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SUMMARY

The SARS-CoV-2 virus has caused tremendous healthcare burden worldwide. Our
focus was to develop a practical and easy-to-deploy system to predict the severe
manifestation of disease in patients with COVID-19 with an aim to assist clinicians
in triage and treatment decisions. Our proposed predictive algorithm is a trained
artificial intelligence-based network using 8,427 COVID-19 patient records from
four healthcare systems. The model provides a severity risk score along with like-
lihoods of various clinical outcomes, namely ventilator use and mortality. The
trained model using patient age and nine laboratory markers has the prediction
accuracy with an area under the curve (AUC) of 0.78, 95% CI: 0.77–0.82, and
the negative predictive value NPV of 0.86, 95% CI: 0.84–0.88 for the need to
use a ventilator and has an accuracy with AUC of 0.85, 95% CI: 0.84–0.86, and
the NPV of 0.94, 95% CI: 0.92–0.96 for predicting in-hospital 30-day mortality.

INTRODUCTION

The COVID-19 pandemic has emerged as a worldwide health challenge with an overwhelming burden on

healthcare systems, emphasizing the need for effective management of rapidly deteriorating patients con-

strained by limited clinical resources(Erika et al., 2020; Ranney et al., 2020). Clinical presentation of COVID-

19 ranges from mild symptoms to various levels of respiratory distress and/or multi-organ system failure

and death(Grant et al., 2020). Effective clinical management of these patients is dependent on early strat-

ification of patients who have a higher likelihood of deteriorating(Marini and Gattinoni, 2020). For example,

it has been suggested that a subset of patients with higher likelihood of severity detected during the first

encounter and presentation could benefit from immunomodulatory treatments in addition to purely anti-

viral treatment strategies (Meyerowitz et al., 2020).

Recently, there has been a proliferation of studies proposing prediction models based on various clinical

parameters aimed at early stratification of deteriorating patients (Abdulaal et al., 2020; Aktar et al., 2021;

Gao et al., 2020; Yan et al., 2020). These approaches are primarily based on traditional machine learning

approaches (Aktar et al., 2021) such as support vector machines (SVM) (Gao et al., 2020), random forests

(RF) (An et al., 2020), or deep neural networks based (DNN) (Li et al., 2020) methods specifically when it

comes to analyzing X-ray or computed tomography (CT) images (Lassau et al., 2021). Despite these ad-

vances, we have yet to see a practical system, which could be used universally with an evidence of gener-

alizability to help with early identification of patients, who develop severe clinical trajectory. The underlying

reasons could be summarized by two main factors. First, most of proposed models are trained and vali-

dated based on small regional cohorts of less than 10,000 patients(An et al., 2020; Assaf et al., 2020; Burdick

et al., 2020; Cabitza et al., 2020; Gao et al., 2020; Li et al., 2020). This potentially introduces biases in the

results, which in turn hinders generalization and replication of findings to patients from different healthcare

systems. Second, there has been a focus to be as comprehensive as possible and to use a variety of data

points capturing various aspects of disease. This has led most of the models to include a variety of clinical

data points including disease risk factors, comorbidities, various diagnostic markers, and vital signs as in-

puts to the model. While this approach could potentially lead to the most accurate predictions for carefully

curated test cohorts, it lacks generalization capability due to lack of veracity in the routine clinical data

(Gianfrancesco et al., 2018). For example, hypertension is a clinical comorbidity believed to be correlated
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Figure 1. Study consort diagram

Patient cohort numbers from three different sites; Emory (3114 cases), Houston Methodist (4695 cases), and La Paz (4023),

used for model training, selection, and testing/validation.
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with unfavorable outcomes (Sheppard James et al., 2021); however, the clinical condition of hypertension,

which could be either managed or unmanaged, may not be reliably captured from either medical records

or direct blood pressure measurements done on a patient. In short, increase in model input data variety will

certainly impact its veracity, which in turn diminishes performance and potentially decreases its generaliza-

tion capacity. Furthermore, from a deployment and utility perspective, it is important to not rely upon clin-

ical data points as they may not be easily retrievable owing to complexities in connecting to various elec-

tronic health record (EHR) systems with heterogeneous conventions in coding clinical parameters affecting

their interpretations and utility in predictive models (Rajkomar et al., 2018).

We aimed to leverage a deep neural network trainedmodel using heterogeneous cohorts of outcomematched

patient data from four early epicenters of COVID-19 to predict clinical outcomes. We sought to devise the pre-

diction system to be as practical and as easy to deploy as possible, primarily tomaximize its potential impact. To

this end, we set up numerous experiments to extensively study various data input contributions to the assigned

surrogate outcomes and to better understand redundancies through minimizing interactions among input pa-

rameters. Finally, we aimed to create a prediction tool, which could use a parsimonious set of input data while

maintainingpredictive accuracy.We compared theperformanceof our proposedmodels withother approaches

from the literature. To assess generalization capacity of the approach, we also further evaluated and character-

ized themodel accuracy usingapublicly available external test cohort froman independent health system,which

was not utilized during the overall model training process.

RESULTS

Out of 11,832 patients from three of the institutions, 10,937 patients who met the criteria for inclusion were

used to train and internal test themodel. This data split into a training set and a test set consecutively based

on split dates for various cohorts to maintain the ratio of 2 to 1. This was mainly to avoid any inadvertent

biases and to assess performance on patient data acquired prospectively in the future. 7,293 patients

(66.68%) were selected as the training set, and 3,644 patients (33.32%) were assigned to the test set. Addi-

tionally, 2,340 patients from Mount Sinai were used as an independent external testing and validation

cohort. Specifically, we performed model external testing on the 739 patient cohorts admitted after April

28, 2020. The consort diagram Figure 1 depicts the cohort numbers and details from various clinical sites.

