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Abstract
The activation status can dictate the fate of an HIV-infected CD4+ T cell. Infected
cells with a low level of activation remain latent and do not produce virus, while cells
with a higher level of activation are more productive and thus likely to transfer more
virions to uninfected cells during cell-to-cell transmission. How the activation status
of infected cells affects HIV dynamics under antiretroviral therapy remains unclear.
We develop a new mathematical model that structures the population of infected cells
continuously according to their activation status. The effectiveness of antiretroviral
drugs in blocking cell-to-cell viral transmission decreases as the level of activation
of infected cells increases because the more virions are transferred from infected to
uninfected cells during cell-to-cell transmission, the less effectively the treatment is
able to inhibit the transmission. The basic reproduction number R0 of the model is
shown to determine the existence and stability of the equilibria. Using the principal
spectral theory and comparison principle, we show that the infection-free equilibrium
is locally and globally asymptotically stable when R0 is less than one. By constructing
Lyapunov functional, we prove that the infected equilibrium is globally asymptotically
stable when R0 is greater than one. Numerical investigation shows that even when
treatment can completely block cell-free virus infection, virus can still persist due
to cell-to-cell transmission. The random switch between infected cells with different
activation levels can also contribute to the replenishment of the latent reservoir, which
is considered as amajor barrier to viral eradication. This studyprovides a newmodeling
framework to study the observations, such as the low viral load persistence, extremely
slow decay of latently infected cells and transient viral load measurements above the
detection limit, in HIV-infected patients during suppressive antiretroviral therapy.
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1 Introduction

Human immunodeficiency virus (HIV) is the pathogenic agent of the acquired immun-
odeficiency syndrome (AIDS). It infects CD4+ T cells, an important component of the
immune system, leading to patient death eventually caused by opportunistic infection.
According to the World Health Organization, there were approximately 36.9 million
people living with HIV by the end of 2017 (WHO 2018). It was estimated that about
25% of people infected with HIV did not know their infection status (WHO 2018).
There has been constant interest in the study of HIV infection dynamics, mechanisms
for disease progression, antiretroviral treatment and vaccine development. Mathemat-
ical models have been increasingly used to study these issues (Perelson and Ribeiro
2013).

Perelson et al. (1996) used a basic viral dynamic model to study the interac-
tion between viruses and host CD4+ T cells. An extension of this model including
a secondary source of viral production such as activation of latently infected cells
was proposed to explain the second-phase viral load decline after administration of
antiretroviral drug combination (Perelson et al. 1997). Latently infected cells can
escape antiretroviral drug treatment and immune surveillance. They do not produce
virus unless they are activated by relevant antigens. Multiple cellular and molecular
mechanisms might be involved in the establishment of HIV latency (Donahue and
Wainberg 2013). For example, the HIV transactivator of transcription (Tat) protein
plays an essential role in viral transcription regulation, and may affect the formula-
tion and reversal of HIV latency (Jordan et al. 2001; Lin et al. 2003). Weinberger
et al. (2005) showed that cells with intermediate Tat concentrations could be driven
by stochastic fluctuations to either revert to the latent status or turn to highly activated
and productive status. Wang and Rong (2014) developed a mathematical model that
includes such stochastic population switch, and showed that the model can explain
the stability of the latent reservoir (i.e. a group of latently infected CD4+ T cells) and
emergence of viral blips (i.e. transient viral load measurements above the detection
limit). However, the status of the activation of infected cells (or the level of Tat con-
centration) can be continuous, more than the three levels (low, intermediate and high)
studied in Wang and Rong (2014). In this paper, we include continuous activation
status of infected cells in models to study the virus dynamics of HIV infection under
antiretroviral therapy.

In addition to the infection of target CD4+ T cells by cell-free virus, HIV can
also be transmitted directly from infected to uninfected cells (Martin and Sattentau
2009; Sattentau 2008; Talbert-Slagle et al. 2014). Cell-to-cell transmission may take
place when infected cells encounter the uninfected and form the virological synapses
(Hübner et al. 2009; Sato et al. 1992). Because of the reduced possibility of being
neutralized by antibodies, virus transmitted via cell-to-cell transmission may be more
efficient in establishing successful infection than cell-free virus infection (Johnson and
Huber 2002; Mazurov et al. 2010). Iwami et al. (2015) estimated that approximately
60% of viral infection may be attributed to cell-to-cell transmission. When multiple
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virions are transmitted from infected to uninfected cells, antiretroviral drugs may
not inhibit the infection by all virions, leading to a higher probability of successful
infection. Thus, cell-to-cell transmission may explain the viral persistence in patients
under antiretroviral therapy (Sigal et al. 2011).

Mathematical models have been developed to study virus infection dynamics (see
a review in Perelson and Ribeiro (2013)). In addition to the basic viral dynamic
model (Perelson et al. 1996) and its many variations (reviewed in Rong and Perelson
(2009b)), some other models have also been developed, such as the multiple target
cell population model (Wang et al. 2016a), multiple stage model (Hernandez-Vargas
and Middleton 2013; Wang et al. 2016b) and multiple patch model (Kheiri and Jafari
2019). Both deterministic and stochastic models have also been developed to study
the dynamics of HIV latent infection (Archin et al. 2012; Conway and Coombs 2011;
Conway and Perelson 2015; Forde et al. 2012; Hill et al. 2014; Smith and Aggar-
wala 2009). However, very few models, if any, considered the continuous activation
status of infected cells. Because cells with a higher activation status are more likely
to produce more virions, resulting in a higher probability of successful infection via
cell-to-cell transmission, incorporation of the continuous status of activation provides
a unique modeling framework to study the viral transmission dynamics. In this paper,
we assume that the treatment efficacy of blocking cell-to-cell viral transmission is a
decreasing function of the activation status because the more virions are transmitted
by infected cells, the less effectively the treatment can block the transmission. We will
analyze the model by deriving the basic reproduction number and studying the local
and global stability of equilibria. We will evaluate the sensitivity of the basic repro-
duction number and steady-state viral load with respect to the drug efficacy and study
whether cell-to-cell transmission can explain the viral persistence in patients receiving
suppressive antiretroviral therapy. Including antigen-stimulated activation of infected
cells that have a low level of activation status, we will test whether the model can gen-
erate low-level persistent viremia, intermittent viral blips and stable latent reservoir
under suppressive therapy. We will also perform numerical simulations to evaluate the
relative contribution of cell-to-cell transmission, transfer between cells with different
statuses and proliferation of latently infected cells to the maintenance of the latent
reservoir.

2 Model formulation and preliminary results

2.1 Model

To study the effect of infected cell status on cell-to-cell viral transmission, we develop
a status-dependent HIV infectionmodel that includes both cell-free virus infection and
cell-to-cell transmission. The population of infected cells is structured continuously
according to their activation status. The model is described by the following system:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ḣ(t) = λ − cH(t) − ∫ 1
0 (1 − ε(y))k1H(t)I (t, y)dy − (1 − ξ)k2H(t)V (t),

It (t, x) = β(x)
[∫ 1

0 (1 − ε(y))k1H(t)I (t, y)dy + (1 − ξ)k2H(t)V (t)
]

+ ∫ 1
0 p(y, x)δ(y)I (t, y)dy

−δ(x)I (t, x) − α(x)I (t, x),

V̇ (t) = ∫ 1
0 η(y)I (t, y)dy − dV (t),

(1)

with the initial conditions

H(0) = H0 ≥ 0, I (0, ·) = I0(·) ≥ 0, V (0) = V0 ≥ 0.

H(t) and V (t) are the concentrations of uninfected CD4+ T cells and viruses at time
t , respectively. I (t, x) represents the concentration of infected CD4+ T cells with
the activation status x at time t . The variable x ∈ [0, 1] represents the normalized
status of activation of infected cells. The value x = 0 means that the infected cell is
in the completely latent status and the value 1 means that the infected cell is in the
maximumly activated or productive status. Uninfected cells are generated at rate λ, die
naturally at rate c per cell, become infected via cell-to-cell transmission by infected
cells at rate k1 or by cell-free virus infection at rate k2. Constant d is the viral clearance
rate.

Antiretroviral drugs can block viral infection or inhibit viral production. Here we
use ξ to represent the overall effectiveness of the treatment in blocking cell-free virus
infection (Rong and Perelson 2009a). During cell-to-cell transmission, infected cells
with a higher level of activation are more likely to produce and transfer more virions,
leading to a lower probability that the therapy simultaneously blocks the infection by
all the transmitted virions. Thus, we assume that ε(y), the efficacy of antiretroviral
therapy in blocking cell-to-cell transmission by infected cells at status y, is a decreasing
function of the status y. The integral

∫ 1
0 (1 − ε(y))k1H(t)I (t, y)dy gives the total

generation of infected cells per unit time via the route of cell-to-cell transmission.
The infection rate k1 can be assumed to be status-dependent without bringing any
challenge to mathematical analysis. However, for simplicity we assume that it is a
constant and only focus on the effect of status-dependent drug therapy ε(y) on cell-
to-cell transmission.

The parameter β(x) denotes the probability of the activation status x for newly
infected cells. Hence, the production rate of infected cells with the activation status

x is given by β(x)

{
∫ 1
0 (1 − ε(y))k1H(t)I (t, y)dy + (1 − ξ)k2H(t)V (t)

}

. Infected

cells at one status can switch to another status (Wang and Rong 2014; Weinberger
et al. 2005). The parameter δ(y) represents the switch rate of infected cells from the
activation status y to other statuses and p(y, x) denotes the probability that an infected
cell switches from the status y to x . For the convenience of expression, we let

γ (y, x) = p(y, x)δ(y),

which represents the switch rate of infected cells from the activation status y to x .
We note that this switch does not have direction, i.e. there is a chance for a state y to

123



Dynamics of a new HIV model with the activation status… Page 5 of 41 51

change to any other state x due to random intracellular perturbation. However, it is
more likely for an infected cell to change from a state to its close state and the switch
rate decreases as the distance between y and x increases. Thus, it is possible that a
fully activated infected cell becomes latent although the probability is very low. We
also note that the random switch between different status is different from the antigen-
induced activation of latently infected cells in which infected cells only change from
the latent to activated state (directional). The activation of latently infected cells by
relevant antigens will be further studied in a later section.

The integral
∫ 1
0 γ (x, y)dy is the switch rate of infected cells from status x to all

the other statuses. Thus, it is equal to δ(x), i.e., for any x, y ∈ [0, 1], γ (x, y) satisfies
the balance condition

∫ 1
0 γ (x, y)dy = δ(x). We also assume that γ (x, x) > 0. The

parameterα(x) is the death rate of infected cellswith status x andη(y) is the production
rate of virions by infected cells with status y. All status-dependent parameters are
assumed to be nonnegative and continuous.

The status-dependent parameters ε(y) and β(x) have the following assumptions:

(A1) ε(0) = 1;
(A2)

∫ 1
0 β(x)dx = 1;

Assumption (A1) assures that there is no viral transmission from latently infected cells
(i.e. x = 0) to uninfected cells because latently infected cells do not produce virions.
The assumption (A2) is trivial. The parameters and their description are summarized
in Table 1.

