7 Enlargement of region III of Fig. 6. Several cells in the 
middle of the field do not exhibit the typical ellipsoid shape seen 
in other regions. Several stress fibers (arrowheads) within certain of 
these cells are oriented perpendicular to the long axis of the vessel 
(white arrowhead). Micrometer division, 10/~m. 
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FIGURE 8 Anti-myosin staining of the inferior vena cava (infrarenal 
portion) of a male spontaneously hypertensive rat. Several promi- 
nent, axially oriented stress fibers are visible within these cells 
(arrowheads). Micrometer division, 10 #m. 

differences in stress fiber expression also were observed. Stress 
fiber expression in venous endothelium depended on location. 
For example, a substantial number of cells with stress fibers 
could be found in the infrarenal portion of the inferior vena 
cava, whereas the thoracic portion (just above the diaphragm) 
of the same vessel contained only a few endothelial cells with 
stress fibers. 

DISCUSSION 

The observations presented in this report indicate that actin 
and myosin can be organized into stress fibers in vascular 
endothelial cells in situ. These stress fibers are most prevalent 
in aortic endothelium, where they are oriented parallel to the 
vessel axis. Stress fibers tend to be localized in the proximal 
portion of the cell. The number of endothelial cells with stress 
fibers varies from region to region within any given aortic 
segment. There also appear to be major differences in the 
cytoskeletal organization of the endothelial lining of the aorta 
compared with that of the large veins (mesenteric or inferior 
vena cava). Quantitative studies to determine the proportion 
of aortic endothelial cells with stress fibers in normotensive 
Wistar-Kyoto and spontaneously hypertensive rats showed 
that stress fiber expression is greater in the latter strain. There 
also are significant differences in stress fiber expression be- 
tween male and female animals in either strain. These obser- 
vations indicate that the expression of stress fibers within the 
vascular endothelium may be under the influence of several 
factors. 

Although the existence of "actomyosin" in the vascular 
endothelium of various mammalian tissues has been recog- 
nized since the early observations of Becker and co-workers 
(1, 2), their structure and function have not been clearly 
demonstrated. It has been suggested that the prominent mi- 
crofilament bundles observed in aortic endothelium of hyper- 
tensive rats may play a role in cell contractility and could be 
involved in the altered vessel wall permeability observed in 
these animals (17). Examples of endothelial cell contractility 
have been reported in microvascular and arterial endothelia 
in response to various vasoactive substances and inflamma- 
tory mediators (for a review, see reference 20), and stress 



fibers in certain cultured cell types have been shown to be 
contractile (22). However, a direct link between endothelial 
cell contractility and in situ stress fibers remains to be estab- 
lished. 

In tissue-cultured cells, stress fibers have been implicated 
in cell spreading (see for example, reference 38) and migration 
(4). It has been suggested that localized endothelial cell spread- 
ing and migration in vivo play a role in maintaining an intact 
intimal lining in the face of physiologic or pathologic endo- 
thelial cell loss (35, 36). Recent studies do not, however, 
support their active involvement in cell locomotion (21, 26). 
It also is unlikely that these processes can account for the 
relatively high frequency and widespread distribution of en- 
dothelial cells with stress fibers observed in our study. 

The differences in the occurrence of endothelial cells with 
stress fibers in different blood vessels of the same animal 
strongly implicate local, rather than systemic, modifying fac- 
tors. The relative sparsity of these structures in large veins 
suggests that blood pressure may be an important factor 
influencing their expression. However, the observed variations 
in stress fiber expression within a given aortic segment (see 
Fig. 6), which presumably are all exposed to the same intra- 
luminal pressure, argues against this hypothesis. Another pos- 
sible factor influencing stress fiber expression is cell shape. 
Regional variations in endothelial cell shape have been well 
documented (33, 37). Aortic endothelial cells in the regions 
examined by us tended to be ellipsoid and oriented parallel 
to the vessel axis (Figs. 3-7). However, as is deafly seen in 
Figs. 6 and 7, ellipsoid cell shape is neither a necessary nor 
sufficient condition for stress fiber expression in these cells. 

Our quantitative studies revealed a significantly greater 
proportion of stress fiber-positive endothelial cells in the 
thoracic aorta of spontaneously hypertensive rats than in that 
of sex- and age-matched normotensive Wistar-Kyoto rats. 
Since the Okamoto-Aoki spontaneously hypertensive strain 
was derived by selective inbreeding of Wistar-Kyoto rats with 
abnormally high blood pressures, differences in the genetic 
make-up of the two strains are minimal (l 3, 28, 39, 45). Thus, 
the increased frequency of endothelial stress fiber expression 
in the hypertensive strain may be related to some factor(s) 
associated with elevated blood pressure. 

