
Articles
Computational pathology aids derivation of microRNA
biomarker signals from Cytosponge samples
Neus Masqu�e-Soler,a,1* Marcel Gehrung,b,1 Cassandra Kosmidou,a Xiaodun Li,a Izzuddin Diwan,c Conor Rafferty,c

Elnaz Atabakhsh,c Florian Markowetz,b and Rebecca C. Fitzgeralda

aMRC Cancer Unit, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
bCancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
cAbcam Inc., 1 Kendall Sq B2304, Cambridge, MA, 02139, United States
Summary
eBioMedicine 2022;76:
103814
Published online 17 Jan-
uary 2022
https://doi.org/10.1016/j.
ebiom.2022.103814
Background Non-endoscopic cell collection devices combined with biomarkers can detect Barrett’s intestinal meta-
plasia and early oesophageal cancer. However, assays performed on multi-cellular samples lose information about
the cell source of the biomarker signal. This cross-sectional study examines whether a bespoke artificial intelligence-
based computational pathology tool could ascertain the cellular origin of microRNA biomarkers, to inform interpre-
tation of the disease pathology, and confirm biomarker validity.

Methods The microRNA expression profiles of 110 targets were assessed with a custom multiplexed panel in a
cohort of 117 individuals with reflux that took a Cytosponge test. A computational pathology tool quantified the
amount of columnar epithelium present in pathology slides, and results were correlated with microRNA signals. An
independent cohort of 139 Cytosponges, each from an individual patient, was used to validate the findings via qPCR.

Findings Seventeen microRNAs are upregulated in BE compared to healthy squamous epithelia, of which 13 remain
upregulated in dysplasia. A pathway enrichment analysis confirmed association to neoplastic and cell cycle regula-
tion processes. Ten microRNAs positively correlated with columnar epithelium content, with miRNA-192�5p and
-194�5p accurately detecting the presence of gastric cells (AUC 0.97 and 0.95). In contrast, miR-196a-5p is con-
firmed as a specific BE marker.

Interpretation Computational pathology tools aid accurate cellular attribution of molecular signals. This innovative
design with multiplex microRNA coupled with artificial intelligence has led to discovery of a quality control metric
suitable for large scale application of the Cytosponge. Similar approaches could aid optimal interpretation of bio-
markers for clinical use.
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Introduction
Biomarkers are critical for early detection of cancer that
cannot otherwise be easily and reliably detected from
morphological analysis of fluid, biopsy or cytology sam-
ples. To facilitate high data throughput, bulk assays are
often performed on entire cell samples, yielding no spa-
tial or cellular tissue information. New methods such as
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single cell sequencing are improving experimental reso-
lution, but they are not feasible for large-scale clinical
application and spatial features are not retained from
single cell analysis.

Non-endoscopic cell collection tools coupled with
novel biomarkers have been developed as an alternative
to endoscopy for the early detection of oesophageal can-
cer.1-6 These tools are promising to identify patients
with risk factors such as heartburn symptoms who have
the premalignant condition Barrett’s oesophagus (BE)
who warrant endoscopy. Our group has developed a the
Cytopsonge-TFF3 test, which is a non-endoscopic, pan-
oesophageal collection device that is coupled with
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Research in Context

Evidence before this study

Several microRNAs (miRNA) play a role in pre- and neo-
plastic processes, including Barrett’s oesophagus and
oesophageal cancer. However, the cell attribution of
these biomarkers is not clear in cytology sampling
methods such as Cytosponge, which is a non-endo-
scopic pan-oesophageal sampling method that can
contain columnar epithelium from the gastric cardia as
well as Barrett’s metaplasia.

Computational pathology tools and artificial intelli-
gence are leading to improvement of diagnostic meth-
ods and refinement of biomarker detection.

Added value of this study

Being able to perform a quality control of cytology sam-
ples is an important metric to ensure successful sam-
pling. This study uses a computational pathology
method and multiplex miRNA analysis. By using orthog-
onal methods we are able to evaluate the origin of
miRNA expression profiles from Cytosponge samples,
which has not been done before.

Implications of all the available evidence

We found 23 miRNAs that are differentially regulated in
diseased versus control samples. The use of computa-
tional pathology enabled us to reliably quantify the
amount of columnar epithelium in each sample so it
could be correlated with miRNA expression levels. This
elucidated two gastric-specific miRNAs that determine
whether the gastric cardia was successfully sampled,
and a set of miRNAs biomarkers for Barrett’s oesopha-
gus. miRNA analyses have promise for use with Cyto-
sponge and future work is required to test this method
prospectively. Furthermore, this combined methodol-
ogy could be applied to other biomarker studies to
determine the cellular origin of the signal.
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pathological assessment and immunohistochemical
staining for protein TFF3 to identify pathognomonic
goblet cells.7-10 We have recently shown that an offer of
the Cytosponge-TFF3 test in primary care increases the
detection rate for BE by 10-fold (10.6, 95% CI:
6.0�18.8, p = 0.0004) when compared to standard of
care.11