Tables 1 and 3 depict a total of 57 variables comprised of laboratory tests, demographics, and comorbid

conditions for patients in the training and testing (i.e., both internal and external) cohorts. Furthermore, the

figure shows the statistical significance (i.e., p value) of the mean value difference between mortality and
2 iScience 24, 103523, December 17, 2021



Table 1. Baseline characteristics of the study population

Characteristics Training cohort Testing cohort

Mortality

p value

External testing

cohort

Mortality

p value

No. of patients 7028 3554 739

Age (years) 60.45 G 0.21 (7026) 58.26 G 0.32 (3551) <0.0001 56.34 G 0.85 (739) 0.2092

BMI (kg/m2) 31.62 G 0.15 (3018) 31.78 G 0.22 (1480) 0.1777 27.10 G 0.31 (663) 0.3563

Gender: Male 2742 (5213) 1178 (2590) 0.8722 406 (739) 0.8333

Clinical co-morbidities

Diabetes 1822 (5200) 875 (2580) 0.1032 165 (739) 0.9500

Cancer 254 (3163) 112 (1532) 0.0540 114 (739) 0.1421

Chronic kidney disease 997 (5199) 455 (2581) <0.0001 94 (739) 0.0000

Chronic obstructive pulm. disease 888 (5196) 405 (2579) 0.5253 52 (739) 0.0522

Congestive heart failure 602 (3163) 281 (1532) 0.6688 88 (739) 0.0001

Hypertension 1519 (5206) 638 (2581) <0.0001 0 (739)

Laboratory markers

Albumin (g/dL) 3.71 G 0.01 (5902) 3.70 G 0.01 (3068) 0.4181 3.56 G 0.04 (402) 0.3493

BUN (mg/dL) 21.2 G 0.22 (6554) 22.13 G 0.36 (3207) 0.0036 27.02 G 1.28 (363) 0.3073

Creatinine (mg/dL) 1.41 G 0.02 (6745) 1.34 G 0.03 (3255) 0.8921 1.58 G 0.10 (363) 0.0011

Creatine kinase (ng/mL) 476.67 G 151 (2236) 196.89 G 14 (1248) 0.4687 663.12 G 296 (24) 0.0062

CRP (mg/dL) 111.27 G 2.11 (1797) 107.02 G 2.81 (991) 0.0873 67.89 G 4.72 (395) 0.0790

D-dimer (mg/L FEU) 2.61 G 0.15 (3077) 2.80 G 0.21 (1913) 0.7981 2.65 G 0.19 (353) 0.9840

Eosinophil % 0.62 G 0.02 (5886) 0.84 G 0.03 (2811) 0.7871 (0)

Ferritin (ng/mL) 1182.74 G 173 (1814) 774.17 G 74 (1622) 0.2221 771.96 G 127 (395) 0.0000

INR 1.20 G 0.01 (4512) 1.22 G 0.02 (2292) 0.4918 1.27 G 0.03 (378) 0.4882

LDH (U/L) 363.05 G 3.32 (3334) 341.15 G 5 (1718) 0.3875 420.53 G 54 (323) 0.7083

Lymphocyte% 17.35 G 0.13 (6415) 18.08 G 0.19 (3162) 0.0709 (0)

Lymphocyte count (k/mL) 1.10 G 0.02 (4995) 1.38 G 0.08 (2380) 0.7663 (0)

Mean platelet volume 10.54 G 0.02 (1711) 10.52 G 0.03 (924) 0.7975 (0)

Neutrophil % 73.74 G 0.16 (6415) 73.01 G 0.24 (3162) 0.0578 (0)

Procalcitonin (ng/mL) 1.50 G 0.22 (1602) 1.10 G 0.22 (874) 0.8876 2.55 G 0.94 (378) 0.7662

Troponin-I (ng/mL) 0.20 G 0.05 (3581) 0.14 G 0.03 (2034) 0.9128 0.55 G 0.23 (221) 0.3549

Cohort statistics of demographic and laboratory variables are reported as mean and standard error (number of patients for which the value was recorded), and

comorbidities are reported as the number of patients with comorbidity (number of patients where the value was recorded).
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discharged subgroups. All the p values of less than 0.05 demonstrate individual potential of the variable as

an independent predictor of mortality. Table 2 lists the distribution of the assigned severity levels broken

down based on the specific health system. Table 2 further demonstrates both average and availability of

patient data for each severity category. Figure 2 depicts both feature correlation heatmap and distributions

of a set of selected features for severity level 4 (i.e., in-hospital mortality versus discharged).
Feature selection results

We first derived ingredients of the parsimonious model out of the total of 57 features (as depicted in Tables

1 and 3) using the approach explained above. Figure 3 demonstrates the feature ranking based on the two-

step approach of using MRMR, pathway-based clustering, and finally exhaustive testing of performance.

Figure 3A specifically shows the ranking of 20 most discriminative features based on MRMR approach,

whereas Figure 3B demonstrates the feature importance for a final selected 10 markers model.
Parsimonious model performance

We compared the performance of the deep profiler model with all the features as inputs versus the parsimonious

version using only 10 markers. Figure 4 demonstrates the results for the full and parsimonious models on the left
iScience 24, 103523, December 17, 2021 3



Figure 2. Patients’ features characteristics

(A) Feature correlation heatmap for top-20 variables selected by MRMR.

(B) Feature distribution of corresponding variables for severity 4. For clarity, logarithmic values with base 2 are plotted for

the following variables: Creatine Kinase, Creatinine, CRP, D-Dimer, Ferritin, INR, LDH, Procalcitonin, and Troponin-I.
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and right columns, respectively. The AUCs for the prediction of in-hospital mortality at 30 days (severity level 4)

computed on the test dataset with 3,227 patient data are 0.85 + 0.01 (mean AUC + SE), and 0.85 + 0.004, for

full model and parsimonious one, respectively. Similarly, the AUCs for predicting mechanical ventilation, both

with andwithout other organ system failure, are 0.81 + 0.01 and 0.79 + 0.01. Kaplan-Meier curves for various levels

of severity for the twomodels arealso comparable.With respect topredictive accuracyofmortality (severity level=

4), the full model algorithm’s positive predictive value (PPV) was 0.53 and the negative predictive value (NPV) was

0.93 (Sensitivity of 0.64 and Specificity of 0.88), whereas for the 10 markers model PPV was 0.42 and NPV was 0.94

(Sensitivityof0.53andSpecificityof0.85). Regarding thepredictiveaccuracyof theseverity levelof2andabove (i.e.,

needtouseaventilator), values forPPVandNPVwere0.50and0.88 (Sensitivityof0.62andSpecificityof0.86) for the

full model, and 0.50 and 0.86 (Sensitivity of 0.61 and Specificity of 0.85), for parsimonious model, respectively.
Model explainability

We further looked at feature distribution of various severity scores for the test cohort in the latent space