2.2 Preliminary results

In this section, we derive the basic reproduction number and investigate the existence
of equilibria. Define the phase space of model (1) as X = R×C([0, 1]) ×R with the
norm given by

‖(H , I (·), V )T ‖X = |H | + ‖I (·)‖C([0,1]) + |V |, (H , I (·), V )T ∈ X,

where (·)T means the transpose. Let X+ = R+ × C+([0, 1]) × R+, where R+ =
[0,+∞) and C+([0, 1]) = {

I (·) ∈ C([0, 1]) : I (·) ≥ 0
}
. Defining z(t) =

(H(t), I (t, ·), V (t))T , model (1) can be reformulated as the following abstract Cauchy
problems:

dz

dt
= Az(t) + F(z(t))

for t ≥ 0 and z0 := (H0, I0(·), V0)T ∈ X+, where

A

⎛

⎝
H
I
V

⎞

⎠ =
⎛

⎝
−cH

−(δ(·) + α(·))I
−dV

⎞

⎠ ,
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F

⎛

⎝
H
I
V

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

λ − ∫ 1
0 (1 − ε(y))k1H(t)I (t, y)dy − (1 − ξ)k2H(t)V (t)

β(·)
[∫ 1

0 (1 − ε(y))k1H(t)I (t, y)dy + (1 − ξ)k2H(t)V (t)
]

+ ∫ 1
0 γ (y, ·)I (t, y)dy

∫ 1
0 η(y)I (t, y)dy

⎞

⎟
⎟
⎟
⎟
⎠

.

By using the theory of abstract Cauchy problems and the similar arguments
as in the proof of Theorem 2.1 in Qiu et al. (2018b), system (1) has a unique
global classical solution z(t) = (H(t), I (t, ·), V (t))T : [0,+∞) → X+ satisfying
z(0) = z0. Furthermore, system (1) generates a continuous semiflow defined by
φt z0 = z(t; z0), t ≥ 0, z0 ∈ X+ on X+.

It is easy to see that the infection-free equilibrium E0 = (H0, I 0(x), V 0)T =
( λ
c , 0, 0)

T always exists. In addition to E0, there may exist the infected equilibrium
E∗ = (H∗, I ∗(x), V ∗)T with I ∗(x) 	= 0. In order to obtain the existence condition
of the equilibrium E∗, we define an operator L : C([0.1]) → C([0, 1]), given by

L[I ](x) = β(x)

α(x) + δ(x)

∫ 1

0
(1 − ε(y))k1H

0 I (y)dy

+ β(x)(1 − ξ)k2H0

d(α(x) + δ(x))

∫ 1

0
η(y)I (y)dy

+
∫ 1
0 γ (y, x)I (y)dy

α(x) + δ(x)
.

(2)

Using a similar argument as in the proof of lemma 3.5 in Diekmann et al. (1990), we
can prove that the operator L is compact and non-supporting. The operator L is called
non-supporting if there exists n0 = n0(I , κ) such that

∫ 1
0 Ln[I ](x)dκ(x) > 0 for any

I ∈ C+([0, 1])\{0}, κ ∈ (C([0, 1]))∗+\{0} and n ≥ n0. It follows from Theorem
2.3 in Marek (1970) that ρ(L) is a positive and algebraically simple eigenvalue of L
with an eigenfunction in IntC+([0, 1]). Moreover, if λ is an eigenvalue of L with an
eigenfunction inC+([0, 1])\{0}, then λ = ρ(L). Thus, the basic reproduction number
is defined as

R0 = ρ(L).

Moreover, we have the following theorem on the existence of infected equilibrium
E∗. The proof is given in the “Appendix A”.

Theorem 1 If R0 > 1, there exists an infected equilibrium E∗ with I ∗(x) 	= 0.

Note that this theorem only ensures the existence of an infected equilibrium. We
will show later in Theorem 5 that the infected equilibrium E∗ is unique and globally
asymptotically stable in IntX+ when R0 > 1.
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3 Stability of the infection-free equilibrium E0

In this section, we study the local and global stability of the infection-free equilibrium
E0.

3.1 Local stability of equilibrium E0

Linearizing system (1) at E0 leads to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ḣ(t) = −cH(t) − ∫ 1
0 (1 − ε(y))k1H0 I (t, y)dy − (1 − ξ)k2H0V (t),

It (t, x) = β(x)
[∫ 1

0 (1 − ε(y))k1H0 I (t, y)dy + (1 − ξ)k2H0V (t)
]

+ ∫ 1
0 γ (y, x)I (t, y)dy

−δ(x)I (t, x) − α(x)I (t, x),
V̇ (t) = ∫ 1

0 η(y)I (t, y)dy − dV (t).

(3)

Let

L̄

⎛

⎝
H
I
V

⎞

⎠ =
⎛

⎝
−cH − ∫ 1

0 (1 − ε(y))k1H
0 I (y)dy − (1 − ξ)k2H

0V

L

(
I
V

)

⎞

⎠ ,

⎛

⎝
H
I
V

⎞

⎠ ∈ X, (4)

where

L

(
I
V

)

=
(

β(x)
[∫ 1

0 (1 − ε(y))k1H0 I (y)dy + (1 − ξ)k2H0V
]

+ ∫ 1
0 γ (y, x)I (y)dy − δ(x)I (x) − α(x)I (x)

∫ 1
0 η(y)I (y)dy − dV

)

,

(
I
V

)

∈ C([0, 1]) × R.

Denote the spectral bound of the operator A by s(A) = sup
{
ς : ς ∈ σ(A)

}
, where

σ(A) is the spectral set of A and 
ς is the real part of eigenvalue ς . Then we have

Theorem 2 s(L̄) < 0, s(L̄) = 0 and s(L̄) > 0 if and only if R0 < 1, R0 = 1 and
R0 > 1, respectively.

Proof We claim that s(L̄) = s(L). To verify this, we first show that s(L̄) ≤ s(L).
Let λ ∈ C with 
λ > s(L). Then, for any (H̄ , Ī (·), V̄ )T , the unique solution of the
equation

(λ − L̄)

⎛

⎝
H
I (·)
V

⎞

⎠ =
⎛

⎝
λH + cH + ∫ 1

0 (1 − ε(y))k1H0 I (y)dy + (1 − ξ)k2H0V

(λ − L)

(
I (·)
V

)

⎞

⎠

=
⎛

⎝
H̄
Ī (·)
V̄

⎞

⎠ ,

is given by
(
I (·)
V

)

= (λ − L)−1
(
Ī (·)
V̄

)

and
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H = H̄ − ∫ 1
0 (1 − ε(y))k1H

0 I (y)dy − (1 − ξ)k2H
0V

λ + c
.

Thus, (λ − L̄)−1 is well-defined and bounded, which implies that λ ∈ C\σ(L̄), and
hence, s(L̄) ≤ s(L).

Next, we show that s(L̄) = s(L). Assume that s(L̄) < s(L). We decompose the
operator L into two linear operators J and U , where

J

(
I
V

)

=
(−α(x)I (x) − δ(x)I (x)

−dV

)

and

U

(
I
V

)

=
(

β(x)
[∫ 1

0 (1 − ε(y))k1H
0 I (y)dy + (1 − ξ)k2H

0V
]

+ ∫ 1
0 γ (y, x)I (y)dy

∫ 1
0 η(y)I (y)dy

)

.

Clearly, J generates a uniformly continuous, positive and uniformly exponentially
stable semigroup

{
eJ t

}

t≥0 on C+([0, 1]) ×R+, and U is positive and compact. This,
together with the assumption γ (x, x) > 0, implies that U is irreducible. Therefore,
it follows from Theorem 2.2 in Bürger (1988) that s(L) is an isolated and simple
eigenvalue of L , whose eigenspace is spanned by some ( Ĩ , Ṽ )T ∈ C++([0, 1])×R++
(where C++([0, 1]) = {

I (·) ∈ C([0, 1]) : inf [0,1] I (·) > 0
}
and R++ = (0,+∞)),

i.e.,
{

β(x)
[∫ 1

0 (1 − ε(y))k1H0 Ĩ (y)dy + (1 − ξ)k2H0 Ṽ
]

+ ∫ 1
0 γ (y, x) Ĩ (y)dy − (δ(x) + α(x)) Ĩ (x) = s(L) Ĩ (x),

∫ 1
0 η(y) Ĩ (y)dy − dṼ = s(L)Ṽ .

Setting H̃ = −
∫ 1
0 (1−ε(y))k1H0 Ĩ (y)dy+(1−ξ)k2H0 Ṽ

c+s(L)
, we have

L̄

⎛

⎝
H̃
Ĩ (·)
Ṽ

⎞

⎠ =
⎛

⎝
−cH̃ − ∫ 1

0 (1 − ε(y))k1H0 Ĩ (y)dy − (1 − ξ)k2H0Ṽ

(λ − L)

(
Ĩ (·)
Ṽ

)

⎞

⎠

= s(L)

⎛

⎝
H̃
Ĩ (·)
Ṽ

⎞

⎠ .

Thus, s(L) is an eigenvalue of the operator L̄ , i.e. s(L) ∈ σ(L̄). It is a contradiction
with s(L̄) < s(L). Thus, we have s(L̄) = s(L).

In the following, we only need to prove that s(L) < 0, s(L) = 0 and s(L) > 0 if
and only if R0 < 1, R0 = 1 and R0 > 1, respectively. We first show that s(L) = 0 if
and only if R0 = 1. Assume that s(L) = 0. Using the same argument as in the above
proof, we can show that s(L) is an isolated and simple eigenvalue of L . Moreover, if
ς ∈ σ(L) and ς 	= s(L), then 
ς < s(L) and the eigenspace of s(L) is spanned by
some (ϕ, θ)T ∈ C++([0, 1]) × R++, i.e.,
{

β(x)
[∫ 1

0 (1 − ε(y))k1H
0ϕ(y)dy + (1 − ξ)k2H

0θ
]

+ ∫ 1
0 γ (y, x)ϕ(y)dy − (δ(x) + α(x))ϕ(x) = 0,

∫ 1
0 η(y)ϕ(y)dy − dθ = 0.

(5)
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The second equation in (5) implies that θ =
∫ 1
0 η(y)ϕ(y)dy

d . Substituting this into the
first equation of (5), we have L[ϕ](x) = ϕ(x). It then follows that R0 = ρ(L) = 1.

Next, we assume that R0 = 1. Then there exists an eigenfunction ϕ∗(x) ∈
C++([0, 1]) such that L[ϕ∗](x) = ϕ∗(x). Let θ∗ =

∫ 1
0 η(y)ϕ∗(y)dy

d > 0. We have

{
β(x)

[∫ 1
0 (1 − ε(y))k1H0ϕ∗(y)dy + (1 − ξ)k2H0θ∗

]
+ ∫ 1

0 γ (y, x)ϕ∗(y)dy − (δ(x) + α(x))ϕ∗(x) = 0,
∫ 1
0 η(y)ϕ∗(y)dy − dθ∗ = 0.

This implies that 0 ∈ σ(L) and 0 ≤ s(L). Define
{
eLt

}

t≥0 as the uniformly continuous

semigroup generated by L . Clearly, we have eLt (ϕ∗(x), θ∗)T = (ϕ∗(x), θ∗)T for all
t ≥ 0. Since

{
eLt

}

t≥0 is a positive semigroup, it follows that

eLt (I0(·), V0)T ≤ 1

min
{
inf [0,1] ϕ∗(x), θ∗}e

Lt (ϕ∗(x), θ∗)T

= 1

min
{
inf [0,1] ϕ∗(x), θ∗} (ϕ∗(x), θ∗)T ,

for any (I0(·), V0)T ∈ C+([0, 1]) ×R+ with ‖(I0(·), V0)T ‖C([0,1])×R ≤ 1 and t ≥ 0.

This implies that ‖eLt‖ ≤ ‖(ϕ∗(x),θ∗)T ‖C([0,1])×R

min
{
inf [0,1] ϕ∗(x),θ∗

} for all t ≥ 0. Since s(L) is equal to the

growth bound of
{
eLt

}

t≥0, we have s(L) ≤ 0. Therefore, we conclude that s(L) = 0.
Now let us show that s(L) > 0 if and only if R0 > 1. Suppose that s(L) > 0.