A technical challenge for analysis of the Cytosponge
sample is the high proportion of normal squamous cells
that reduce the relative cellularity of the Barrett’s cells
of interest. Depending on the length of the BE segment
the cells containing intestinal metaplasia may be as
sparse as 1% or less. Therefore, any biomarker applied
to the sample has to be highly sensitive. Furthermore, if
the Cytosponge device does not reach the stomach, the
distal oesophagus may not be adequately sampled. For
this reason, samples with fewer than five columnar
groups are reported as a low confidence or inadequate
samples.12 Hence, the BEST2 trial reported an overall
sensitivity of 79.9% in a per protocol analysis that
included inadequate samples.13 By comparison, when
inadequate samples were excluded, the sensitivity was
uniformly high across the participating centres
(91�98%).8 In the subsequent BEST3 trial, patients
with a low confidence result were invited for a repeat
test to increase the sensitivity and confidence in the
result.11

As an alternative to the immunohistochemical bio-
marker TFF3, it is worth considering molecular-based
assays that could be more readily scaled up and reported
in a more quantitative fashion. This would ideally need
to include a marker of gastric cells to ensure adequacy
of the sample. Our group therefore examined whether
other molecular biomarkers such as microRNAs
(miRNA or miRs) or changes in methylation status
could be used to identify BE.14,15 We previously identi-
fied 15 miRNAs that were up-regulated in BE vs squa-
mous oesophageal (NE) tissues, and a 6-plex panel was
shown to have an AUC of 0.89 to detect BE cases with
86.2% sensitivity and 91.6% specificity. When adequate
samples were included for analysis, the panel had a
comparable accuracy to the IHC-based Cytosponge-
TFF3 test performed in the same sample set (AUC
0.89).14

Because the whole cytology sample is processed for
these liquid assays including for miRNAs, it is not pos-
sible to determine the cellular source of the differential
signal. The signature observed in a bulk sample may be
related both to gastric cardia (GC) as well as to Barrett’s
columnar cells,16,17 as several miRNAs have been shown
to be upregulated in GC compared to normal squamous
epithelium (NE).18 Thus, gastric columnar cells could
be helpful to determine sample adequacy but may lead
to confounding. The challenge therefore remains to cor-
relate the miRNAs with different cell types and to not
only diagnose Barrett’s but also to assess for dysplasia.
This is important since only 0.3% patients per year will
progress to adenocarcinoma.19,20 The risk of cancer pro-
gression increases significantly once low or high grade
dysplasia occurs and given the poor outcomes for inva-
sive disease, early detection and intervention is
needed.21

We hypothesized that combining computational
pathology to quantify the columnar epithelium (CE)
present in the H&E sample together with a novel quan-
titative miRNA assay would enable us to differentiate
samples with GC material and determine the extent of
intestinal metaplasia and dysplasia to aid in clinical
decision making at scale. A new assay called FirePlexTM

provides custom multiplex panels for miRNA profiling,
which are applicable to miRNA from FFPE material
and have the ability for high throughput application.
Thus, we performed a 110-plex miRNA expression anal-
ysis and computational pathology across a test cohort of
www.thelancet.com Vol 76 Month February, 2022
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117 FFPE Cytosponge samples across different disease
states and the findings were confirmed in an indepen-
dent cohort of a further 139 Cytosponge samples.
Methods

Ethics
All samples originated from the BEST2 study, with
ethics approval obtained from the East of Eng-
land�Cambridge Central Research Ethics Committee
(No: 10/H0308/71). All patients consented their Cyto-
sponge samples for research use.
Study design
This observational, cross-sectional study was comprised
of two cohorts: The first contained 117 samples, includ-
ing 48 NE, 49 non-dysplastic BE (NDBE), 10 LGD, and
10 HGD samples, as summarized in Table 1 and
Figure 1, and was designed to explore the sensitivity of
the FirePlex technology with a custom-designed panel
in Cytosponge samples.

The second cohort consisted of 139 samples, with 72
adequate (36 NE and 36 NDBE) samples and 67 inade-
quate (24 NE and 43 NDBE) samples to assess the
importance of GC cellularity content in miRNA expres-
sion. We purposefully enriched this second cohort for
samples that were classed as inadequate. Those inade-
quate samples were defined as having less or equal than
five columnar cell groups from GC. The highest pathol-
ogy grade following gold-standard endoscopy with Seat-
tle protocol biopsies was taken as the sample’s
diagnosis label. Each Cytosponge sample was indepen-
dent, originating from an individual patient.
Cytosponge specimen and scrolls
FFPE scrolls were obtained from previously collected
Cytosponge blocks as previously described.8,9 Scrolls
(two for Cohort 1 and four for Cohort 2) of 6mm thick-
ness were cut for RNA extraction kept at 4 °C until proc-
essed. Two adjacent 3.5mm scrolls were used for
haematoxylin and eosin (H&E) staining. Cohort 1 was
processed using the FirePlexTM platform and Cohort 2
was analysed using a pre-specified qPCR assay for a
small miRNA panel determined from the FirePlexTM