(i.e., patient fingerprint as depicted in Figure 1). We observed a good separation of the classes after

UMAP analysis of the latent fingerprints for both models as depicted in Figure 4, in which the sub figures

(E) and (F) show the domain manifold and patients with highest and lowest severities (i.e., 4 and 1) depicted
4 iScience 24, 103523, December 17, 2021



Table 2. Severity levels description, criteria, prevalence per site, and patient characteristics

Severity 0 Severity 1 Severity 2 Severity 3 Severity 4

Description No respiratory

problem

Mild respiratory

problem

Moderate to severe

respiratory problem

Severe respiratory

problem with organ

damage

Mortality within 30 days

of admission

Criteria No O2 supplement

required

Hypoxic patients

requiring O2

supplement

Hypoxic patients

requiring high flow

nasal canula, BIPAPa,

or invasive O2

supplement therapy

Same as severity 2

along with increase in

SOFAb score (renal,

liver) by 2 and/or renal

replacement therapy

In-hospital mortality

within 30 days or

transfer to hospice

Prevalence per site

Emory hospital 838 914 377 332 318

Houston Methodist

Hospital

1253 2831 126 31 454

La Paz University

Hospital

1012 1142 238 107 609

Mt. Sinai Hospital

(external testing)

338 1061 284 126 329

Patient characteristic

Age 53 G 0.4 (1792) 59 G 0.3 (3357) 60 G 0.7 (526) 65 G 0.9 (328) 75 G 0.4 (1023)

BMI 31 G 0.3 (743) 32 G 0.2 (1852) 31 G 0.9 (93) 34 G 2.4 (23) 29 G 0.4 (307)

Gender (Female/Male) 580 1440 171 67 484

Diabetes 359 (1225) 981 (2783) 93 (296) 41 (104) 348 (792)

Chronic kidney disease 189 (1226) 488 (2784) 36 (295) 39 (104) 245 (790)

Hypertension 224 (1228) 681 (2786) 112 (296) 79 (104) 423 (792)

Congestive heart failure 95 (791) 334 (1943) 31 (93) 11 (23) 131 (313)

Lymphocyte (%) 21 G 0.3 (1574) 17 G 0.2 (3111) 15 G 0.4 (485) 16 G 0.6 (290) 13 G 0.3 (955)

Eosinophil (%) 0.96 G 0.04 (1495) 0.50 G 0.02 (2940) 0.56 G 0.05 (379) 0.84 G 0.09 (207) 0.44 G 0.03 (865)

Neutrophile (%) 69 G 0.3 (1574) 74 G 0.2 (3111) 77 G 0.5 (485) 74 G 0.8 (290) 79 G 0.4 (955)

Creatinine 1.30 G 0.04 (1683) 1.35 G 0.03 (3223) 1.36 G 0.07 (519) 1.52 G 0.08 (321) 1.78 G 0.06 (999)

D-Dimer 1.22 G 0.13 (617) 1.85 G 0.14 (1461) 3.59 G 0.54 (350) 4.20 G 0.86 (181) 5.45 G 0.63 (468)

CRP 69 G 3.9 (316) 109 G 2.9 (918) 140 G 6.4 (210) 116 G 7.2 (137) 150 G 6.7 (216)

Troponin-I 0.09 G 0.05 (790) 0.14 G 0.07 (1838) 0.15 G 0.07 (291) 0.13 G 0.04 (173) 0.64 G 0.20 (489)

Interleukin 6c 85 G 29.1 (181) 69 G 9.6 (612) 89 G 32.9 (166) 33 G 9.1 (65) 169 G 29.1 (163)

aPositive Airway Pressure.
bSequential Organ Failure Assessment.
cIL-6 was not part of the 10-variable model owing to the low number of entries in the hospital databases.

ll
OPEN ACCESS

iScience
Article
as red and green dots, respectively. Furthermore, we looked at the feature contribution for each model

based on Shapley Additive Explanations (SHAP) values(Lundberg and Lee, 2017). Top ten set of most

important features for both models are depicted in Figure 4. In sub figure (H), we observe that the higher

values of age, troponin-I, and CRP, for example, contribute to the estimated high severities; in contrast,

lower values of D-dimer have a similar effect.

Model performance for different time intervals

We also looked at model performance over time. As shown in Figure 5, the model accuracy in predicting

clinical endpoints degrades as events (i.e., exacerbation to more severe conditions) happen at later days

from the first encounter or admission. In other words, the prediction accuracy is higher for patients who

are potentially experiencing higher levels of severity within earlier days after the initial encounter or admis-

sion. In all these comparisons, the parsimonious model has maintained the level of performance

specifically in predicting mortality, whereas the full marker model has a superior performance in predicting

ventilator use or predicting events happening at later timepoints. This could hint toward the importance of
iScience 24, 103523, December 17, 2021 5



Table 3. Remaining baseline characteristics of the study population

Characteristics Training cohort Testing cohort

Mortality

p value External cohort

Mortality

p value

ALT (U/L) 42.76 G 1.2 (6384) 40.40 G 1.2 (3148) 0.9527 62.29 G 16.1 (393) 0.4596

APTT 34.96 G 0.3 (1831) 34.72 G 0.6 (1090) 0.4485 32.26 G 0.5 (378) 0.433

AST (U/L) 54.15 G 2.0 (6323) 46.78 G 1.3 (3113) 0.2604 79.76 G 20.2 (350) 0.6108

Basophil count (k/mL) 0.02 G 0.00 (4993) 0.02 G 0.00 (2380) 0.7727 (0)

Basophil % 0.30 G 0.00 (6289) 0.30 G 0.00 (3088) 0.8138 (0)

Bilirubin (mg/dL) 0.62 G 0.01 (6185) 0.65 G 0.02 (3106) 0.0249 1.07 G 0.11 (399) 0.7733

Chloride (mEq/L) 99.94 G 0.1 (6756) 100.74 G 0.1 (3258) 0.6084 102.96 G 0.3 (405) 0.813

Eosinophil count (k/mL) 0.03 G 0.00 (4993) 0.06 G 0.00 (2380) 0.3004 (0)

Fibrinogen (mg/dL) 701.86 G 4.5 (3122) 593.81 G 5.9 (1605) 0.6810 459.66 G 9.4 (373) 0.0739

Glucose (mg/dL) 142.25 G 1.0 (6786) 145.86 G 1.6 (3276) 0.7443 140.43 G 3.7 (405) 0.417