Then s(L) is an isolated and simple eigenvalue of L . If ς ∈ σ(L) and ς 	= s(L),
then 
ς < s(L). Moreover, the eigenspace of s(L) is spanned by some (ϕ, θ)T ∈
C++([0, 1]) × R++, i.e.,
{

β(x)
[∫ 1

0 (1 − ε(y))k1H0ϕ(y)dy + (1 − ξ)k2H0θ
]

+ ∫ 1
0 γ (y, x)ϕ(y)dy − (δ(x) + α(x))ϕ(x) = s(L)ϕ(x),

∫ 1
0 η(y)ϕ(y)dy − dθ = s(L)θ.

(6)

The second equation in (6) implies that θ =
∫ 1
0 η(y)ϕ(y)dy
s(L)+d . Substituting this into

the first equation of (6), we have L[ϕ](x) ≥ (1 + s(L))ϕ(x). It then follows that
R0 = ρ(L) > 1. Let R0 = ρ(L) > 1. Then there exists ϕ∗(x) ∈ C++([0, 1]) such
that L[ϕ∗](x) = R0ϕ

∗(x). Let θ∗ =
∫ 1
0 η(y)ϕ∗(y)dy

d . We have that

L

(
ϕ∗
θ∗
)

=
(

(α(x) + δ(x))(R0 − 1)ϕ∗(x)
0

)

.

If s(L) < 0, then 0 ∈ C\σ(L) and (−L)−1 is a positive operator as L generates a
positive semigroup. Solving the above equation, we obtain

(
ϕ∗
θ∗
)

= −(−L)−1
(

(α(x) + δ(x))(R0 − 1)ϕ∗(x)
0

)

≤ 0,
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which leads to a contradiction with ϕ∗(x) ∈ C++([0, 1]). Thus, s(L) ≥ 0, where
the case of s(L) = 0 has been excluded from the above discussion. The proof is
completed. �

Since the sign of s(L̄) determines the local stability of the equilibrium E0, we have

Theorem 3 The infection-free equilibrium E0 is locally asymptotically stable if the
basic reproduction number R0 < 1 and unstable if R0 > 1.

3.2 Global stability of equilibrium E0

For the global asymptotic stability of the infection-free equilibrium E0, it suffices to
show that E0 is a global attractor based on the local stability results given in Theorem
3.

Theorem 4 If R0 < 1, then the infection-free equilibrium E0 is globally asymptotically
stable.

Proof We only need to show that (H(t), I (t, ·), V (t))T → (H0, 0, 0)T as t → +∞
for any initial value in X+. From H ′(t) ≤ λ − cH(t), we have that H(t) ≤ H0 + ε0

for all sufficiently large t. Without loss of generality, we assume that H(t) ≤ H0 + ε0

for all t ≥ 0. Thus, for any solution (H , I (·), V )T of (1), we have

It (t, x) ≤ β(x)

[∫ 1

0
(1 − ε(y))k1(H

0 + ε0)I (y)dy + (1 − ξ)k2(H
0 + ε0)V

]

+
∫ 1

0
γ (y, x)I (y)dy

− δ(x)I (x) − α(x)I (x),

V̇ (t) =
∫ 1

0
η(y)I (y)dy − dV .

Define the operators Lε0 : C([0, 1]) → C([0, 1]) and Lε0 : C([0, 1]) × R →
C([0, 1]) × R by

Lε0 [I ](x) = β(x)

α(x) + δ(x)

∫ 1

0
(1 − ε(y))k1(H

0 + ε0)I (y)dy +
∫ 1
0 γ (y, x)I (y)dy

α(x) + δ(x)

+ β(x)(1 − ξ)k2(H0 + ε0)

d(α(x) + δ(x))

∫ 1

0
η(y)I (y)dy,

(7)

and

Lε0

(
I
V

)

=
⎛

⎜
⎝

β(x)
[∫ 1

0 (1 − ε(y))k1(H
0 + ε0)I (y)dy + (1 − ξ)k2(H

0 + ε0)V
]

+ ∫ 1
0 γ (y, x)I (y)dy − δ(x)I (x) − α(x)I (x)

∫ 1
0 η(y)I (y)dy − dV

⎞

⎟
⎠ .
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Because R0 < 1 (i.e. ρ(L) < 1) and Lε0 → L in the operator norm as ε0 → 0,
we can choose ε0 > 0 small enough such that ρ(Lε0) < 1. It follows from Theorem
2 that s(Lε0) < 0.

By the comparison principle, one obtains

0 ≤
(
I (t, x)
V (t)

)

≤ eLε0 t
(
I0(x)
V0

)

.

Because the growth bound of
{
eLε0 t

}

t≥0 is equal to s(Lε0), we conclude that

eLε0 t
(
I0(x)
V0

)

→ 0 as t → +∞, which means that

(
I (t, x)
V (t)

)

→ 0 as t → +∞.

Together with the first equation of (1), we have H(t) → H0 as t → +∞. This
completes the proof. �

4 Global stability of the infected equilibrium E∗

According to Theorem 1 and Theorem 4, we know that E0 becomes unstable and the
infected equilibrium E∗ emerges when R0 > 1. In this section, we study the global
stability of equilibrium E∗. The method of proof is to use Lyapunov functionals and
LaSalle’s invariance principle.

To show that the Lyapunov functional is well defined, we need to establish the
uniform persistence of system (1) when R0 > 1. Using the method in Thieme (2000),
the proof is divided into three steps: Step 1, the solution of (1) is strictly positive
when R0 > 1; Step 2, system (1) is uniformly weakly persistent; Step 3, by bounded
dissipativity and asymptotic compactness of solution semi-flow

{
φt
}

t≥0, system (1)
has a global attractor Y . The detailed proof is given in “Appendix B”. With the above
results, we have the following theorem.

Theorem 5 When R0 > 1, the infected equilibrium E∗ is globally asymptotically
stable in IntX+.

Proof From Theorem 1.3.11 in Zhao (2017), the system (1) has a global attractor Y
in IntX+. Moreover, for any (H̃ , Ĩ (·), Ṽ ) ∈ Y , there exist �1, �2 > 0 such that

�1 ≤ H̃ ≤ �2, �1≤ inf
x∈[0,1] Ĩ (x) ≤ sup

x∈[0,1]
Ĩ (x)≤�2 and �1≤ Ṽ ≤�2, ∀t≥0.

When R0 > 1, system (1) has an unstable equilibrium E0 and a positive equilibrium
E∗. To prove the theorem, we only need to show that E∗ is the global attractor of
system (1) in IntX+, i.e. Y = {

E∗}. Let z(t) = (H(t), I (t, ·), V (t))T be a complete
solution to system (1) that lies in Y . Then there exist m > 0 and M > 0 such that

m ≤ H(t)

H∗ ≤ M, m ≤ inf
x∈[0,1]

I (t, x)

I ∗(x)
≤ sup

x∈[0,1]
I (t, x)

I ∗(x)
≤ M,

m ≤ V (t)

V ∗ ≤ M for all t ≥ 0.
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Define

ψ(x, y) = [
β(x)η(y)(1 − ξ)k2H

∗ + dγ (y, x)
]
I ∗(y)

+ dβ(x)(1 − ε(y))k1H
∗ I ∗(y), x, y ∈ [0, 1].

It is clear that ψ is continuous and ψ(x, x) > 0 for all x ∈ [0, 1]. Then X (x) =
∫ 1
0 ψ(x, y)dy defines a continuous positive function, that is, X ∈ C++([0, 1]). Using
the Proposition 11.1 in Thieme (2011), there exists a non-negative Borel measurable
function w on [0, 1] such that Xw is integrable and

∫ 1

0
w(x)

∫ 1

0
ψ(x, y)[ν(x) − ν(y)]dydx = 0, for all ν ∈ L∞([0, 1]). (8)

Letκ(a) = a−1−ln a. It is obvious that the functionκ is continuously differentiable
and attains its global minimum at 1 with κ(1) = 0. We define a Lyapunov functional

G(t) = G(H(t), I (t, x), V (t))

=
∫ 1

0
w(x)

[

dH∗β(x)κ(
H(t)

H∗ ) + d I ∗(x)κ(
I (t, x)

I ∗(x)
)

+(1 − ξ)k2H
∗V ∗β(x)κ(

V (t)

V ∗ )

]

dx .

(9)

Clearly, the function G(t) is continuously differentiable. Calculating the derivative of
G(t) along the solution of model (1) yields

dG

dt
= −

∫ 1

0
w(x)

[

dβ(x)(1 − H∗

H
)(cH − cH∗)

]

dx

−
∫ 1

0
w(x)dβ(x)(1 − ξ)k2H

∗V ∗
[

κ(
H∗

H
)

+ κ(
I ∗(x)
I (x)

HV

H∗V ∗ )

]

dx −
∫ 1

0
w(x)dβ(x)

∫ 1

0
(1 − ε(y))k1H

∗ I ∗(y)
[

κ(
H∗

H
) + κ(

H I (y)

H∗ I ∗(y)

· I ∗(x)
I (x)

)

]

dydx −
∫ 1

0
w(x)d

∫ 1

0
γ (y, x)I ∗(y)κ(

I ∗(x)
I (x)

I (y)

I ∗(y)
)dydx

−
∫ 1

0
w(x)β(x)(1 − ξ)k2H

∗

·
∫ 1

0
η(y)I ∗(y)κ(

V ∗

V

I (y)

I ∗(y)
)dydx

+
∫ 1

0
w(x)

∫ 1

0

[

β(x)k2(1 − ξ)H∗η(y)I ∗(y) + dγ (y, x)I ∗(y)

+ dβ(x)(1 − ε(y))k1H
∗ I ∗(y)

][

ln
I (x)

I ∗(x)
− I (x)

I ∗(x)
− ln

I (y)

I ∗(y)
+ I (y)

I ∗(y)

]

dydx . (10)
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Detailed calculation is available in “Appendix C”. In view of (1− H∗
H )(cH−cH∗) ≥ 0

and κ(a) is nonnegative for all a > 0, the first five terms on the right-hand side of
(10) are non-positive. By (8), the last term on the right-hand side of (10) is 0. Thus,
dG
dt ≤ 0 with equality if and only if H = H∗, I (x) = I ∗(x) and V = V ∗. Thus, the
largest invariant set in

{
(H , I (x), V )T ∈ X+ : dG

dt

∣
∣
(2.1) = 0

}
is the singleton E∗.

Therefore, Y = {
E∗}, which implies that E∗ is unique and globally asymptotically

stable. �

5 Numerical investigations

Wechoose specific functions for the status-dependent parameters, examine the effect of
cell-to-cell transmission on the basic reproduction number and steady-state viral load,
explore if the continuous status-structuredmodel (1) with cell-to-cell transmission can
describe the viral load persistence in patients under effective drug treatment, and test
whether the viral and latent reservoir persistence, as well as intermittent viral blips can
be generated by occasional activation of latently infected cells upon encounter with
relevant antigens.

5.1 Parameter values and functions

Based on experimental data and previous modeling literature (Rong and Perelson
2009a, b, c), we fix some parameter values. In the absence of infection, the CD4+T cell
level is approximately 106 ml−1 (Bofill et al. 1992). The death rate of uninfectedCD4+
T cells (c) is 0.01 day−1 (Perelson et al. 1993). Thus, from the equilibrium of target
cells in the absence of infection, we obtain that the generation rate of uninfected cells is
λ = 106×0.01 = 104 ml−1day−1. The infection rate and clearance rate of virions are
chosen to be k2 = 2.4×10−8 ml/day and d = 23 day−1 (Rong and Perelson 2009b),
respectively. The rate of cell-to-cell viral transmission is k1 = 2 × 10−6 ml/day
(Wang et al. 2017b). Antiretroviral drugs can block both cell-free virus infection and
cell-to-cell viral transmission. However, multiple viral genomes can be transmitted
simultaneously during cell-to-cell transmission. Thus, antiretroviral drugs may not
completely block the infection caused by all the virions. Compared with cell-free
virus infection, the same antiretroviral drugs have lower treatment efficacy for cell-to-
cell viral transmission. To rule out the potential influence of cell-free virus infection
and only focus on the effect of cell-to-cell transmission on HIV infection, we study an
extreme case, i.e. letting the overall drug efficacy of inhibiting cell-free virus infection
ξ be 1. The function of the drug efficacy blocking cell-to-cell viral transmission ε(y)
will be further discussed below.