results.
Multiplex miRNA expression analysis
A custom panel of 110 miRNA target molecules was
used with Abcam’s FirePlexTM platform (Abcam, Cam-
bridge, UK). The miRNA targets for the bespoke panel
were chosen based on results from previous studies and
following a literature review of known miRNA profiles
in BE and OAC (Supplementary data ST1). FirePlexTM

uses hydrogel particles that specifically capture ampli-
fied miRNA products and can be quantified by flow
www.thelancet.com Vol 76 Month February, 2022
cytometry.22 Each custom panel can contain up to 70
targets, and therefore two panels (A and B), were con-
structed each containing 55 miRNA-specific hydrogel
particles, as well as controls (three negative controls, 10
normalizer particles, and two assay control particles),
making a total of 70 distinct particles. The miRNA of
Cohort 1 was extracted using a Lysis Mix made with Pro-
tease Mix and Digest Buffer from FirePlexTM’s miRNA
Assay kit V2 according to the manufacturer’s instruc-
tions (see Supplementary Methods). Results were read
using flow cytometers LSRII (BD Biosciences, USA)
and Guava (Luminex, USA).
Histopathological analysis with a computational
pathology tool
The H&E slides were scanned on an Aperio AT2 digital
whole-slide scanner (Leica Biosystems Nussloch
GmbH, Germany) at 40x magnification. Deep learning
models were trained and validated on multiple data-
sets23 (Figure 2). In brief, tiles with a size of 400 by
400 pixels (corresponding to 200 by 200 pixels at a
magnification of 40x) were extracted from regions with
tissue (determined by Otsu thresholding) and passed
through a convolutional neural network (i.e. VGG-16) to
determine the cell/tissue type. After inference was com-
pleted for one whole-slide image, aggregation of tiles
was performed by using pre-determined thresholds.23

All tiles containing CE (of any type except respiratory
type) were counted and used for comparison with
miRNA expression values (Figure 2).
miRNA extraction and quantitative PCR (qPCR)
In Cohort 2, four scrolls were used for miRNA extrac-
tion with the miRNeasy Mini kit (#217004, QIAgen,
Hilden, Germany) by following the manufacturer’s pro-
tocol.

For the reverse transcription (RT-PCR) reaction,
miScript II RT kit (#218160, QIAgen) and miScript
HiSpec buffer were used. Once the RT-PCR was per-
formed, the product was used in a 1:10 dilution on the
quantitative PCR (qPCR) on a Light Cycler 480 II
(Roche Diagnostics, Switzerland). The QuantiNova
SYBR green PCR kit and the universal reverse primer
from miScript SYBR green kit (#208052 and #218073
both from QIAgen) were used for the qPCR. The spe-
cific forward primers, which were used at 10 uM are
listed in Supplementary Table ST5. The cycling reaction
started at 95 °C for 15 min, followed by 45 cycles of
amplification steps of 95 °C, 60 °C and 72 °C for 10 s
each, and a melting curve of 95 °C for 5 s, 65 °C for
1 min and 97 °C, finished with a cooling step. Hsa-miR-
103 and �191 were used for normalization consistent
with previously published microarray data.14 Only cases
with data from all four test miRs were considered.
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COHORT 1 COHORT 2

NE NDBE DBE TOTAL Adequates Inadequates TOTAL

NE NDBE NE NDBE

Gender � no. (%)

Males 22 (45.8) 40 (81.6) 19 (95) 81 (69.2) 18 (50) 27 (75) 12 (50) 34 (79.1) 91 (65.5)

Females 26 (54.2) 9 (18.4) 1 (5) 36 (30.8) 18 (50) 9 (25) 12 (50) 9 (20.9) 48 (34.5)

Age median � years (SD) 49.1 (45.2�52.9) 64.5 (47.7�81.3) 67.2 (62�73.4) 58.5 (55.8�61.2) 55.9 (51.1�60.6) 63.7 (53.2�74.3) 63 (57.2�68.9) 64.2 (60.4�67.9) 61.7 (59.4�64)

BMI median � index (SD) 28.5 (27.1�29.9) 28.5 (27.3�29.6) 28.6 (27.3�30.3) 28.8 (27.6�29.5) 27.1 (25.4�28.9) 28.6 (26.9�30.2) 28.3 (26.3�30.3) 28.5 (27.1�30) 28.1 (27.3�29)

Waist/hip median � ratio (SD) 0.89 (0.86�0.91) 0.94 (0.92�0.96) 0.97 (0.95�1) 0.93 (0.91�0.94) 0.89 (0.86�0.92) 0.94 (0.90�0.98) 0.95 (0.86�1.04) 0.95 (0.93�0.98) 0.93 (0.91�0.95)

Longest BE lesion � no. (%)