HCO3 arterial (mmol/L) 22.61 G 0.1 (970) 22.60 G 0.2 (478) 0.0757 22.23 G 2.2 (19) 0.16

Hematocrit (%) 40.94 G 0.1 (3800) 40.80 G 0.1 (1876) 0.0016 36.76 G 0.4 (398) 0.4439

Hemoglobin (g/dL) 13.14 G 0.0 (6767) 13.02 G 0.0 (3337) 0.0341 11.99 G 0.1 (402) 0.3614

Interleukin 6 (pg/mL) 85.93 G 9.1 (1187) 64.94 G 9.9 (736) 0.2489 2404 G 1211 (432) 0.7239

Monocyte% 6.96 G 0.05 (6415) 6.86 G 0.06 (3162) 0.9970 (0)

Monocyte count (k/mL) 0.45 G 0.00 (4995) 0.50 G 0.01 (2380) 0.8253 (0)

Neutrophil count (k/mL) 5.63 G 0.05 (4995) 6.11 G 0.08 (2380) 0.5532 (0)

O2 saturation arterial 94.42 G 0.2 (470) 93.73 G 0.4 (254) 0.9082 91.98 G 4.7 (11) 0.5197

O2 saturation venous 64.11 G 1.0 (382) 61.75 G 1.7 (152) 0.9031 64.85 G 2.7 (64) 0.2592

PCO2 venous (mmHg) 43.35 G 0.4 (431) 42.86 G 0.7 (183) 0.6206 45.49 G 0.6 (373) 0.1056

PCO2 arterial (mmHg) 36.96 G 0.3 (1079) 36.31 G 0.5 (508) 0.2009 37.51 G 3.4 (18) 0.6039

Ph arterial 7.41 G 0.00 (1011) 7.42 G 0.00 (496) 0.3406 7.34 G 0.03 (19) 0.1918

Ph venous 7.36 G 0.00 (499) 7.38 G 0.01 (195) 0.7094 7.37 G 0.00 (373) 0.0164

Platelets (k/mL) 230.84 G 1.2 (6763) 247.58 G 1.8 (3335) 0.1189 (0)

PO2 arterial (mmHg) 92.23 G 1.8 (1010) 90.76 G 2.4 (496) 0.7929 131.75 G 26.5 (19) 0.9328

PO2 venous (mmHg) 40.94 G 1.3 (478) 38.13 G 1.5 (176) 0.6162 40.73 G 1.6 (371) 0.9681

Potassium (mEq/L) 4.01 G 0.01 (6694) 4.02 G 0.01 (3227) 0.1812 4.31 G 0.04 (358) 0.962

RBC count (m/uL) 4.45 G 0.01 (4721) 4.42 G 0.02 (2411) 0.9124 (0)

Sodium (mmol/L) 136.78 G 0.1 (6757) 137.41 G 0.1 (3258) 0.1161 138.54 G 0.3 (369) 0.2642

Uric acid (mg/dL) 6.77 G 0.44 (46) 5.59 G 0.44 (20) 0.2524 7.40 G 1.54 (12)

WBC count (k/mL) 7.45 G 0.05 (6762) 8.23 G 0.12 (3335) 0.7814 (0)

Cohort statistics of laboratory variables are reported as mean and standard error (number of patients for whom the value was

recorded).
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co-morbidities and/or redundancies in various blood variousmarkers, which are not explicitly present in the

parsimonious model.
Model performance comparison

To put the performance numbers in context, we also used IL-6 as a sole predictor for mortality as was

suggested by McGonagle et al.(McGonagle et al., 2020), and the average AUC for the same test cohort

is 0.69, which is significantly lower than both full and parsimonious models. We finally compared our

approach to two popular machine learning-based approaches namely XGBoost (Chen and Guestrin,

2016) and Random Forest Regression (Couronné et al., 2018; Dı́az-Uriarte and Alvarez de Andrés,

2006) and classic Logistic Regression. For XGBoost and Random Forest Regression approaches, we

used grid search cross-validation to obtain the best performing model with 57 markers based on AUC

and chose the top 10 performing features based on feature importance, which results in different com-

bination of laboratory markers and comorbidities in the supplemental information Section. Figure 6
6 iScience 24, 103523, December 17, 2021



Figure 3. Feature importance

(A) MRMR–top 20 features

(B) Feature importance based on the effect on classification accuracy (i.e., decrease in AUC) using deep profiler.
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depicts the performance of the mentioned three models (i.e., XGBoost, Random Forest Regression, and

Logistic Regression) in terms of AUC for predicting various levels of severity as compared to the pro-

posed method.
iScience 24, 103523, December 17, 2021 7



Figure 4. Full model (57 markers) performance versus parsimonious model (10 markers) performance

(A and B) AUC curves for the predicting severity levels.

(C and D) Kaplan-Meier curves comparing the shaded regions identify the 95% confidence interval.

(E and F) UMAP visualization of the test dataset on the deep profiler latent space (with local neighborhood of 250) for first

model in the ensemble, where green and red dots indicate severity levels 1 and 4 respectively.

(G and H) SHAP summary plots of the first model in the ensemble.
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Model performance generalization

To assess generalizability of model against unseen patient data from a new clinical site, we performed a

series of analysis on the patient cohort from Mt. Sinai. Figure 7 depicts the consort diagram for the 2,340

records in the Mt. Sinai publicly available dataset. Specially, we used patients admitted after April 28,

2020 (i.e., denoted as ‘‘ARM1’’) for the external validation. Figure 8 demonstrates the results of various

models including two comparators (i.e., XGBoost and Random Forrest Regression). The 10 markers

model trained using internal datasets from Emory, Houston Methodist, and La Paz outperforms other

approach by a significant margin. We also further refined the 10 markers model based on the Mt. Sinai

data from prior April 28, 2020; however, we did not observe any performance improvement, indicating

that additional data for training did not include complementary information to what the model has

been trained with.
8 iScience 24, 103523, December 17, 2021



Figure 5. Full model (57 markers) performance versus parsimonious model (10 markers) performance for various

time to event durations

(A and C) show the ROC for time to mortality at 3, 7, 15, 22, and 30 days from admission for 57 markers and 10 markers

model respectively.

(B and D) show the progression of area under ROC for predicting severity score of 4 at 5-day intervals for 57 markers and

10 markers model respectively. Shaded regions identify the 95% confidence interval.