The probability function β(x) of generating newly infected cells with the activation
status x satisfies the condition (A2), i.e.

∫ 1
0 β(x)dx = 1, but its functional form remains

unknown. Although there are some data on the cells with low, intermediate and high
concentration of Tat (Weinberger et al. 2005) , it is not sufficient to justify the choice
of a specific function β(x). Here we choose the following function as an example
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β(x) = 1
∫ 1
0 B(x)dx

× B(x), (11)

where B(x) = 1√
2πr1

e
− (x−β1)2

2r21 is the probability density function of a normal distri-

bution with the location parameter β1 and the scale parameter r1. HIV latent infection
accounts for a small fraction of the new infection (Rong and Perelson 2009b). Thus,
we assume the location parameter β1 to be greater than one half, and choose β1 = 0.8
and r1 = 0.2 as an example in the simulation. More data on the distribution of the
activation status would be useful in determining the status-dependent function β(x).

Parameter γ (y, x) = δ(y)p(y, x) represents the switch rate of infected cells from
status y to status x . Because it is more likely for an infected cell to change from one
status to its closer status, this switch rate should decrease as the distance between y
and x increases. We choose the following function

γ (y, x) = 1√
2πr2

e
− (y−x)2

2r22 (12)

as an example with the scale parameter r2 = 0.1. The switch rate of infected cells from
status x to other statuses is calculated by the balance condition δ(x) = ∫ 1

0 γ (x, y)dy.
Latently infected cells have a much longer lifespan than activated cells (Chun et al.
1995). Thus, we assume the death rate of infected cells α(x) to be larger when the
infected cell has a higher activation status. The death rate of completely latently
infected cells and productively infected cells are 0.001 day−1 (i.e. α(0) = 0.001)
and 1 day−1 (i.e. α(1) = 1) (Rong and Perelson 2009c), respectively. Thus, a simple
example of the increasing function α(x) is α(x) = 1.001− 0.001x . Because infected
cells with a higher activation status can produce more virions, the viral production
rate η(y) of an infected cell with the activation status y is also an increasing function
of the status y. A completely latently infected cell does not produce virus, that is,
η(0) = 0. The viral production rate of fully productively infected cells is chosen to be
2000 virus/cell (Wang et al. 2017a). Hence, we assume the status-dependent viral
production rate to be η(y) = 200 × (11y − 1) such that η(0) = 0 and η(1) = 2000.
These parameters and their values are summarized in Table 1.

5.2 Effect of cell-to-cell viral transmission on HIV persistence

In this section,we study the effect of cell-to-cell transmission on the basic reproduction
number R0 and the steady-state viral load. The status-dependent drug efficacy of
blocking cell-to-cell transmission, i.e. the function ε(y), is assumed to be a decreasing
function of the status y and also satisfy the condition (A1) (i.e. ε(0) = 1). However,
the exact functional form remains unknown. We performed simulations using two
different functions for ε(y). One is the exponential decay function ε(y) = e−ay and
the other is a linear function ε(y) = max

{
1 − by, 0

}
, where a > 0 and b > 0 are

constants that characterize how fast the drug efficacy declines as the level of activation
of infected cells increases.
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Fig. 1 Sensitivity of the basic reproduction number and viral load equilibrium with respect to the drug
efficacy ε(y) of blocking cell-to-cell transmission by infected cells at status y. Different functions are used
for the drug efficacy ε(y), ε(y) = e−ay and ε(y) = max

{
1 − by, 0

}
. The other parameters are listed in

Table 1. aHow the basic reproduction number R0 changes with the decay constant a or b in the drug efficacy
function ε(y). b How the viral load equilibrium changes as the decay constants increase. Red and black
horizontal lines in (a) and (b) represent R0 = 1 and the detection limit of standard assays, respectively.
Vertical dash-dotted line in (a) indicates the threshold value of the decay constant a or b corresponding to
R0 = 1

Figure 1a shows that the basic reproduction number R0 is an increasing function
of the decay constant a or b. A larger value of a or b implies that the treatment
effectiveness in blocking cell-to-cell transmission declines faster given the same level
of infected cell activation. Thus, as a or b increases, the treatment efficacy decreases
and the basic reproduction number increases. Moreover, R0 becomes less sensitive to
the increase of the decay constant. The simulations also show a threshold value for the
decay constant, below which the basic reproduction number is less than 1 (i.e. viral
eradication) and above which R0 is greater than 1 (i.e. viral persistence). Therefore,
even when the treatment can completely inhibit cell-free virus infection, cell-to-cell
viral transmission can still lead to viral persistence. Note that the threshold value of
a is greater than that of b. This is because the linear function of drug efficacy ε(y)
declines faster than the exponential function as y increases for the same decay rates.
Thus, a larger threshold value of a is needed for the basic reproduction number to
reach 1.

We also investigate the steady-state viral load as a function of the decay constant a
or b (see Fig. 1b). Similar to the change of the basic reproduction number, the steady-
state viral load also increases as the decay constant a or b increases but it is sensitive to
the decay constant near the threshold value for the equilibrium to reach the detection
limit. Also note that the threshold value of the decay constant for the viral load to
reach the detection limit is larger than that for the basic reproduction number to reach
1.
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5.3 Activation of latently infected cells by relevant antigens

In addition to the ongoing viral replication induced by cell-to-cell viral transmission,
activation of latently infected cells can also serve as a source of persistent viremia.
In model (1), we did not have a separable variable for latently infected cells. We
only assumed that the lower the activation status, the more likely the infected cell
remains in the latent status. If we specify an interval of the activation status over
which the infected cell is considered to be latent, for example [0, 1/2], then we can
study the dynamics of virus and latent reservoir. In this extreme case, we assume
that the remaining activation status interval [1/2, 1] represents productively infected
cells, which can produce virions and transfer to uninfected cells during cell-to-cell
transmission. This is similar to the discrete case in which infected cells are either
latent or productive. In addition to the switch of infected cells with different activation
statuses due to intrinsic random perturbations (Wang andRong 2014;Weinberger et al.
2005), latently infected cells can also be activated and become productively infected
cellswhen they encounter their relevant antigens. Taking this into consideration,model
(1) with antigenic activation can be described by the following equations:

Ḣ(t) = λ − cH(t) −
∫ 1

1/2
(1 − ε(y))k1H(t)I (t, y)dy − (1 − ξ)k2H(t)V (t),

It (t, x) = β(x)

[∫ 1

1/2
(1 − ε(y))k1H(t)I (t, y)dy + (1 − ξ)k2H(t)V (t)

]

+
∫ 1

0
γ (y, x)I (t, y)dy

− δ(x)I (t, x) − α(x)I (t, x) − r(x)I (t, x), x ∈ [0, 1/2),

It (t, x) = β(x)

[∫ 1

1/2
(1 − ε(y))k1H(t)I (t, y)dy + (1 − ξ)k2H(t)V (t)

]

+
∫ 1

0
γ (y, x)I (t, y)dy

− δ(x)I (t, x) − α(x)I (t, x) + r(x − 1/2)I (t, x − 1/2), x ∈ [1/2, 1],

V̇ (t) =
∫ 1

1/2
η(y)I (t, y)dy − dV (t). (13)

Because latently infected cells do not produce virus, the total virus generated by
productively infected cells per unit time is

∫ 1
1/2 η(y)I (t, y)dy. Further, latently infected

cells cannot transfer virions to uninfected cells. Thus, uninfected cells are infected via
cell-to-cell transmission at a rate

∫ 1
1/2(1 − ε(y))k1H(t)I (t, y)dy. The function r(x)

is the rate at which infected cells with status x are activated by their relevant antigens.
For simplicity, we assume that r(x) is status-independent in the simulation. When
latently infected cells encounter their specific antigens, r is assumed to increase from
0 to 0.3 day−1 (Rong and Perelson 2009b). We will study if model (13) with antigenic
activation of latently infected cells can explain the emergence of viral blips during

123



51 Page 18 of 41 T. Guo et al.

treatment and how the activation affects the dynamics of the latent reservoir. The
other parameters and variables are the same as those in Eq. (1).

Weuse the exponential function ε(y) = e−ay as the efficacy of treatment in blocking
cell-to-cell transmission. Other functions that decrease as the level of activation of
infected cells increases and that satisfy the condition (A1) can also be used, e.g. the
linear function ε(y) = max

{
1−by, 0

}
we used in Sect. 5.2. The value of the function

ε(y) depends on the activation status y and the choice of the decay constant a or b.
When 0.5 < y < 1, any value of the parameter a or b that can generate low steady-state
viral load can also be used in the simulation. For the exponential function ε(y) = e−ay ,
when a = 1.05687, model (13) has a unique infected equilibrium, in which the viral
load is suppressed to below the detection limit (i.e. 43 RNA copies/ml). To test the
sensitivity of viral blips and the latent reservoir size with respect to drug efficacy,
we also show another example with a slightly smaller decay rate, a = 1.05686, in
which the model has a lower level of steady-state viral load, 40 RNA copies/ml. These
equilibria are set as the initial values when performing simulations in response to
antigenic stimulation.

Figure 2 shows the changes of viral load, latent reservoir, productively infected cells,
and the contributions of cell-to-cell transmission and infected cell transfer between
statuses to the latent reservoir during an antigenic activation of latently infected cells.
Latently infected cells and productively infected cells are given by

∫ 1/2
0 I (t, x)dx and

∫ 1
1/2 I (t, x)dx , respectively. Upon activation, latently infected cells decline quickly
(Fig. 2b), leading to an increase of productively infected cells (Fig. 2c), which in turn
produce more virions and generate a viral blip above the detection limit (Fig. 2a). The
change of viral load is synchronized with that of productively infected cells because
productively infected cells are the only source of viral production. Interestingly, the
decline of latently infected cells is transient, followed by an increase to an even higher
level than that before activation (Fig. 2b). The increase of latently infected cells after
activation comes from two sources. One is the replenishment by productively infected
cells via cell-to-cell transmission (i.e. β(x)[∫ 1

1/2(1 − ε(y))k1H(t)I (t, y)dy], where
x ∈ [0, 1/2)). Note that we assume ξ = 1 in the simulation so there is no contribu-
tion to the latent reservoir from ongoing viral replication induced by cell-free virus
infection. The other source contributing to the increase of latently infected cells is
the switch of infected cells between different statuses (i.e.

∫ 1
0 γ (y, x)I (t, y)dy, where

x ∈ [0, 1/2)). Productively infected cells increase following latently infected cell
activation and revert to the latent status due to random perturbations, which provides
an avenue to replenish the latent reservoir. We also note that the decay constant a in
the drug efficacy function ε(y) = e−ay plays an important role in the prediction of
viral blips. With a smaller decay constant, the initial viral load (i.e. the steady-state
viral load of the model before activation) is lower. In this scenario, a burst of viral
production following the activation of latently infected cells cannot generate a viral
blip above the detection limit (Fig. 2a).