M< 3 0 10 (20.4) 3 (15) 13 (11.1) 0 7 (19.4) 0 10 (23.25) 17 (12.2)

M � 3 0 35 (71.4) 14 (70) 49 (41.9) 0 18 (50) 0 23 (53.5) 41 (29.5)

M n/a 48 (100) 4 (8.2) 3 (15) 55 (47) 36 (100) 11 (30.6) 24 (100) 10 (23.25) 81 (58.3)

Smoker status � no. (%)

Anytime 27 (56.3) 28 (57.1) 15 (75) 70 (59.8) 20 (55.6) 22 (61.1) 14 (58.3) 27 (62.8) 83 (59.7)

Never 20 (41.7) 21 (42.9) 5 (25) 46 (39.3) 16 (44.4) 14 (38.9) 10 (41.7) 16 (37.2) 56 (40.3)

N/a 1 (2.1) 0 0 1 (0.9) 0 0 0 0 0

Alcohol intake � no. (%)

Never 11 (22.9) 11 (22.4) 4 (20) 26 (22.2) 9 (25) 8 (22.2) 8 (33.3) 7 (16.3) 32 (23)

Occasional 13 (27.1) 10 (20.4) 5 (25) 28 (23.9) 10 (27.8) 4 (11.1) 7 (29.2) 12 (27.9) 33 (23.7)

Weekly 16 (33.3) 18 (36.7) 7 (35) 41 (35) 11 (30.6) 13 (36.1) 4 (16.7) 13 (30.2) 41 (29.5)

Daily 7 (14.6) 10 (20.4) 4 (20) 21 (17.9) 6 (16.7) 11 (30.6) 5 (20.8) 11 (25.6) 33 (23.7)

N/a 1 (2.1) 0 0 1 (0.9) 0 0 0 0 0

Total 48 49 20 117 36 36 24 43 139

Table 1: Demographic data of Cohorts 1 and 2. BMI: Body mass index. M: Maximum height of the Barrett’s lesion. Ns: non-significant. NDBE: non-dysplastic BE. DBE: dysplastic BE. Numbers show events
except for the biometric variables of age, BMI, and waist-to-hip ratio, where mean values are represented. Percentages are shown in parenthesis, except for standard deviation in the biometric
variables. Chi-squared (X2) was performed for gender, smoking, alcohol, and aspirin use. For age, BMI, and waist-to-hip ratio a Kruskal-Wallis test was chosen, while for the BE lesion variable, a one-
way ANOVA was performed and t-tests for 2-group comparisons.
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Figure 1. Study design. NE: normal epithelium, NDBE: non-dysplastic Barrett’s oesophagus, LGD: low-grade dysplasia, HGD: high-
grade dysplasia, FFPE: formalin-fixed paraffin-embedded, H&E: haematoxylin and eosin, qPCR: quantitative PCR. Inadequate refers
to samples containing no columnar material suggesting that the capsule did not reach the stomach.
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Statistical analysis
A preliminary analysis of the data output was performed
in FirePlexTM’s Analysis Workbench provided by
Abcam. The software was used to merge and adjust sig-
nal values from Panel A and B via the 10 common
endogenous targets present in both panels and as well
as a background subtraction. The geNorm function was
applied to the dataset by using the three most stable
miRNA targets. Seven samples with too low signals
were not normalized and thus discarded for analysis.
There was minimal clinical data missing, which was
not imputed.

Two key objectives were pursued through statistical
analysis in this work: first, the comparison and differen-
tial expression of different miRNAs between disease
states in Cohort 1 and 2. And second, the correlation of
miRNA expressions and cell type classifications
extracted via computational pathology, which uses
scanned pathological slides to generate tissue type labels
via machine learning methods. Data analysis and plot-
ting was performed with the SciPy and scikit-learn
libraries in Python. Statistical analyses/tests used were:
ANOVA, unpaired t-test, Mann-Whitney (for two
groups) or Kruskall-Wallis (for �3 groups) tests,
Receiver Operating Characteristics (ROC) for the
www.thelancet.com Vol 76 Month February, 2022
accuracy of the miRNAs expression in detecting colum-
nar epithelium. In particular, the 95% confidence inter-
vals were produced by bootstrapping with replacement
at equal sample size. Spearman r correlation was used
to evaluate the relationship between miRNA expression
levels and columnar epithelium content in the sample.
Statistical significance was assumed at p � 0.05. Bonfer-
roni correction as a post-hoc test was used for all multi-
ple comparisons. When needed, univariate analyses
were performed prior to multivariate analyses. Box plot
whiskers show 5th to 95th percentile data points. Statis-
tical significance is shown with asterisks, * representing
p � 0.05, ** p � 0.01, *** p � 0.001 and ****
p � 0.0001 in t-tests.
Pathway and mRNA binding analysis by top miRs
mRNA targets for the top miRNA targets were retrieved
from the target prediction tool miRabel.24 Targets with
recorded experimental validation were selected prefer-
entially. The top 100 mRNA targets with a <0.05 miRa-
bel score for each miR were fed to the STRING database
(version 11.0b). The STRING database (https://string-
db.org/)25 was used to explore the pathways where the
mRNA bound by our miRNA of interest were
5
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Figure 2. a. Schematic of the computational pathology training using a deep convolutional neural network architecture. b. Method-
ology to quantify the amount of CE in H&E slides of Cytosponge samples.
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implicated, with the strength of the biological process or
molecular function predictions being considered (see
Supplementary data for details). The miRbase (http://
www.mirbase.org/)26 database was queried for basic
miRNA legacy information.
Role of funding source and patient involvement
None of the funders were directly involved in the design,
data collection, analysis, or interpretation, or writing of
this report. Patient involvement was achieved during the
BEST2 study13 and we plan to disseminate the manu-
script results to the wider public through social networks
and fair events in person when possible.
Results