(E and F) show UMAP visualization of time to mortality (in days) of patients with severity 4 on the deep profiler latent space

(with local neighborhood of 250) for first model in the ensemble.
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DISCUSSION

In this study, we focused on developing an easy-to-use and deploy algorithm for predicting disease

severity for patients with COVID-19 who were admitted to the hospital. We utilized a novel combination

of feature ranking and selection methods, along with a novel deep learning-based approach to develop

a 10 markers parsimonious model and algorithm from a total of 57 laboratory, clinical, and demographic

variables. The training process has been done using data from 24 hospitals and three health systems in

two countries.

The predicted disease severity ranges from a severity level 0 (no respiratory problem) to level 4 (in-hospital

%30-day mortality). The prediction accuracy of severity 4 (i.e., mortality) has an AUC of 0.86 + 0.01 (mean

AUC +SE) for the full model using all 57 parameters and 0.85 + 0.01 for parsimonious 10 marker model. The

final selected ingredients of the 10marker model were all shown to be independent predictors of severity in

a number of prior studies (Carubbi et al., 2021; Efros et al., 2021; Fraissé et al., 2020; Long et al., 2020; Lu

et al., 2021; Nie et al., 2020; Stringer et al., 2021; Wool and Miller, 2021; Wu et al., 2020; Xiang et al., 2021).
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Figure 6. Performance of other approaches

(A) XGsBoost.

(B) Random Forest Regression.

(C) Logistic Regression depicts performance of the machine learning models with 10 markers selected using the

corresponding feature selection method.

(D) Deep profiler using 10 markers.

(E) Performance using Interleukin-6 as a single variate model.
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We further externally validated the model using a publicly available dataset from Mt. Sinai and achieved

performance with AUC of 0.74 + 0.01 for predicting mortality, which is lower than the internally validated

results. We attributed this performance degradation to the lack of key blood markers namely eosinophil

and lymphocyte percentages in the external validation dataset as can also be seen in the Table 3. Neverthe-

less, the performance of the proposed approach is shown to be superior as compared with alternative

methodologies. The developed model is easy to deploy and use, primarily owing to the few numbers of

required laboratory markers. It is also robust as compared to other models using clinical parameters, which

may be predictive but at a wider scale are fluctuant, user-dependent, and subject to temporal influences.

Our final model has nine blood biomarkers and age (Iaccarino et al., 2020), capturing various underlying

biological processes also independently known to be early independent predictors of severity such as im-

mune response (i.e., lymphocytes (Lu et al., 2021) and eosinophils (Fraissé et al., 2020)), kidney and liver

functions (i.e., creatinine (Harrell et al., 1996) and LDH (Wu et al., 2020)), cardiac function (i.e., Troponin I

(Efros et al., 2021; Nie et al., 2020)), inflammation processes (i.e., CRP(Stringer et al., 2021) and ferritin
10 iScience 24, 103523, December 17, 2021



Figure 7. Patient cohort from publicly available data Mt. Sinai (2340), used for model external testing/validation
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(Carubbi et al., 2021)), and coagulation process (i.e., D-dimer(Long et al., 2020) and INR (Wool and Miller,

2021)). Furthermore, there are studies looking at interleukins as early predictors of severity(Del Valle et al.,

2020; McGonagle et al., 2020), and we have also observed their contribution; however, interleukin-6 (IL-6)

specifically did not make the final cut based on the feature selection methodology we chose. Despite that,

we compared the proposed model performance with an IL-6 based model as the baseline reference. Our

approach as depicted in Figure 1 has many advantages, one of which is the possibility of doing further anal-

ysis on the latent feature space. This is particularly important for themodel interpretations, uncertainty esti-

mation, and to explore the relationship of unseen patient data to the patient cohort data used for training

the model (Kingma andWelling, 2014). The last one is an important aspect for the clinical utility of the over-

all system as it could be used to create a histogram of severity distribution for similar patients within the

training cohort. The similar patient severity histogram type, which could be classified as either skewed, uni-

form, monomodal, or random, could hint the clinical user regarding the level of uncertainty in the predicted

severity level by the algorithm.

We do believe that our model has an advantage over other models as we only use the blood markers and

that the physiological response to vaccination-induced immunity could potentially be expressed in these

markers. A prospective validation study is warranted to further characterize the performance of the model

and its clinical utility in effectively managing targeted specifically vaccinated patient population.

Limitations of the study

Various therapeutic approaches administrated to the patients from different centers can be considered as

confounding factors and can be seen as one of the limitations of this study and the resultant models.

Another limitation of the study is that our data were solely gathered from unvaccinated patients. We

have yet to study the accuracy of the model on vaccinated patient cohorts.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Cohort characteristics

B Clinical outcome based severity score assignment

B Deep profiler prediction algorithm
iScience 24, 103523, December 17, 2021 11



Figure 8. Evaluation on the external validation cohort

(A) XGBoost.

(B) Random Forest Regression with 10 markers selected using the corresponding feature selection method.

(C) Deep profiler using 10 markers.

(D) Deep profiler using 10 markers, re-trained by adding Mt Sinai training cohort to the training dataset.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

SDY1662 - an inflammatory cytokine signature

predicts Covid-19 severity and Survival

Mount Sinai Health System https://www.immport.org/shared/study/

SDY1662

Software and algorithms

Atellica�COVID-19 severity algorithm App Siemens Healthineers https://atellica-covidalgo.azureedge.net/
RESOURCE AVAILABILITY

Lead contact

Further information and request for resources should be directed to the lead contact, Ali Kamen (ali.

kamen@siemens-healthineers.com).

Materials availability

This study did not generate any new reagents.

Data and code availability

Data: The data includes patient information and hence cannot be made publicly available. Any additional infor-

mation required to reanalyze the data reported in this paper is available from the lead contact upon request.

Software: The software developed in this work, AtellicaCOVID-19 Severity Algorithm App, is available on-

line via a public webpage (https://www.immport.org/shared/study/SDY1662).

Code: The pseudo codes of the machine learning algorithm and data pre-processing are included as sup-

plement items (Algorithms S1–S4).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Our study does not use experimental models typical in life sciences.