To compare the relative contributions to the latent reservoir from cell-to-cell trans-
mission and infected cell switch between different statuses, we plot the following
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Fig. 2 Viral load and the latent reservoir dynamics predicted by the model with antigenic activation of
latently infected cells (Eq. (13)). To test the sensitivity of model prediction to the treatment, we plot the
viral load and cell changes with different decay constants a in the exponential drug efficacy ε(y) = e−ay .
Simulations are performed before antigen activation (0 to day 50, i.e. steady-state level), under antigen
activation (day 50 to 55) and post-activation (after day 55). The predicted dynamics of a viral load, b total
latently infected cells, c total productively infected cells, and d the relative contributions of cell-to-cell
transmission and infected cell switch between different statuses to the latent reservoir are shown. When
activation occurs, i.e. 50 ≤ t ≤ 55 days, r was chosen to be 0.3 day−1 and it was 0 elsewhere. The other
parameter values used are listed in Table 1. The black solid horizontal line in (a) represents the detection
limit of 50 RNA copies/ml

ratio

∫ 1/2

0
β(x)

∫ 1

1/2
(1 − ε(y))k1H(t)I (t, y)dydx :

∫ 1/2

0

[∫ 1

0
γ (y, x)I (t, y)dy − δ(x)I (t, x)

]

dx

in Fig. 2d The denominator in the ratio is the net increase of latently infected cells
due to switch. The simulation shows that cell-to-cell transmission contributes more
than the switch between infected cells. This result is supported by some other studies
showing that cell-to-cell transmission accounts for over half of virus infection (Chen
et al. 2007; Dimitrov et al. 1993; Iwami et al. 2015). Figure 2d also shows that the
curves with different decay constants overlap. Thus, changing the decay constant
in the drug efficacy function of blocking cell-to-cell transmission does not have any
visible influence on the relative contributions to the latent reservoir. However, it should
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be noted that the quantitative comparison of the relative contributions depends on
the choice of other parameters. In summary, we showed that when the viral load is
successfully suppressed (assuming no cell-free virus infection of CD4+ T cells), cell-
to-cell transmission and the random switch between infected cells can play a critical
role in the maintenance of the latent reservoir.

5.4 Emergence of viral blips and latent reservoir stability

From the simulation in Fig. 2a, we find that a small change of the decay constant in
the drug efficacy function affects the emergence of viral blips, which suggests that
the viral load depends heavily on the therapeutic efficacy. After latently infected cell
activation, the decay of virus and infected cells is extremely slow (Fig. 2a–c). If we
increase the decay constant in the exponential drug efficacy function, i.e. decrease the
drug efficacy in blocking cell-to-cell transmission, then the viral load will increase and
stay above the detection limit for a long time. Thus, the viral load above the detection
limit is not transient and cannot be considered as a viral blip. The latent reservoir
will also increase and stay at a higher level after the antigenic activation, which does
not agree with the stability (or extremely slow decay) of the latent reservoir observed
in patients under long-term suppressive therapy. On the contrary, if we decrease the
decay constant, then the level of virus and latently infected cells will decline quickly
after the initial increase following activation. Therefore, viral blip above the detection
limit will not appear and the size of the latent reservoir cannot be maintained. This
suggests that the emergence of transient viral blips and the size of the latent reservoir
are sensitive to small changes in the decay constant in the exponential drug efficacy
function.

To overcome these limitations, we include a logistic term representing the homeo-
static proliferation of latently infected cells, which was proposed in a viral dynamic
model (Rong and Perelson 2009c) and confirmed in experiments (Chomont et al.
2009). With the logistic term, the second equation of model (13) becomes

It (t, x) =β(x)

[∫ 1

1/2
(1 − ε(y))k1H(t)I (t, y)dy + (1 − ξ)k2H(t)V (t)

]

+
∫ 1

0
γ (y, x)I (t, y)dy

− δ(x)I (t, x) − α(x)I (t, x) − r(x)I (t, x)

+ p(x)I (t, x)[1 − I (t, x)/Imax (x)]

(14)

for x ∈ [0, 1/2), where p(x) and Imax (x) are the maximum proliferation rate and
carrying capacity of latently infected cells with the activation status x ∈ [0, 1/2),
respectively. For simplification, we assume that they are constants and choose p = 1
day−1 and Imax = 64 cells/ml in the simulation (Rong and Perelson 2009c). The
other equations remain unchanged as in model (13).

Using the model with homeostatic proliferation of latently infected cells, we study
the influence of drug efficacies on the viral load and latent reservoir dynamics during
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Fig. 3 The effect of varying the decay constant a in drug efficacy ε(y) on the dynamics predicted by the
model with homeostatic proliferation of latently infected cells during antigen activation (model (13) with
the second equation replaced by Eq. (14)). We used a = 0.2 and a = 0.1 in the simulations. The dynamics
of a viral load, b latently and c productively infected cells, and d the relative contribution of homeostatic
proliferation of latently infected cells and cell-to-cell transmission to the latent reservoir were plotted before,
during and after antigen activation. When t < 50 days and t > 53 days, the activation rate is r = 0 day−1;
when 50 ≤ t ≤ 53 days, r is chosen to be 0.2 day−1. The other parameters are the same as those in Fig.
2. The black solid horizontal line in (a) represents the detection limit of 50 RNA copies/ml

antigenic activation. We choose two decay constants a = 0.2 and a = 0.1, which
correspond to two drug efficacy functions e−0.2y and e−0.1y with the treatment effec-
tiveness of blocking cell-to-cell transmission from completely productively infected
cells (i.e. y = 1) as 0.82 and 0.90, respectively. The steady-state viral loads before
activation with these two decay constants are 8.7 and 7.1 RNA copies/ml, respectively.
This shows that the new model can robustly describe the viral load persistence at a
low level. We choose these equilibria before activation to be the initial conditions for
the simulation with antigen activation. Assuming the activation rate r = 0.2 day−1

and a duration of 3 days for the activation, we found that viral loads increase to above
the detection limit in the two cases (Fig. 3a). Moreover, after the activation the viral
load declines to the pre-activation level because of the suppressive therapy. Viral blips
occurs when antigen activation takes places and the emergence of viral blips is not
sensitive to the changes in the decay constant or the drug efficacy of blocking cell-to-
cell transmission (note that cell-free virus infection is still assumed to be completely
blocked). The activation consumes latently infected cells, resulting in a decline of the
latent reservoir size. However, homeostatic proliferation replenishes the latent reser-
voir when the activation is over (Fig. 3b). This explains the stability of the latent
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reservoir. In summary, model (13) with the second equation replaced by Eq. (14) is
not sensitive to the changes in drug efficacy. It can robustly generate the viral blips
and persistent viremia after occasional antigenic stimulation and maintain the stabil-
ity of the latent reservoir. This is consistent with the observation in patients receiving
long-term combination therapy (Siliciano et al. 2003).

In addition to the cell-to-cell transmission and infected cell switch between dif-
ferent activation statuses, homeostatic proliferation of latently infected cells can also
replenish the latent reservoir. Because the contribution from the transfer between sta-
tuses is minor in this case, we only plot the relative contribution to the latent reservoir
from homeostatic proliferation of latently infected cells and cell-to-cell transmission
(given by the following ratio) in Fig. 3d:

∫ 1/2

0
p(x)I (t, x)(1 − I (t, x)/Imax (x))dx :

∫ 1/2

0
β(x)

[ ∫ 1

1/2
(1 − ε(y))k1H(t)I (t, y)dy

]
dx .

The simulation shows that homeostatic proliferation of latently infected cells plays
a dominant role in the maintenance of the latent reservoir. As the decay constant a
increases, the drug efficacy of blocking cell-to-cell transmission decreases, leading to
an increase of the relative contribution to the latent reservoir from cell-to-cell trans-
mission. Thus, the ratio of the contribution from homeostatic proliferation to that from
cell-to-cell transmission decreases.

6 Discussion

In addition to the direct cell-free virus infection, cell-to-cell transmission from infected
to uninfected CD4+ T cells is another route of HIV spread. Virions transmitted via
cell-to-cell transmission evade the antibody neutralization andmay bemore efficient in
establishing viral infection. During cell-to-cell transmission, whenmultiple virions are
tranferred, antiretroviral drugs may not be able to block the infection by all the virions.
Thus, cell-to-cell transmission may permit ongoing viral replication despite effective
antiretroviral therapy (Sigal et al. 2011). Mathematical models have been developed
to include cell-to-cell viral transmission (Allen and Schwartz 2015; Culshaw et al.
2003; Komarova and Wodarz 2013; Lai and Zou 2014; Pourbashash et al. 2014; Shu
et al. 2018; Yang et al. 2015). In a recent study (Wang and Rong 2019), we developed
a model that includes cell-to-cell viral transmission to study HIV persistence. We
assumed that variable number of virions are transmitted with different probabilities
and antiretroviral therapy has different effectiveness in blocking their infection. The
model containsmanyvariables for different classes of cells that are infected bymultiple
virions transferred via cell-to-cell transmission. An interesting question arises: can we
develop apopulation-structuredmodel of cell-to-cell transmission that does not contain
so many variables but can still be used to study the contributions of cell-free infection
and cell-to-cell transmission to HIV persistence? Ideally, this modeling framework
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can also be used to study other observations, such as the extremely slow decay of the
latent reservoir and emergence of intermittent viral blips during long-term suppressive
therapy.

There are a lot of population dynamics models (mostly in epidemiology) that are
structured by age, size, and spatial position (Auger et al. 2008; Qiu et al. 2018b).
However, no models have included the structure of cells or virus that can be used to
study cell-to-cell transmission within infected individuals. The difficulty is to find a
status variable that can biologically link the population (i.e. infected cells) with cell-to-
cell transmission. The activation status of infected cells is a good candidate. Infected
cells with a low level of activation stay in the latent state and do not produce virus,
while infected cells with a higher level of activation are more productive and thus
more likely to transmit virions to uninfected cells during cell-to-cell transmission.

Another reasonwe choose the activation status of infected cells as the status variable
is that it is related to HIV latency, which is considered as a major obstacle to viral
elimination. Mathematical models have been developed to study HIV latent infection
(see review in Rong and Perelson (2009b)). Most models assumed only two statuses
of infection: one is latent and the other is productive infection. However, infected
cells do not have to be either completely latent or productive. The activation status of
infected cells can be continuous. Using the HIV regulatory protein Tat as the activation
marker of infected CD4+ T cells (Karn 1999), it was shown that infected cells can
be driven by random intracellular perturbations to switch to other activation statuses
(Weinberger et al. 2005). Because cells with a higher activation status are likely to
produce more virions, resulting in a larger probability of successful infection via
cell-to-cell transmission, incorporation of the continuous status of activation turns
out to be a convenient way to study the viral transmission dynamics. In this paper,
we developed a new mathematical model that includes continuous status structure of
infected cells to study the effect of the switch between infected cells with different
activation statuses on virus dynamics. In the model, we assumed that the treatment
effectiveness of blocking cell-to-cell transmission declines as the number of virions
transmitted per time increases. Because highly activated infected cells produce and
transmit more virions, we further assumed that the drug efficacy of inhibiting cell-to-
cell transmission is a decreasing function of the level of activation of infected cells.

In the absence of drug treatment, model (1) is similar to the status-dependent epi-
demiological model (Qiu et al. 2018b). Qiu et al. (2018b) studied an SIR model with
a conceptual continuous status and only focused on the mathematical analysis. The
status in the model is also vague. In comparison, the status variable in our within-host
model is very specific, has a clear biomarker, and provides a new avenue to study
some critical issues during HIV treatment. In particular, the transfer between infected
cells with different statuses can be used to study the contribution from infected cell
population switch that would be difficult to address using a within-host model without
the status structure, including the model developed in Wang and Rong (2019).