Differential miRNA expression between Cytosponges
from healthy and diseased oesophagus
The two cohorts selected for this study reflect the known
demographics of BE. As expected, there was a bias
towards male sex, abdominal fat (waist-to-hip ratio) and
older age in Barrett’s patients (with or without dyspla-
sia), and these factors were statistically significantly
higher in BE compared to NE groups in our two study
cohorts (Table 1 and Supplementary figures S1 and S2).
Supplementary figures S1 and 2 have more information
for inter-group comparisons and show that cohorts 1
and 2 ultimately are comparable in terms of overall clin-
ical demographics.

The expression of 110 miRNA targets was profiled
across 117 FFPE Cytosponge samples from cohort 1
using the FirePlexTM platform (Abcam, Cambridge,
UK). This cohort was formed of NE, NDBE, LGD and
HGD samples (Table 1). A total of four samples were
excluded from normalization and analysis due to low
signal (1 NE, 2 NDBE, and 1 HGD). A further seven
cases were excluded from initial analysis as they had not
reached the stomach upon sampling (�5 gastric gland
groups in diagnostic H&E slides). These inadequate
samples included five NDBE patients and two with NE.

When samples were grouped into healthy (NE,
n = 43) and diseased (NDBE, LGD, and HGD; n = 61)
tissues, a Mann-Whitney test with Bonferroni correction
showed a total of 23 miRNAs with significant differen-
tial expression (Figure 3). For the vast majority of miR-
NAs, their expression in healthy tissue was lower than
in diseased samples.
www.thelancet.com Vol 76 Month February, 2022
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Figure 3. 23 miRNAs with significantly differential expression (p<0.05 [Mann-Whitney]) between healthy and diseased Cytosponge
samples. Only miR-149�5p and miR-17�5p were lower in diseased (n = 67) than in healthy (n = 46) samples.
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miRNA markers for Barrett’s oesophagus in
Cytosponge samples
Next, we were interested in comparing miRNA expres-
sion in dysplastic and non-dysplastic BE samples when
compared to NE, using Kruskal-Wallis tests with Bon-
ferroni correction, with a total of 17 markers being
selected for upregulation in either NDBE or dysplasia
(Figure 4).

While none of the 110 markers analysed were upre-
gulated exclusively in the dysplasia group, 13 miRs
remained upregulated in NDBE and dysplastic cases
www.thelancet.com Vol 76 Month February, 2022
compared to the NE group. These were miR-21�5p,
�25�3p, �31�5p, �149�5p, �150�5p, �181b-5p,
�191�5p, �192�3p, �192�5p, �194�5p, �196a-5p,
�215�5p and �500a-5p.
Pathway analysis of downstream mRNA targets of
shortlisted miRs
In order to examine the underlying biology, 17 miRNAs
were queried using the STRING database due to their
upregulation in NDBE, high and low grade dysplasia
compared to NE Cytosponges (Figure 4). We thus
7



Figure 4. Top 17 markers with differential expression (p<0.05 [Kruskall-Wallis]) in NE (n = 46) versus NDBE (n = 47) or dysplasia
(n = 20) groups.
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queried miR-21�5p, �25�3p, �31�5p, �141�3p,
�149�5p, �150�5p, �181b-5p, �191�5p, �192�3p,
�192�5p, �194�5p, �196a-5p, �200a-3p, �215�5p,
�320a, �423�5p, and �500a-5p which returned 7217,
8623, 9438, 8729, 11,193, 11,451, 9919, 5142, 7689,
8008, 8222, 8248, 8677, 7909, 10,240, 10,031 and
8758 mRNA targets, respectively, which were queried in
STRING.

While miR-196a-5p had a strong association to path-
ways related to glandular epithelium phenotypes, most
of the remaining miRNAs were associated with cell divi-
sion and cancerous process pathways, such as p53 sig-
nalling and cellular senescence. Table 2 summarizes
the relevant pathway enrichments found.
Differential miRNA expression across all sample types
suggests a columnar phenotype as the tissue of origin
To explore the strength of the markers detected in the
healthy/diseased and dysplasia-specific analysis, we per-
formed an analysis that shortlisted 14 miRs having dif-
ferential expression with statistical significance between
NE, NDBE, LGD or HGD (Supplementary figure S3).