METHOD DETAILS

Cohort characteristics

We obtained deidentified retrospective records from 14,172 patients admitted due to a confirmed SARS-

CoV-2 infection from La Paz University Hospital (La Paz) in Madrid, Spain (3 hospitals), Emory Healthcare

System (Emory) in Atlanta, Georgia (6 hospitals), Houston Methodist Hospital System (Houston Methodist)

in Houston, Texas (7 hospitals) and Mount Sinai Health System (Mount Sinai) in New York, New York (8 hos-

pitals). De-identification was done in accordance with the USA Health Insurance Portability and Account-

ability Act (HIPAA) and the European General Data Protection Regulation (GDPR). Informed consent

waivers were approved by the institutional review boards or ethics committees for La Paz, Emory, andHous-

ton Methodist. External and independent data from Mount Sinai were publicly available and obtained via

IMMPORT shared data repository (see https://www.immport.org/). Patients from Emory and Houston

Methodist were admitted between March 1, 2020 and August 8, 2020, and patients from La Paz were

admitted between February 24, 2020 and May 19, 2020. The data from Mount Sinai included patients

admitted between March 21, 2020 and June 23, 2020. The records included demographic information, clin-

ical conditions, comorbidities (e.g., chronic kidney disease), and laboratory parameters (e.g., lactate dehy-

drogenase) taken at various timepoints after the first encounter, and various diagnostic tests (e.g., SpO2)

obtained during the patient’s initial encounter up to 72 hours following evaluation. Tables 1 and 3 summa-

rizes the cohort characteristics and detailed epidemiological, demographic, clinical, and laboratory data.

We reserved the publicly available Mount Sinai dataset for external testing and did not use it during model

training and selection.
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Clinical outcome based severity score assignment

For all these patients, we assigned a severity score tobetter characterize clinical endpoints as definedby Table 2.

The severity scores are assigned based on the worst condition of the patient during the course of the hospital

stay on an ordinal scale from 0 to 4. The definitions of the various scales were primarily based on Berlin criteria

and SOFA score (Ferguson et al., 2012; Lambden et al., 2019), however, they were modified to align better with

COVID-19 disease characteristics and to have a harmonized approach based on data availability from the

different sites used for this study. Based on our defined severity scale, a severity score of 0 indicates no respira-

tory problem,whereas severity levels 1 and 2 are reserved for patientswithmild/moderate and severe respiratory

problems, respectively. A severity score of 3 is assigned to patients, who had a severe respiratory problem along

with other organ system failures with a focus on liver and kidney during the hospital stay. Finally, severity level 4

denotes either in-hospital mortality within 30 days or transfer to hospice.

Deep profiler prediction algorithm

The schema of the proposed (i.e., deep profiler) method, which is based on deriving a patient fingerprint

from various demographic, clinical, and laboratory parameters and using it to predict severity score is

shown in the below Figure. Deep profiler consists of three main parts (i.e., networks): an encoder network

for extracting prominent features represented in a latent space, which is also referred to as the patient

fingerprint, a decoder network for reconstructing the input data to ensure data fidelity of the latent feature

representation, and finally a severity classifier network, which is trained to estimate the severity score (Lou

et al., 2019). We chose a variationalautoencoder (VAE) based approach to provide a probabilistic represen-

tation of input parameters gathered at the first clinical presentation in a latent space (Kingma and Welling,

2014). In this approach, the encoder output is a probability distribution for each latent attribute corre-

sponding to an input instance. The encoder consists of four fully connected layers with 64, 32, 32 and 16

channels respectively. Each fully connected layer is followed by a batch normalization layer and a leaky

rectified linear activation operation (leaky ReLU) with slope of 0$2. The decoder consists of four fully con-

nected layers with 16, 32, 32 and 64 channels respectively, with each fully connected layer followed by a

batch normalization layer and a rectified linear (ReLU) activation operation. The advantage of VAE is

twofold. First, the entire autoencoder set of networks (i.e., encoder and decoder) could be trained with

entire patient data in an unsupervised manner without the knowledge of their specific clinical outcome

and labels. This is specifically important for the problem at hand, since the complex interactions among

input datapoints could be disentangled using a potentially much larger set of data points. Secondly, vari-

ation aspect of autoencoder forces the latent state representation to be smoother as compared to stan-

dard autoencoders and that helps with the improved generalization capacity. We have further outlined ad-

vantages of VAE in the supplemental information section, which also include more principled way of

dealing with missing input point values, by learning a disentangled representation in the latent space.
Schematic of the deep profiler approach during training and inference phases based on three fully connected networks (FCN)

The solid arrows show the data flow during the inference or testing, whereas dashed gray arrows show additional data flow required during the training of the

networks (i.e., encoder, decoder, and severity classifier).
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We employ a classifier network to predict the severity score based on the latent fingerprint variables. Since

the order among various severity levels is important, we formulated severity score prediction problem as an

ordinal regression one. We first train the weights of the neural network on the ordinal classification task to

predict severity levels, and subsequently use an ordinal linear regressor to obtain severity scores between

0 and 4. The ordinal classification task over 5 values is reformulated as 4 binary classification tasks (Gutiérrez

et al., 2016). Thus, the severity prediction classifier network outputs 4 binary outputs, corresponding to

whether severity level is greater or equal to 1, 2, 3 or 4 respectively. The network consists of 4 fully con-

nected layers. The first 3 fully connected layers have 32 channels are followed by a rectified linear activation.

The fourth fully connected layer maps the 32-channel feature to 4 output variables with sigmoid activation.

To avoid overfitting, a dropout of 0$25 is employed after the first and second fully connected layers. The

network parameters are optimized by minimizing the combined loss of variational auto-encoder with L1

reconstruction loss and the binary cross entropy loss on the output of the severity classifier using Adam

with a learning rate of 33 10�4. Our model implementation is based on PyTorch (http://pytorch.org).

Given the output scores of the 4 binary network classifiers, we employ an ordinal L2-regularized linear re-

gressor (Rennie and Srebro, 2005) to obtain a severity score between 0 and 4. We use the All-Threshold

based construction as described in the paper by Rennie et al.(Rennie and Srebro, 2005), which bounds

the mean absolute error between the true and predicted severity levels. The parameters of ordinal linear

regressor were obtained by performing grid search with 5-fold cross validation using scikit learn, a machine

learning library in Python (https://scikit-learn.org/).