Mathematical analysis of the model with continuous status structure is more chal-
lenging than that given by a system of ordinary differential equations. However, we can
still obtain the basic reproduction number R0 by defining an operator on viral infec-
tion and transfer. The basic reproduction number was shown to completely govern the
existence and stability of the equilibria. The model always admits an infection-free
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equilibrium. When R0 is greater than one, the model also has an infected equilibrium.
We further proved the stability of the equilibria. When R0 < 1, the infection-free
equilibrium is locally and globally asymptotically stable and HIV infection is pre-
dicted to die out; when R0 > 1, the infected equilibrium is globally asymptotically
stable and HIV establishes chronic infection. In the proof of the stability of equilibria,
we used the methods for monotone dynamical system, principal spectral theory and
Lyapunov direct method. These methods were also used when analyzing the epidemic
model in Qiu et al. (2018b). A further analysis of the steady-state viral load and the
basic reproduction number of model (1) shows that cell-to-cell viral transmission can
establish infection even when the treatment can completely block the cell-free virus
infection. Thus, cell-to-cell transmission alone can lead to viral persistence during
suppressive therapy. However, the viral load is sensitive to the changes in the decay
constant of the drug efficacy of blocking the cell-to-cell tranmission (Fig. 1).

The latent reservoir plays an essential role in HIV persistence during therapy.When
latently infected cells are activated by relevant antigens, they become productive and
produce virions, which can fuel ongoing viral replication (Chun et al. 1998). Although
the activation consumes latently infected cells, the latent reservoir is very stable or
decays extremely slowly during long-term therapy (Siliciano et al. 2003). The mecha-
nisms underlying the stability of the latent reservoir are not fully understood. Different
mechanisms have been proposed and tested using mathematical models, such as the
programmed expansion and contraction (Rong and Perelson 2009c) or asymmetric
cell division of latently infected cells (Rong and Perelson 2009a) upon antigen stim-
ulation. More mechanisms and mathematical models for the latent reservoir stability
can be found in the review article (Rong and Perelson 2009b).

To study the dynamics of the latent reservoir using this status-dependent model,
we need to specify an interval over which infected cells are latently infected cells. We
use [0, 1/2) and [1/2, 1] as an example that resembles the discrete case of infected
cells being either latent or productive. Upon activation, the latent reservoir undergoes
a temporary decline, followed by a rapid replenishment to reach an even higher level
(Fig. 2b). This replenishment is mainly due to the latent infection that comes from
cell-to-cell transmission by productively infected cells. However, the transfer between
infected cells with different activation statuses also contributes to the maintenance of
the latent reservoir (Fig. 2d).

Intermittent viral blips are observed in many antiretroviral-treated patients with
plasma viral load suppressed to below the detection limit for many years (Ramratnam
et al. 2000; Sklar et al. 2002). This implies that there must be some factors leading
to a sudden burst of viral replication that would otherwise be well suppressed. The
activation of latently infected cells can explain the emergence of intermittent viral blips
(Rong and Perelson 2009a, c). In our status-dependent model, we included an extra
activation rate during a period of time (when latently infected cells encounter their
recall antigens) and found that the model is able to describe the emergence of viral
blips after antigenic activation (Fig. 2a). This antigen-induced activation of latently
infected cells is different from the stochastic population switch between infected cells
that can generate viral blips (Wang and Rong 2014). Other studies showed that simple
deterministic models without forcing functions or stochastic elements can also display
viral blips (Zhang et al. 2014).
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Model (13) can achieve a low viral load equilibrium, generate viral blips, and
replenish the latent reservoir when antigenic activation of latently infected cells takes
place. However, the model prediction is sensitive to the drug efficacy of blocking cell-
to-cell viral transmission (Fig. 2). To reduce this sensitivity, we modify the model by
including the homeostatic proliferation of latently infected cells. The new model was
shown to robustly generate viral load persistence at a low level. In fact, even when the
antiretroviral therapy completely inhibits cell-to-cell transmission and cell-free virus
infection, a low steady-state viral load (i.e. 0.12 RNA copies/ml using the parameter
values in Fig. 3) still persists. When activation of latently infected cells occurs, viral
blips appear and their emergence is not sensitive to the changes in drug treatment
effectiveness. The latent reservoir can be maintained at a stable level, mainly due to
the proliferation of latently infected cells (Fig. 3).

In the simulation of antigen activation, we assumed that all latently infected cells
have the same activation rate r . However, latently infected cells with different activa-
tion statuses have different transcriptional availability and thusmay responddifferently
to antigen, suggesting that they have different activation rates. Similarly, they may
have different maximum proliferation rate p and carrying capacity Imax with different
activation statuses. The heterogeneity of latently infected cells with respect to these
parameters may reduce the sensitivity of model prediction. Using status-dependent
distributions of these rates, whether the model without homeostatic proliferation of
latently infected cells can describe low viral persistence and the latent reservoir sta-
bility remains to be further investigated.

Viruses can be consumed when attacking uninfected cells and the cell-free virus
infection term (1− ξ)k2H(t)V (t) should be subtracted from both uninfected CD4+ T
cells and viruses.Wedid not subtract this term in the virus equation due to the following
considerations. First, HIV is a “fast” virus and has a large clearance rate. The loss of
virus due to infection may be minor compared with death and antibody-induced viral
neutralization. This has also been assumed in the basic viral dynamic model. Second,
including −(1 − ξ)k2H(t)V (t) in the virus equation makes mathematical analysis
of the full model more complex (for example, see the analysis of a viral dynamic
model with immune response (Wang et al. 2013)). For simplicity, we removed the
cell-free virus infection term from the V equation. This has also been assumed in
some other mathematical models (Perelson et al. 1993, 1996; Perelson and Ribeiro
2013; Pourbashash et al. 2014; Qiu et al. 2018a, b; Ramratnam et al. 2000; Rong and
Perelson 2009a, b, c). Lastly, to exclude the influence of cell-free virus infection and
only focus on the effect of cell-to-cell transmission on HIV infection, we studied an
extreme case in the numerical simulations, i.e. letting the overall drug efficacy of
inhibiting cell-free virus infection ξ be 1. In this case, (1 − ξ)k2H(t)V (t) = 0 for
any t . Thus, neglecting the loss of virus due to infection does not affect the numerical
investigations and conclusions in Sect. 5.

Taken together, we developed and analyzed a new mathematical model that struc-
tures the population of infected cells continuously according to their activation status.
This provides a new modeling framework that can be used to study the virus dynam-
ics in patients receiving long-term antiretroviral therapy. Even when treatment can
completely block the cell-free virus infection, virus can persist due to the cell-to-cell
transmission from infected to uninfected cells. In addition to the ongoing viral repli-
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cation induced by cell-to-cell transmission, the transfer between infected cells with
different statuses of activation is able to replenish the latent reservoir. By including
the homeostatic proliferation of latently infected cells, the status-dependent model
provides a robust model to describe low viral load persistence, extremely slow decay
of the latent reservoir and emergence of intermittent viral blips during suppressive
therapy. Once beyond a threshold value of the drug efficacy, drug treatment does not
play an important role in affecting the viral load and latent reservoir dynamics. There-
fore, treatment intensification would not achieve viral eradication, in agreement with
the prediction from another modeling study of LTR (long terminal repeats) generation
during treatment with integrase inhibitor (Wang et al. 2017a). Other treatment strate-
gies such as blocking the proliferation of latently infected cells or even preventing the
establishment of the latent reservoir using very early treatment have to be developed
for the elimination of the virus (Vaidya and Rong 2017).
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Appendix A: Proof of Theorem 1

Proof Any equilibrium of system (1) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ − cH − ∫ 1
0 (1 − ε(y))k1H I (y)dy − (1 − ξ)k2HV = 0,

β(x)
[∫ 1

0 (1 − ε(y))k1H I (y)dy + (1 − ξ)k2HV
]

+ ∫ 1
0 γ (y, x)I (y)dy − δ(x)I (x)

−α(x)I (x) = 0,
∫ 1
0 η(y)I (y)dy − dV = 0.

(15)
According to the third equation of (15), we have V = 1

d

∫ 1
0 η(y)I (y)dy. Thus, (15)

is equivalent to

{
λ − cH − ∫ 1

0 f (y, H , I (y))dy − g(H , I (y)) = 0,

β(x)
[∫ 1

0 f (y, H , I (y))dy + g(H , I (y))
]

+ ∫ 1
0 γ (y, x)I (y)dy − δ(x)I (x) − α(x)I (x) = 0,

(16)

where f (y, H , I (y)) = (1 − ε(y))k1H I (y) and g(H , I (y)) = (1−ξ)k2H
d

∫ 1
0 η(y)I

(y)dy. Define

fn(y, H , I ) = f (y, H ,min
{
I , n

}
), gn(H , I ) = g(H ,min

{
I , n

}
), n ∈ N+,
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and consider the following approximating system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ − cH − ∫ 1
0 fn(y, H , I (y))dy − gn(H , I (y)) = 0,

β(x)
[∫ 1

0 fn(y, H , I (y))dy + gn(H , I (y))
]

+ ∫ 1
0 γ (y, x)min

{
I (y), n

}
dy − δ(x)I (x) − α(x)I (x)

+εn[α(x) + δ(x)] = 0,

(17)

where
{
εn
}

n is a decreasing sequence with εn → 0 as n → +∞.
To simplify (17), we define jn : R+ × C+([0, 1]) → R such that

jn(H , I (y)) = λ − cH −
∫ 1

0
fn(y, H , I (y))dy − gn(H , I (y)).

Since jn(0, I (y)) = λ > 0, jn(H0 + 1, I (y)) < 0 and

d jn(H , I (y))

dH
= − c −

∫ 1

0

fn(y, H , I (y))

dH
dy − gn(H , I (y))

dH

= − c −
∫ 1

0
(1 − ε(y))k1 min

{
I (y), n

}
dy

− (1 − ξ)k2
d

∫ 1

0
η(y)min

{
I (y), n

}
dy

< 0,

there exists a unique H̆n such that jn(H̆n, I (y)) = 0. Furthermore, for all I (y) ∈
C+([0, 1]), H̆n ≤ H0. Hence, (17) can be rewritten as

β(x)

[∫ 1

0
fn(y, H̆n, I (y))dy + gn(H̆n, I (y))

]

+
∫ 1

0
γ (y, x)min

{
I (y), n

}
dy − δ(x)I (x) − α(x)I (x)

+ εn [α(x) + δ(x)] = 0,

(18)

which suggests that we consider the following operator Fn

Fn[I ] =β(x)
∫ 1
0 fn(y, H̆n, I (y))dy

α(x) + δ(x)
+ β(x)gn(H̆n, I (y))

α(x) + δ(x)

+
∫ 1
0 γ (y, x)min

{
I (y), n

}
dy

α(x) + δ(x)
+ εn,

I (y) ∈ C+([0, 1]).
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Obviously, Fn is well-defined, continuous and compact. Notice that

Fn[I ] ≤β(x)
∫ 1
0 fn(y, H0, n)dy

α(x) + δ(x)
+ β(x)gn(H0, n)

α(x) + δ(x)

+ n
∫ 1
0 γ (y, x)dy

α(x) + δ(x)
+ εn, I (y) ∈ C+([0, 1]).

The inequality rn � 1 implies that Fn maps Cn into itself, where Cn = {
I (y) ∈

C+([0, 1]) : sup[0,1] I (y) ≤ rn
}
. AsCn is closed and convex, it follows fromSchauder

fixed point theorem that there exists some In(y) ∈ Cn such that Fn[In(y)] = In(y).
Suppose Hn is solution of jn(H , In(y)) = 0, that is, (Hn, In(y))T satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ − cHn − ∫ 1
0 fn(y, Hn, In(y))dy − gn(Hn, In(y)) = 0,

β(x)
[∫ 1

0 fn(y, Hn, In(y))dy + gn(Hn, In(y))
]

+ ∫ 1
0 γ (y, x)min

{
In(y), n

}
dy

−δ(x)In(x)
−α(x)In(x) + εn[α(x) + δ(x)] = 0.