The analysis showed that four miRNAs were virtu-
ally undetectable in inadequate cases: miR-192�3p,
�192�5p, �194�5p, �196a-5p. The same miRs
showed a median fold change of �2 in NDBE, LGD or
HGD compared to NE samples (Supplementary table
ST4). This suggested that the differential miRNA signal
might be originating from columnar cells, including
www.thelancet.com Vol 76 Month February, 2022



miRNA Pathway enrichment or KEGG pathway Strength

21�5p Regulation of metalloendopeptidase activity 1.99

Fatty acid elongation 1.75

25�3p Sterol regulatory element-binding protein signalling pathway 2.29

miRNA in cancer# 0.9

31�5p ns �
141�3p Regulation of oxidative stress-induced intrinsic apoptotic signalling pathway 2.04

miRNA in cancer# 1.22

Cellular senescence# 0.84

149�5p ns �
150�5p Regulation of muscle cell differentiation 1.02

181b-5p Regulation of endodeoxyribonuclease activity 1.69

Nuclear-transcribed and histone mRNA catabolic process 1.69

Intrinsic apoptotic signalling pathway in response to oxidation 1.54

miRNA in cancer# 0.96

Cellular senescence# 0.94

191�5p ns �
192�3p ns �
192�5p Protein kinase binding 0.51

Adenyl ribonucleotide binding 0.5

194�5p Negative regulation of nitric oxide biosynthetic process 1.81

Inactivation of MAPK activity 1.68

Epithelial cell signalling in Helicobacter pylori infection# 1.28

196a-5p Lung secretory cell differentiation 2.64

Intestinal epithelial cell differentiation 2.34

Glandular epithelial cell differentiation 2.01

200a-3p Positive regulation of cardioblast differentiation 2.07

miRNA in cancer# 1.25

p53 signalling pathway# 1.24

215�5p DNA replication initiation 1.4

G1/S cell cycle phase transition 1.1

320a Negative regulation of peptidyl‑serine dephosphorylation 2.12

Shigellosis# 1.09

miRNA in cancer# 0.9

Cellular senescence# 0.8

423�5p ns �
500a-5p ns �

Table 2: STRING database result summary of BE-related miRNAs. Nonsignificant results are marked with ns. KEGG pathway involvement is
marked with#.

Articles
gastric cardia cells sampled by the Cytosponge, and not
only BE cells.

To explore the relationship between the type of epi-
thelial content and miRNA expression, we quantified
the amount of CE in contiguous H&E slides to the
scrolls used for RNA extraction with a computational
pathology tool. Ten miRNA targets analysed in Cohort 1
showed a positive correlation (r� 0.6) with the amount
of CE in the H&E slides (Figure 5 for the top two
markers and Supplementary Figure S4 for all 10) in a
Spearman correlation. These were miR-320a (r = 0.76),
miR-194�5p (0.74), miR-106b-5p (0.71), miR-30a-5p
(0.70), miR-192�5p (0.68), miR-29c-3p (0.65), miR-
22�3p (0.67), miR-21�5p (0.61), miR-28�5p (0.61),
and miR-192�3p (0.60).
www.thelancet.com Vol 76 Month February, 2022
miR-192�5p and miR-194�5p show a high sensitivity
and specificity to detect presence of columnar
epithelium in Cytosponge samples
To robustly explore the relationship between the pres-
ence of gastric cells and specific miRNAs, Cohort 2 was
designed consisting of 72 inadequate and 67 adequate
samples, both containing NE and NDBE cases (see
Table 1 for details), and contiguous H&E slides were
screened as above to quantify CE content. The expres-
sion of the four most informative miRs was assessed via
qPCR: hsa-miR-192�3p, �192�5p, 194�5p, and
�196a-5p. Three miRs (miR-192�5p, �194�5p and
�196a-5p) were upregulated in measurements with
four different platforms, including FirePlexTM, microar-
ray, nCounter, and qPCR (Supplementary Figure S5).14
9



Figure 5. Correlation of CE amount and miRNA expression for markers with the highest Spearman r (rho) value. Cytosponge sam-
ples from Cohort 1. Inadequates, n = 3; NE, n = 46; NDBE, n = 47; LGD, n = 10; HGD, n = 10.
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The same three miRs showed to be upregulated in our
diseased vs healthy test (Figure 3), the 4-group test (Sup-
plementary Figure S3) and the BE vs NE differential
analysis (Figure 4). miR-192�3p was added to the q-
PCR test since it was also prominent in the latter three
analyses as well as showing a positive correlation to the
presence of CE (Supplementary Figure S4).