Model calibration and clinical event likelihood computation

Deep profiler outputs the severity risk score between 0-4 for a patient, given the input parameters at the

time of admission. The concordance index (CI) (Couronné et al., 2018) of the predicted severity levels,

which quantifies the quality of rankings, on the internal testing dataset and external validation dataset of

Mt Sinai was 0.71 and 0.64, respectively. In addition to the risk score, the outputs of the severity classifica-

tion network can also be used to compute the likelihood of the clinical events of acute respiratory failure,

end organ damage with respiratory failure and mortality, corresponding to severity levels R2, R3 and 4

respectively. However, the softmax output of the deep network classification networks is often not well cali-

brated to be interpretated as likelihoods. To address this, we fit a logistic regression model to the outputs

of the severity classification network. We repeat this process for each deep profiler in the ensemble, then

use the mean likelihood of the ensemble as the overall likelihood for the clinical event.

Data preprocessing

The laboratory measurements recorded at the time of admission depends on several factors such as the

patient’s symptoms and thus, in retrospective data cohorts, all laboratory measurements are not available

for all the patients. Furthermore, other clinical information such as comorbidities may not be available. Ta-

ble 1 shows the number of patients for each characteristic. We preprocess the lab measurements to

normalize the input data distributions. For certain laboratory measurements where the input distribution

is heavy tailed, we transform them to logarithmic space. All variables are centered and scaled based on

median and interquartile range for increased robustness to outliers. All the missing variables are imputed

using the median value.

Model training

Training deep profiler to minimize the combined loss of the variational auto encoder as well as ordinal

regression posits several challenges. For instance, uneven data and outcome distributions as reported

in Table 2, e.g., the number of patients for severity level 2 is significantly more than severity level 4. This

is addressed by appropriately weighting the loss terms. The losses corresponding to 4 binary classifiers

are weighted as {0$3, 1, 1$5, 4} respectively based on distribution of samples over different outcomes

and relative importance of the task. Another challenge is that classification loss can significantly bias the

encoder weights in the initial epochs, making it difficult to learn a smooth manifold. This is addressed

by only optimizing the parameters of the variational auto-encoder for the first 10 epochs and optimizing

all the networks jointly for the subsequent epochs. all the networks are optimized jointly.

While use of variational auto-encoder helps in dealing with model bias due to missing data via implicit

imputation, there is still a risk that a single deep profiler model trained over entire training set can still incor-

porate such a bias. To further mitigate this risk, we train an ensemble of deep profilers over 10 different
iScience 24, 103523, December 17, 2021 17
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splits of the training dataset. Each split partitions the training dataset into a parameter training set and

model selection set with 9 to 1 ratio, while maintaining the original ratio of samples for each severity level.

Parameter training set is used for learning the weights via backpropagation and the model selection set is

used to select the best model over epochs. Given the ensemble of 10 deep profilers, the overall severity

score is computed as the average of the severity scores. In addition to the overall severity score, we also

report the 95% confidence interval.

Missing values

Missing input data is a prevalent problem specifically for larger cohorts of patients in which consistent data

acquisition and availability is hard to ensure. This posits a greater challenge to the acceptance of machine

learning based prediction models, since missingness of data can be attributed to the level of severity of the

patient (fewer tests may have been done since the patients didn’t exhibit severe symptoms) and machine

learning models are potential learn the pattern of missingness as a predictive feature.

There are different approaches to deal with missing input data points, and these range from leaving

the entire record with missing data point aside, to performing missing data imputation as part of pre-pro-

cessing step (e.g., using K-nearest neighbor method(Faisal and Tutz, 2017), singular value decomposition(-

Troyanskaya et al., 2001), or variational auto-encoders(Qiu et al., 2020)), or most preferably using implicit

data imputation within the prediction task. In this work, since our prediction network has a variational

auto-encoder embedded, we use a hybrid approach, which consists of three steps. First, for all missing

data points for each patient record, we performmedian based imputation. Pseudocode for pre-processing

is detailed in the Algorithm S1. Second, during the training of the VAE, we randomly drop various data

points from each patient record (de Jong et al., 2019). In this scenario, the auto-reconstruction loss is

computed only on non-missing values. In this case, the latent space representation (i.e., patient fingerprint)

becomes inherently robust with respect to missing variables with different patterns of missing at random(-

Phung et al., 2019). Pseudocodes for training procedure and specifically the training loss are detailed in the

Algorithms S2 and S3, respectively. Finally, VAE inherently learns the distribution of the input data by esti-

matingmean and standard deviation of themapped latent parameters assuming amixture of Gaussian dis-

tributions. Any missing data points at the input could potentially be less severely affecting the latent pa-

rameters and the overall distribution formed by the entire training cohort. Finally, since we train an

ensemble of networks trained on various folds with random drop-out patterns, we further ensure that

the effect of data missingness is minimized. In order to assess the effectiveness of these choices, we con-

ducted additional analysis to study the missing data distribution. Figure S1A shows the histogram of the

patients with different number of missing input parameters. The pseudocode for the inference used during

evaluation is brought in the Algorithm S4. Nearly half of the patient population has 50% of more of the 57

input parameters missing, thus, the risk of missing data to be a feature is certainly a possibility. We then set

up an experiment, where we used the number of missing patient parameters as a feature and studied the

patient distribution for each severity level. Figure S1B shows the violin plots for each severity level; notice

that the violin plots for each severity level are quite similar suggesting the number of missing data itself isn’t

a strong indicator of severity in this dataset.

We also evaluated the performance of deep profiler on the subset of data where all the 10 markers were

obtained at the time of admission. Figure S2 shows the AUCs as well as the UMAP projection of the subset

of the data on the trainingmanifold.While this subset of data only has 300 patients, we observed amarginal

increase in performance among patients with higher severity while a drop in performance among patients

with lowest severity. More importantly notice that the patient samples are projected uniformly over the

manifold, thus suggesting the model is not implicitly grouping patients with different number of missing

parameters at different location on the manifold.