(19)
Integrating the second equation of (19) over [0, 1] and adding the resulting equation
to the first equation of (19), we have that

λ − cHn +
∫ 1

0
δ(x)min

{
In(x), n

}
dx −

∫ 1

0
δ(x)In(x)dx −

∫ 1

0
α(x)In(x)dx

+ εn

∫ 1

0
[α(x) + δ(x)]dx = 0,

where assumption (A2) and the balance condition
∫ 1
0 γ (x, y)dy = δ(x) have been

used. Because
∫ 1
0 δ(x)min

{
In(x), n

}
dx ≤ ∫ 1

0 δ(x)In(x)dx , we have

∫ 1

0
α(x)In(x)dx ≤ λ − cHn + εn

∫ 1

0
[α(x) + δ(x)]dx

≤ λ + ε1

∫ 1

0
[α(x) + δ(x)]dx .

Thus,
{ ∫ 1

0 In(x)dx
}

n is bounded. This, together with equation Fn[In(x)] = In(x),
implies that

{
In(x)

}

n is bounded in C+([0, 1]). According to Fn[In(x)] = In(x),
we also have

{
In(x)

}

n is equi-continuous, which shows that
{
In(x)

}

n is compact
in C+([0, 1]). Therefore, there exists a sequence (Hn, In(x))T ∈ R+ × C+([0, 1])
and (H∗, I ∗(x))T ∈ R+ × C+([0, 1]) such that (Hn, In(x))T → (H∗, I ∗(x))T as
n → +∞. Taking limit in (19), we conclude that (H∗, I ∗(x))T is a solution of (16).
Let V ∗ = 1

d

∫ 1
0 η(x)I ∗(x)dx . E∗ is a equilibrium of (1).

The result that I ∗(x) 	= 0 follows from the similar arguments in page 3784 of
Thieme (2011). Therefore, it is omitted here. �
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Appendix B: Uniform persistence when R0 > 1

We first prove the strict positivity of solutions.

Theorem 6 When R0 > 1, let (H(t), I (t, x), V (t))T be the unique solution of (1)
with initial value (H0, I0(·), V0)T ∈ X\{(H0, 0, 0)T

}
. Then we have I (t, x) > 0 and

V (t) > 0 for all t > 0 and x ∈ [0, 1].
Proof When I0(·) 	= 0, we suppose that R(t, x) is the unique solution for

{
Rt (t, x) = ∫ 1

0 γ (y, x)R(t, y)dy − δ(x)R(t, x) − α(x)R(t, x),
R(0, x) = I0(x).

It follows from the comparison principle that I (t, x) ≥ R(t, x) for all t > 0 and
x ∈ [0, 1]. Using a similar argument as in the proof of proposition 2.2 of Shen and
Zhang (2010), we can show that R(t, x) > 0. Thus, I (t, x) > 0 for all t > 0 and
x ∈ [0, 1]. From this, we obtain V (t) > 0 for t > 0.

When V0 	= 0, in view of I (t, x) ≥ 0 for t > 0 and x ∈ [0, 1], we deduce from the
third equation in (1) that V (t) > 0 for t > 0. Using system (1) and H(t) > 0, it can
be demonstrated that I (t, x) 	= 0 for t > 0. Next, for any t1 > 0, let R(t, x; t1) be the
unique solution of

{
Rt (t, x; t1) = ∫ 1

0 γ (y, x)R(t, y; t1)dy − δ(x)R(t, x; t1) − α(x)R(t, x; t1),
R(t0, x; t1) = I0(t1, x).

By applying similar approach presented in the above case, we obtain that R(t, x) > 0
for t > t1 and x ∈ [0, 1]. Because t1 is arbitrary, we have I (t, x) > 0 for t > 0 and
x ∈ [0, 1]. This completes the proof. �

We have the following result about the weak uniform persistence.

Theorem 7 If R0 > 1, then there exists a constant ε1 > 0 such that any solution
(H(t), I (t, x), V (t))T of (1) with initial value (H0, I0(x), V0)T ∈ X\{(H0, 0, 0)T

}

satisfies

lim sup
t→+∞

max
{

sup
x∈[0,1]

I (t, x), V (t)
} ≥ ε1.

Proof Suppose the contrary that the disease dies out, that is, for any υ > 0, there exists
(H0υ, I0υ(x), V0υ)T ∈ X\{(H0, 0, 0)T

}
such that the corresponding solution

(Hυ(t), Iυ(t, x), Vυ(t))T of (1) satisfies

lim sup
t→+∞

max
{

sup
x∈[0,1]

Iυ(t, x), Vυ(t)
}

< υ.

Using Theorem 6, we can assume that

0 < Iυ(t, x) < υ, 0 < Vυ(t) < υ, t > 0, x ∈ [0, 1]. (20)
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Because H ′
υ(t) ≤ λ − cHυ(t), there exists a sufficiently small number ε2 such

that Hυ(t) ≤ H0 + ε2 for all sufficiently large t . Replacing (H0υ, I0υ(x), V0υ)T with
(Hυ(tυ), Iυ(tυ, x), Vυ(tυ))T and choosing tυ to be further large, we can assume that
Hυ(t) ≤ H0 + ε2 for all t ≥ 0. From the first equation in (1), it follows that

H ′
υ(t) ≥ λ − cHυ(t) − μ(υ),

where μ(υ) = ∫ 1
0 (1 − ε(y))k1(H0 + ε2)υdy + (1 − ξ)k2(H0 + ε2)υ. For equation

Ĥ ′(t) = λ − cĤ(t) − μ(υ),

it has a unique equilibrium H0 − μ(υ)
c attracting all positive solutions. Using compar-

ison principle and choosing tυ to be further large, we have Hυ(t) ≥ H0 − μ(υ)
c for all

t ≥ 0.
It is easy to check that

⎧
⎪⎨

⎪⎩

∂t Iυ(t, x) ≥ β(x)
[∫ 1

0 (1 − ε(y))k1(H
0 − μ(υ)

c )Iυ(t, y)dy + (1 − ξ)k2(H
0 − μ(υ)

c )Vυ(t)
]

+ ∫ 1
0 γ (y, x)Iυ(t, y)dy − α(x)Iυ(t, x) − δ(x)Iυ(t, x),

V̇υ(t) = ∫ 1
0 η(y)Iυ(t, y)dy − dVυ(t).

(21)

Define the following operators Lυ and Lυ on C+([0, 1]) × R+ and C+([0, 1]),
respectively,

Lυ

(
I
V

)

=
⎛

⎜
⎝

β(x)
[∫ 1

0 (1 − ε(y))k1(H
0 − μ(υ)

c )I (y)dy + (1 − ξ)k2(H
0 − μ(υ)

c )V (t)
]

+ ∫ 1
0 γ (y, x)I (y)dy − α(x)I (x) − δ(x)I (x)

∫ 1
0 η(y)I (y)dy − dV

⎞

⎟
⎠ ,

and

Lυ(I ) = β(x)

α(x) + δ(x)

∫ 1

0
(1 − ε(y))k1(H

0 − μ(υ)

c
)I (y)dy +

∫ 1
0 γ (y, x)I (y)dy

α(x) + δ(x)

+ β(x)(1 − ξ)k2(H0 − μ(υ)
c )

d(α(x) + δ(x))

∫ 1

0
η(y)I (y)dy.

Because R0 = ρ(L) > 1, we can choose a small ε3 such that ρ(Lε3) > 1. By Theorem
2, we see that s(Lε3) > 0. Moreover, s(Lε3) is an isolated and simple eigenvalue of
Lε3 with eigenfunction (ϕ3, θ3)

T ∈ C++([0, 1]) × R++.
Let

{
eLε3 t

}

t≥0 be the semigroup on C+([0, 1]) × R+ generated by Lε3 . For any
ε3 > 0, we can choose a corresponding ξ3 such that ξ3ϕ3 ≤ I0ε3 and ξ3θ3 ≤ V0ε3 .
Using these inequalities, we have

eLε3 t (I0ε3 , V0ε3)
T ≥ eLε3 tξ3(ϕ3, θ3)

T = es(Lε3 )tξ3(ϕ3, θ3)
T , t ≥ 0,
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which means that ‖eLε3 t (I0ε3 , V0ε3)
T ‖C+([0,1])×R+ → +∞ as t → +∞. Utilizing

the comparison principle, we obtain from (21) that

‖(Iε3(t, x), Vε3(t))‖C+([0,1])×R+

≥ ‖eLε3 t (I0ε3, V0ε3)
T ‖C+([0,1])×R+ → +∞ as t → +∞.

This contradicts (20). Hence the proof of Theorem 7 is completed. �
Lastly, we prove that system (1) has a global attractor Y . To this end, we need to

show the bounded dissipativity and asymptotic compactness of
{
φt
}

t≥0.

Theorem 8 The semi-flow
{
φt
}

t≥0 is bounded dissipative and asymptotically compact.

Proof Due to the global well-posedness of (1), for any bounded subset N ⊂ X, there
exist t∗(N ) > 0 and K > 0 such that

sup
(H0,I0(x),V0)T ∈N

[H(t) + ‖I (t, x)‖L1+[0,1] + V (t)] ≤ K , t ≥ t∗.

Thus, for any x ∈ [0, 1] and t ≥ t∗

It (t, x) =β(x)

[∫ 1

0
(1 − ε(y))k1H(t)I (t, y)dy + (1 − ξ)k2H(t)V (t)

]

+
∫ 1

0
γ (y, x)I (t, y)dy

− [δ(x) + α(x)]I (t, x)

≤ sup
[0,1]

β(x)

[∫ 1

0
(1 − ε(y))k1H(t)I (t, y)dy + (1 − ξ)k2H(t)V (t)

]

+ sup
[0,1]×[0,1]

γ

∫ 1

0
I (t, y)dy

− inf[0,1][α(x) + δ(x)]I (t, x)
≤Ǩ − ǎ I (t, x),

where

Ǩ = K

{

sup
[0,1]

β(x)

[

sup
(y,H)∈[0,1]×[0,K ]

(1 − ε(y))k1H + sup
H∈[0,K ]

(1 − ξ)k2H

]

+ sup
[0,1]×[0,1]

γ

}

and ǎ = inf [0,1][α(x) + δ(x)]. Therefore, we have that

I (t, x) ≤ e−ǎ(t−t∗) I (t∗, x) + Ǩ

ǎ
, x ∈ [0, 1], t ≥ t∗.
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Because sup(H0,I0(x),V0)T ∈N ‖I (t∗, x)‖C([0,1] < +∞, there exists some t(N ) �
t∗(N ) such that ‖I (t, x)‖C([0,1] ≤ Ǩ

ǎ + 1 for all t ≥ t∗. Let N = {
(H , I , V ) ∈

X : H + ‖I (t, x)‖C([0,1]) + V ≤ K + Ǩ
ǎ + 1

}
, we have φt N ⊂ N for all t ≥ t∗. That

is, the semi-flow
{
φt
}

t≥0 is bounded dissipative.

In the following, we prove the asymptotic compactness of
{
φt
}

t≥0. Because of the

bounded dissipativity of
{
φt
}

t≥0, we only need to show that for any bounded sequence
{
kn
}

n ⊂ X and any time sequence
{
tn
}

n with tn → +∞ as n → +∞, the sequence
{
φtn kn

}

n has a converging subsequence in X.
Let

{
(Hn

0 , I n0 (x), V n
0 )T

}

n be a bounded sequence inX and the sequence
{
tn
}

n ∈ R+
satisfy tn → +∞ as n → +∞. Denote the unique solution of (1) with initial value
(Hn

0 , I n0 (x), V n
0 )T by (Hn(t), I n(t, x), V n(t))T , namely,

φt (H
n
0 , I n0 (x), V n

0 )T = (Hn(t), I n(t, x), V n(t))T , t ≥ 0.