Quantitative computational pathology analysis of the
H&E slides showed that while the average amount of
CE for the NDBE group was higher than for the NE
group, the difference was not statistically significant.
Instead, statistically significant differences were found
between adequate (either NE or NDBE) and inadequate
samples (Figure 6A). qPCR experiments showed statis-
tically significant differences between NE and NDBE
cases within adequate samples for three of the four
miRNAs analysed (Figure 6b), and all four miRNAs
showed 2- to 3-fold changes between NDBE and NE
groups. However, the fold changes in miRNA expres-
sion for miR-192�5p and �194�5p reached 98 and 60-
fold respectively in adequate compared to inadequate
samples. Contrary to that, miR-196a-5p was not differ-
entially expressed between adequate and inadequate
groups (Supplementary Figure S6). Rather, miR-196a-
5p was upregulated in NDBE cases compared to NE in
the adequate group, thus showing its potential for a true
NDBE marker (Figure 6b). Moreover, a clustering anal-
ysis of the four miRNA expression patterns depicts the
similarity between miR-192�5p and miR-194�5p and
the distinctiveness of miR-196a-5p (Figure 6d).

A 5-fold cross-validation of a simple Random Forest
model predicting sample adequacy based on the four
miRNAs showed that two of the markers were able to
identify presence of CE in miRNA from Cytosponges
very reliably. Individually and at a specificity fixed at
95%, miR-192�3p, miR-192�5p, miR-194�5p and
miR-196a-5p reached a sensitivity (and area under the
curve, AUC; confidence intervals) of 41.18% (0.89;
0.82�0.94), 90.2% (0.97; 0.94�1.00), 84.31% (0.95;
0.91�0.98), and 25.49% (0.61; 0.51�0.71), respectively
(Figure 6c).

Via molecular profiling, computational pathology,
artificial intelligence, and pathway analysis, this study
explores miRNA expression profiles as BE biomarkers
in Cytosponge samples.
Discussion
MicroRNAs are short, non-coding RNAs that regulate
gene expression by binding to mRNA thus halting their
translation to protein27 and can be key in neoplastic
processes.28,29 The present study demonstrates that
miRNA markers can be used to classify non-endoscopic
cytology samples from the oesophagus. This type of
sample contains cells from the entire oesophageal
length, proximal stomach and oro-pharynx. Therefore,
it is important to confirm the relationship between the
biomarkers and the tissue of interest. Here we used arti-
ficial intelligence applied to a computational pathology
tool to distinguish between miRNAs specific to the gas-
tric columnar cells, which serve as a quality control met-
ric for the sampling adequacy, compared with
biomarkers specific to Barrett’s metaplasia.

In this study, a custom FireplexTM assay for multi-
plex discovery of miRNA targets was applied to oesopha-
geal cytology samples. The platform uses probes that
specifically capture amplified miRNA products in
hydrogel particles which are in turn quantified by flow
cytometry.22 In liver, brain and placenta tissues, a cus-
tom miRNA FirePlexTM panel previously showed »70%
concordance with RNAseq data,30 while a further study
showed a receiver operating characteristic curve (ROC-
AUC) of 0.81 in detecting presence of pregnancy-spe-
cific miRNA in plasma.31 We report several upregulated
miRs in Cytosponge samples from Barrett’s with the
initial multiplex miRNA expression analysis and 12
www.thelancet.com Vol 76 Month February, 2022



Figure 6. Cohort 2. a. CE content per sample and group done by means of number of tiles with presence of CE. The measurements
were taken in the adjacent H&E slide to the one used for miRNA extraction (a=0.05 [Kruskall-Wallis]). Inadequate, n = 67. Adequate:
NE, n = 36; NDBE, n = 36. b. Expression of the four test miRNAs in adequate (NE, n = 36 and NDBE, n = 36) and inadequate (NE,
n = 24 and NDBE, n = 43) groups. The y axis is set for each marker individually as it shows 2�(dCt) values (a=0.05 [Kruskall-Wallis]). c.
ROC curve of four miRNA efficacy to determine presence of CE in the Cytosponge. Specificity is fixed at 95% for all markers. d. Clus-
tered heat map from Cohort 2 data. The colour bar indicates correlation between displayed miRNAs from �1 to +1. While miR-
192�5p and miR-194�5p behave similarly, miR-196a-5p behaves in an opposite way and miR-192�3p sits in the middle.