Studies of the mechanism of hypertension in spontaneously 
hypertensive rats at this age (8 wk) have demonstrated that 
their elevated blood pressure is primarily due to a hyperkinetic 
circulation (30). These animals have significantly higher heart 
rate, cardiac output, maximum aortic flow acceleration, and 
peak flow velocity than age- and sex-matched normotensive 
controls. In light of these data, one of the hemodynamic 
forces that might be expected to be elevated in hypertensive 
rats is fluid shear stress (the frictional force created by blood 
flowing along the endothelial surface [8, 9]). 

Exposure of vascular endothelial cells to increased fluid 
shear stresses may create an increased demand on the normal 
cellular mechanisms involved in anchorage to substratum and 
maintenance of structural integrity. Thus, the greater fre- 
quency and relative hypertrophy of stress fibers in sponta- 
neously hypertensive rats may be an adaptive response of the 
endothelial cell cytoskeleton. That stress fibers play a role in 
cell adhesion was strongly suggested by studies of tissue- 
cultured cells in which interference-reflection and immuno- 
fluorescence microscopy were used (41). In addition, stress 
fibers observed in situ in fish scale scleroblasts have been 
postulated to be involved in the anchorage of these cells (6). 
However, the apparent absence of well defined stress fibers in 

many aortic and venous cells (see, for example, Fig. 6) clearly 
indicates that this cytoskeletal specialization is not required 
for endothelial cell attachment to the basement membrane. 
In addition to their possible role in cellular adhesion, it is not 
unreasonable to think that stress fibers also aid the endothelial 
cell in coping with internal mechanical stresses generated by 
external (i.e., cell-surface) frictional forces. 

The variable distribution of endothelial cells with stress 
fibers in both arterial and venous vessels may be related to 
local variations in hemodynamic forces. For example, it has 
been shown that local patterns of wall shear stress can vary 
considerably in different regions of a large artery (27). Al- 
though the normal shear stresses in major human arteries 
typically range from 2 to 20 dynes/cm 2, such forces can be 
locally increased to 30-100 dynes/cm 2 near arterial branches 
and in regions of sharp wall curvature (8). In fact, endothelial 
cells with stress fibers do appear to be concentrated near the 
ostia of the intercostal arteries. While local variations in fluid 
shear stress may influence stress fiber expression, it is con- 
ceivable that regional variations in cytoskeletal organization 
may reflect localized structural differences in the vessel wall 
(e.g., organization of extracellular matrix). The reason for the 
observed sex-related differences in stress fiber expression is 
unclear, but they may be related to hemodynamic differences 
between male and female rats (e.g., male rats have higher 
blood pressure in both the Wistar-Kyoto and spontaneously 
hypertensive strains [28, 45]). 

It has been demonstrated that alterations in blood flow 
patterns within the aorta alter endothelial cell shape (14, 33, 
37); however, direct correlations between endothelial cyto- 
skeletal organization and local hemodynamic forces are dif- 
ficult to make in situ. Recent studies in our laboratories using 
an in vitro model system (5, 9, 10) indicate that application 
of physiological levels of fluid shear stress can change the 
shape of bovine aortic endothelial cells from polygonal to 
ellipsoid (9) and induce a reorientation of stress fibers within 
these cells (42). This reorientation consists of the coaxial 
alignment of stress fibers with the major axis of the cell, which 
becomes aligned with the direction of the applied fluid shear 
stress. These in vitro observations demonstrate that endothe- 
lial cell structure is sensitive to externally applied mechanical 
forces. Furthermore, they provide a basis for our hypothesis 
that stress fibers in vascular endothelium in situ are responsive 
to fluid shear stresses arising from normal and altered patterns 
of blood flow. 

In conclusion, the data presented in this report clearly 
document the presence of stress fibers in vascular endothelium 
in situ and indicate that several factors influence their expres- 
sion in this tissue. Anatomical (arterial, venous) and regional 
variations observed within the same animal suggest that en- 
dothelial cytoskeletal organization is responsive to local en- 
vironmental factors. The marked difference in the number of 
cells containing stress fibers in aortic endothelia of normoten- 
sive compared with hypertensive rats suggests that stress fibers 
are influenced by hemodynamic forces. Expression of these 
structures may be related to the cell's need for greater adhesive 
capability and structural integrity in the face of elevated 
hemodynamic forces. The biochemical and biophysical mech- 
anism regulating endothelial stress fiber expression and the 
possible role(s) of this cytoskeletal specialization in vascular 
cell biology and pathophysiology warrant further study. 
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