Parsimonious model creation

To improve the overall model performance and to increase the utility of the overall predictive system, it is

important to devise a parsimonious model with as few input parameters as possible. An exhaustive optimal

feature selection algorithm is a non-deterministic polynomial-time (NP)-hard problem as the number of

combinations changes based on the factorial of the number of features. Aside from unsupervised feature

selection techniques in which no target label is considered and the goal is to reduce the number of redun-

dant variables through a correlation analysis, we have several categories of supervised approaches. The

three categories are filter-based, wrapper-based and intrinsic approaches (Saeys et al., 2007). Filter-based
18 iScience 24, 103523, December 17, 2021
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methods are based on conventional statistical approaches and for the most part do not consider complex

non-linear relationship among the features and target labels. Wrapper-based methods are primarily based

on iterative selection and/or elimination of features and qualification of the final selected set based on the

algorithm performance to predict the target. These methods which are essentially search based are usually

computationally expensive and require model training and testing for the number of selected feature set

candidates. Finally, in embeddedmethods, the feature selection is formulated as an explicit part of the pre-

dictor loss function in addition to the prediction error. This could also be thought of enforcing regulariza-

tion on the decision function or the decision boundary (Muthukrishnan and Rohini, 2016). We used a modi-

fied two step feature selection method (Drotár and Gazda, 2016; Wang et al., 2007). The modification is

primarily based on bringing in the knowledge of the relationship among various blood biomarkers and clin-

ical co-morbidities. For each of the laboratory markers, we assigned them to clusters based on the relation-

ship with the following underlying physiological processes such as immune response, inflammation pro-

cess, coagulation pathways, cardiac function, and liver and kidney functions. We used minimum

redundance maximum relevance (MRMR) technique to rank order features based on the importance(Man-

dal andMukhopadhyay, 2013) and reduce the number of candidates to 20. Furthermore, we chose less than

100 combinations of markers, taking in into account equitable representations from various clusters as

stated above. For all these combinations, we trained and evaluated the deep profiler performance on

the test dataset and chose the winning combination with the highest performance on basis of the area un-

der the receiver-operator characteristic (ROC) curve (i.e., referred to as AUC).

Description of baseline approaches

We compared the performance of proposed approach with three approaches, namely, XGBoost49,

Random Forest Regression50 and Logistic Regression. In order to have a fair comparison, we used a feature

importance approach for each specific method to select the top ten most prominent markers for model

creation(Dı́az-Uriarte and Alvarez de Andrés, 2006; Genuer et al., 2010).

Specifically, for XGBoost, we utilized a hyperparameter search with 5-fold cross validation on the training

set to identify the best performing model with all input parameters that minimizes logistic regression loss

function and achieves the highest area under the curve. The search was conducted using XGBoost python

library (https://xgboost.readthedocs.io/), with following parameter ranges: max_depth e {2, 3, 4, 5},

min_child_weight e{1, 2, 3, 4, 5}, subsample e {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, colsam-

ple e {0.7, 0.8, 0.9, 1.0}, with the rest of the parameters set to default. We then used the relative

feature importance of the input parameters from the best performing model to select the top 10 perform-

ing features. The selected features and their feature importance are shown in Figure S3A. We then subse-

quently train the parsimonious XGBoost model with the selected 10 features over the training set and

report the results for comparison over the internal testing and external validation datasets.

For Random Forest Regression, we followed a similar feature selection and model optimization pipeline as

described for XGBoost. The hyperparameter search for the model with all markers was done using scikit

learn, a machine learning library in Python (https://scikit-learn.org/) with following parameter ranges:

n_estimators ε {100, 200, 300}, max_features ε {’auto’, ’sqrt’}. The selected 10 features

with corresponding feature importance are shown in Figure S3B.

Similarly, for Logistic Regression, we used the 10 features selected using the Random Forest model, as it

marginally outperformed the XGBoost model. We then subsequently trained the logistic regression model

using 5-fold cross validation, while searching over the following hyperparameters: C e {10-2, 10-1, 1,

10, 102}, solver e {liblinear, lbfgs}, with class_weight set to ‘‘balanced’’.

Finally, for the proposed deep profiler approach, we used the hybrid feature selection as explained in the

STAR Methods section.

Generalization

Our datasets used for training, model selection, and testing are from three hospital systems, namely Emory,

HoustonMethodist, and La Paz. To assess themodel generalizability, we used an external publicly available

dataset from Mount Sinai Hospital. All testing on the Mount Sinai data was performed using the portion of

the dataset which was taken after April 28, 2020. Furthermore, to assess the upper bound of performance,

we trained a model which included all the data from the three internal hospital systems along with the
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portion of the data fromMt. Sinai taken prior to April 28, 2020. We followed the same training procedure as

described before, except that we initialized the model parameters with the learned parameters obtained

from training only on the data from three internal hospital systems. We have summarized the results in the

main manuscript Figure 8. Aside from the proposed algorithm results on the external validation data, Fig-

ure 8 in the main manuscript also include the results from other approaches namely XGBoost and Random

Forest Regression. We observed amoderate degradation of performance for example for mortality predic-

tion (i.e., severity 4) from AUC of 0$85 to 0$74, however, we attribute this to missingness of the while blood

cell counts in for the entire external validation cohort. As we have seen in the main manuscript Figure 4 for

example, Lymphocyte percentage is predictive of the clinical outcomes and its missingness will most likely

adversely affect the performance.
Deployment/Dissemination

The final parsimonious model which has nine laboratory markers and age is available using the following

URL: https://atellica-covidalgo.azureedge.net/. The application computes the estimated severity score

and three likelihoods in percentages for various severe clinical events. The likelihoods are computed based

on calibrated ensemble output of ten deep profiler networks as explained earlier in the text.
QUANTIFICATION AND STATISTICAL ANALYSIS

Model performance evaluation

The predictive performance of a model was evaluated on a testing data cohort of 3,554 patients (see Fig-

ure 1) by reporting the AUC to assess discriminative ability for each of the severity levels, the Kaplan-Meier

survival plots to analyze time to events (mortality, ventilator use) as well as other evaluation metrics

including positive predictive value (PPV), negative predictive value (NPV), sensitivity and specificity. For

AUC results, we also considered splitting the clinical outcomes to various time intervals after the initial pre-

sentation of the disease to capture possible performance differences for clinical outcomes based on their

time elapsed from the first encounter. We used the Uniform Manifold Approximation and Projection

(UMAP) method (McInnes et al., 2020) to display the latent fingerprint distribution of the data. Using

UMAP, we projected the 8-dimensional latent fingerprints to 2-dimensional points such that similar input

data are closer and dissimilar points are farther apart with high probability. The UMAP plot shows various

instance of predicted severity levels in relation to one another.
20 iScience 24, 103523, December 17, 2021
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