Articles
miRs with �2 fold changes in all three BE groups
(NDBE, LGD and HGD) compared to NE. A potential
limitation of this study is the fact that the sensitivity of
the novel FirePlex technique to detect meaningful dif-
ferential miRNA expression was unknown as the panel
used was custom-made. Thus, no realistic power calcu-
lations could be performed when constructing Cohort 1.
However, statistically significant differences were
derived as demonstrated in Figs. 3 and 4, which sug-
gests that the sample size was adequate.
www.thelancet.com Vol 76 Month February, 2022
The independent second cohort was designed to
identify the tissue of origin of 4 miRNAs via qPCR anal-
yses to potentially confirm them as a quality control tool
for Cytosponge samples. The qPCR results confirmed
the upregulation of the four miRs: miR-192�3p,
�192�5p, �194�5p and 196a-5p in NDBE. This is in
line with our previous publication, in which increased
expression of the same four miRNAs was described in
NDBE and dysplastic Cytosponges in comparison to
healthy squamous tissue.14 Previously published studies
11
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had identified miR-192, miR-194 and miR-196a as BE
markers in frozen or FFPE biopsies18,32-39 as well as in
plasma or serum for BE, EAC or ESCC40-42 and in other
cancers.43,44 However, these studies did not include
healthy gastric cardia samples in their cohorts except
for one38 and thus the expression of the miRs in rele-
vant adjacent tissues was not assessed.

An assessment of the amount of columnar epithe-
lium (CE) in Cohort 1 showed a positive correlation (r�
0.6) between the expression of 10 miRNAs and the
quantity of CE content. Cohort 2 showed that there
were statistically significant differences in 3/4 analysed
miRs between adequate and inadequate samples (those
that do not contain any CE cells in the pathology slide).
Further, a ROC analysis for the four test miRs showed
that miR-192�5p and miR-194�5p can accurately deter-
mine the presence of CE with areas under the curve of
0.97 and 0.95 respectively. Thus, we deduce that miR-
192�3p, miR-192�5p and miR-194�5p mark the pres-
ence of columnar material of the distal oesophagus, so
they would be suitable as markers for adequate sam-
pling, while miR-196a-5p is a specific BE marker.

The results from a pathway analysis of 17 miRs align
with these hypotheses, where miR-196a-5p was linked
to mRNAs involved in a glandular phenotype. In this
analysis a further 6/17 miRs were associated to neoplas-
tic or cell cycle processes (Table 2). In particular, geno-
toxic stress has been described as a p53-dependant
promoter of the miR-192/215 axis45,46 and Fassan et al.
describe a role for miR-192 and �215 in BE disease pro-
gression as well as the progressive upregulation of miR-
194 from normal squamous epithelium to intestinal
metaplasia.35 The marker could be playing an important
role via the hedgehog pathway regulation. It is known
that miR-194�5p targets the suppressor of fused homo-
logue (SUFU) transcript, which is a Sonic Hedgehog
repressor. This may help explain the elevated expression
levels of Sonic Hedgehog proteins in BE as well as being
a key element in the replacement of squamous by CE.47

Of note, as miR-194�5p is already upregulated in CE
together with miR-215,18,48 this may suggest that gastric
cardia is ontologically related to BE. In line with this, we
saw how miR-194�5p displayed a high accuracy in iden-
tifying Cytosponge samples with CE.

Dysplasia-exclusive miRNA markers have proven to be
elusive due to the focal nature of the lesions andmolecular
heterogeneity within the precancerous stage. In this study,
several miRs were upregulated across the NDBE group
through to dysplastic cases. These were miR-21�5p,
�25�3p, �31�3p, �181b-5p, 192�5p, 194�5p, and
�215�5p. In particular, miR-21�5p is a well-known can-
cer marker and it is thought to be involved in metastasis
and apoptosis. Together with miR-25�3p,45 they are upre-
gulated in liquid biopsies of EAC patients compared to
healthy individuals.49 miR-31 is thought to be a progres-
sion marker via Wnt signalling, as it directly targets the
Wnt inhibitor Dickkopf-related protein 1.47 Another well-
described oncogenic miR is miR-181b-5p, which has been
shown to play a role in oesophageal squamous cell carci-
noma (ESCC),50 non-small cell lung cancer,51 triple-nega-
tive breast cancer52 and acute myeloid leukaemia53 among
others. We observed the upregulation of miR-192 and
miR-194 to be maintained through to the HGD group in
Cohort 1. Interestingly, most of the miRs in this study that
maintained their upregulation to dysplasia showed a path-
way enrichment in neoplastic processes, be it direct or
indirect.

Newer technologies such as single cell sequencing
are now technically possible and can identify the cell of
origin of certain omics signals. However, these single-
cell approaches are expensive and not feasible for large
clinical biomarker studies. Here we show how combin-
ing bulk-omics with computational pathology can help
decipher the source of a biomarker signal. We have pre-
viously shown that being able to detect inadequate sam-
ples to obtain a repeated Cytosponge test from the
patient increases the sensitivity of the Cytosponge-TFF3
test from approximately 80% to 90�92%.14,16 Here,
the use of miRNAs in a molecular assay format has the
potential to provide a quantitative read-out at scale with
the ability to provide a QC for adequate sampling as
well as to report on the presence of BE.

In summary, these results show how characteriza-
tion of sampled material using different biomarker plat-
forms and orthogonal methods can uncover the
biological basis for the observed signal and avoid the
introduction of bias in biomarker discovery. Further-
more, miRNA analyses have promise for use with Cyto-
sponge and future work is required to test this method
prospectively and identify dysplasia-specific markers.
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