In particular,

φtn (H
n
0 , I n0 (x), V n

0 )T = (Hn(tn), I
n(tn, x), V

n(tn))
T .

Due to the bounded dissipativity of
{
φt
}

t≥0 and the boundness of
{
(Hn

0 , I n0 (x),

V n
0 )T

}

n ,

⋃

t≥0

⋃

n

(Hn(t), I n(t, x), V n(t))T =
⋃

t≥0

⋃

n

φt (H
n
0 , I n0 (x), V n

0 )T

is bounded in X. In particular,
{
Hn(tn)

}

n and
{
V n(tn)

}

n are bounded. We only need
to show the equi-continuity of

{
I n(tn, x)

}

n on the basis of the Arzelà-Ascoli theorem.
Define l(x) = α(x) + δ(x). Using (1), we have

d

dt
[I n(tn + t, x) − I n(tn + t, s)]2

= 2[I n(tn + t, x) − I n(tn + t, s)][I nt (tn + t, x) − I nt (tn + t, s)]
= 2[I n(tn + t, x) − I n(tn + t, s)]

{

− [
l(x)I n(tn + t, x) − l(s)I n(tn + t, s)

]

+ [β(x) − β(s)]

·
[∫ 1

0
(1 − ε(y))k1H

n(tn + t)I n(tn + t, y)dy + (1 − ξ)k2H
n(tn + t)V n(tn + t)

]

+
∫ 1

0

[
γ (y, x) − γ (y, s)

]
I n(tn + t, y)dy

}

.
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Notice that

− [
l(x)I n(tn + t, x) − l(s)I n(tn + t, s)

]

= −l(x)
[
I n(tn + t, x) − I n(tn + t, s)

]− [l(x) − l(s)] I n(tn + t, s)

≤ −l(x)
[
I n(tn + t, x) − I n(tn + t, s)

]+ Q1|l(x) − l(s)|,

where Q1 = supn supt≥−tn ‖I n(tn + t, ·)‖C+([0,1]) < +∞, and that

[β(x) − β(s)]
[∫ 1

0
(1 − ε(y))k1H

n(tn + t)I n(tn + t, y)dy

+(1 − ξ)k2H
n(tn + t)V n(tn + t)

]

≤ Q2|β(x) − β(s)|,

where

Q2 = sup
n

sup
t≥−tn

[∫ 1

0
(1 − ε(y))k1H

n(tn + t)I n(tn + t, y)dy

+(1 − ξ)k2H
n(tn + t)V n(tn + t)

]
.

Moreover, we have

∫ 1

0

[
γ (y, x) − γ (y, s)

]
I n(tn + t, y)dy ≤ Q1

∫ 1

0
|γ (y, x) − γ (y, s)|dy.

Let Q3 = max
{
Q1, Q2

}
andm(x, s) = |l(x)− l(s)|+|β(x)−β(s)|+∫ 1

0 |γ (y, x)−
γ (y, s)|dy. We find

d

dt
[I n(tn + t, x) − I n(tn + t, s)]2

≤ −l(x)
[
I n(tn + t, x) − I n(tn + t, s)

]2 + 2Q3|I n(tn + t, x)

− I n(tn + t, s)|m(x, s)

≤ − inf [0,1] l
2

[
I n(tn + t, x) − I n(tn + t, s)

]2 + Q4m
2(x, s)

for some Q4 > 0,wherewe usedYoung’s inequality.We integrate the above inequality
from −tn to 0, and obtain

[
I n(tn, x) − I n(tn, s)

]2 ≤ e− inf[0,1] l
2 tn [I n(0, x) − I n(0, s)]2

+
∫ 0

−tn
e
inf[0,1] l

2 hQ4m
2(x, s)dh

≤ e− inf[0,1] l
2 tn [I n0 (x) − I n0 (s)]2 + 2Q4

inf [0,1] l
m2(x, s).
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It follows that
{
I n(tn, ·)

}

n is equi-continuous. This completes the proof. �
Nowwe can establish the uniformpersistence of (1), which is stated in the following

theorem.

Theorem 9 Assuming that R0 > 1, there exists a constant ε∗ > 0 such that any
solution (H(t), I (t, x), V (t))T of system (1) with initial value (H0, I0(x), V0)T ∈
X\{(H0, 0, 0)T

}
satisfies

lim inf
t→+∞ H(t) ≥ ε∗, lim inf

t→+∞ inf
x∈[0,1] I (t, x) ≥ ε∗, and lim inf

t→+∞ V (t) ≥ ε∗.

Proof Because system (1) is bounded dissipative, there exists constant b > 0 such that
H ′(t) ≥ λ − cH(t) − bH(t) for all large t . Therefore, we have lim supt→+∞ H(t) ≥
lim inf t→+∞ H(t) ≥ λ

b+c .
Next, we need to prove that there exists constant ε∗ such that

lim inf
t→+∞ min

{
inf

x∈[0,1] I (t, x), V (t)
}

> ε∗. (22)

Define

ρ̌((H , I , V )T ) = max
{

sup
x∈[0,1]

I (x), V
}
,

and

ρ̃((H , I , V )T ) = min
{

inf
x∈[0,1] I (x), V

}
,

for (H , I , V )T ∈ X. Obviously, the functions ρ̌ and ρ̃ are continuous. From Theo-
rem 6, ρ̌((H0, I0(x), V0)T ) > 0 implies ρ̌(φt (H0, I0(x), V0)T ) = max

{
supx∈[0,1]

I (t, x), V (t)
}

> 0 for all t ≥ 0. Theorem 7 indicates that the semi-flow
{
φt
}

t≥0 is
uniformly weakly ρ̌ − persistent . From Theorem 8, we know that the semi-flow has
a global attractor, which means that the compactness assumption of Thieme (2003)
(Theorem A.34) is satisfied.

Let (H̃(t), Ĩ (t, x), Ṽ (t))T be a bounded total orbit of
{
φt
}

t≥0 and ρ̌((H̃(t), Ĩ (t, x),

Ṽ (t))T ) > 0 for all t ∈ R. In this case, ρ̌((H̃(t0), Ĩ (t0, x), Ṽ (t0))T ) =
max

{
supx∈[0,1] Ĩ (t0, x), Ṽ (t0)

}
> 0 for some t0 < 0. Applying Theorem 6 again,

the equation ρ̃((H̃(0), Ĩ (0, x), Ṽ (0))T ) = min
{
infx∈[0,1] Ĩ (0, x), Ṽ (0)

}
> 0 is

ensured. The above conditions meet the requirements of Theorem A.34 in Thieme
(2003). Thus, inequality (22) is satisfied. This completes the proof of Theorem 9. �
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Appendix C: Calculation of the derivative ofG(t)

The derivative of G(t) along the solution of model (1) is

dG

dt
=
∫ 1

0
w(x)

[

dβ(x)(1 − H∗

H
)
dH

dt

]

dx +
∫ 1

0
w(x)

[

d(1 − I ∗(x)
I (x)

)
∂ I (x)

∂t

]

dx

+
∫ 1

0
w(x)

[

β(x)(1 − ξ)k2H
∗(1 − V ∗

V
)
dV

dt

]

dx

=
∫ 1

0
w(x)

[

dβ(x)(1 − H∗

H
)(λ − cH

−
∫ 1

0
(1 − ε(y))k1H I (y)dy − (1 − ξ)k2HV )

]

dx

+
∫ 1

0
w(x)

[

d(1 − I ∗(x)
I (x)

)

(

β(x)
[ ∫ 1

0
(1 − ε(y))k1H I (y)dy + (1 − ξ)k2HV

]

+
∫ 1

0
γ (y, x)I (y)dy − δ(x)I (x) − α(x)I (x)

)]

dx

+
∫ 1

0
w(x)

[

β(x)(1 − ξ)k2H
∗(1

− V ∗

V
)(

∫ 1

0
η(y)I (y)dy − dV )

]

dx .

It follows from (15) that

dG

dt
=
∫ 1

0
w(x)

[

dβ(x)(1 − H∗

H
)(cH∗ − cH)

]

dx

+
∫ 1

0
w(x)dβ(x)(1 − ξ)k2H

∗V ∗
[

2 − H∗

H
+ V

V ∗

− I ∗(x)
I (x)

HV

H∗V ∗ − I (x)

I ∗(x)

]

dx +
∫ 1

0
w(x)dβ(x)

∫ 1

0
(1 − ε(y))k1H

∗ I ∗(y)
[

2 − H∗

H
+ I (y)

I ∗(y)

− I (x)

I ∗(x)
− I ∗(x)

I (x)

H I (y)

H∗ I ∗(y)

]

dydx

+
∫ 1

0
w(x)d

∫ 1

0
γ (y, x)I ∗(y)

[

1 + I (y)

I ∗(y)
− I (x)

I ∗(x)
− I ∗(x)

I (x)

· I (y)

I ∗(y)

]

dydx +
∫ 1

0
w(x)β(x)(1 − ξ)k2H

∗
∫ 1

0
η(y)I ∗(y)

[

1 + I (y)

I ∗(y)
− V ∗

V

I (y)

I ∗(y)
− V

V ∗

]

dydx . (23)
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Using κ to group terms, (23) can be rewritten as

dG

dt
= −

∫ 1

0
w(x)

[

dβ(x)(1 − H∗

H
)(cH − cH∗)

]

dx

−
∫ 1

0
w(x)dβ(x)(1 − ξ)k2H

∗V ∗
[

κ(
H∗

H
)

+ κ(
I ∗(x)
I (x)

HV

H∗V ∗ )

]

dx −
∫ 1

0
w(x)dβ(x)

∫ 1

0
(1 − ε(y))k1H

∗ I ∗(y)
[

κ(
H∗

H
) + κ(

I ∗(x)
I (x)

· H I (y)

H∗ I ∗(y)
)

]

dydx −
∫ 1

0
w(x)d

∫ 1

0
γ (y, x)I ∗(y)κ(

I ∗(x)
I (x)

I (y)

I ∗(y)
)dydx

−
∫ 1

0
w(x)β(x)

· (1 − ξ)k2H
∗
∫ 1

0
η(y)I ∗(y)κ(

V ∗

V

I (y)

I ∗(y)
)dydx

+
∫ 1

0
w(x)dβ(x)(1 − ξ)k2H

∗V ∗

·
[

− ln
H∗

H
+ V

V ∗ − ln
I ∗(x)
I (x)

HV

H∗V ∗ − I (x)

I ∗(x)

]

dx

+
∫ 1

0
w(x)dβ(x)

∫ 1

0
(1 − ε(y))k1

· H∗ I ∗(y)
[

− ln
H∗

H
+ I (y)

I ∗(y)
− I (x)

I ∗(x)
− ln

I ∗(x)
I (x)

H I (y)

H∗ I ∗(y)

]

dydx

+
∫ 1

0
w(x)d

∫ 1

0
γ (y, x)I ∗(y)

[
I (y)

I ∗(y)
− ln

I ∗(x)
I (x)

I (y)

I ∗(y)
− I (x)

I ∗(x)

]

dydx

+
∫ 1

0
w(x)β(x)(1 − ξ)k2H

∗

·
∫ 1

0
η(y)I ∗(y)

[
I (y)

I ∗(y)
− ln

V ∗

V

I (y)

I ∗(y)
− V

V ∗

]

dydx . (24)

After collecting and rearranging terms on the right-hand side of (24), we obtain

dG

dt
= −

∫ 1

0
w(x)

[

dβ(x)(1 − H∗

H
)(cH − cH∗)

]

dx

−
∫ 1

0
w(x)dβ(x)(1 − ξ)k2H

∗V ∗
[

κ(
H∗

H
)
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+ κ(
I ∗(x)
I (x)

HV

H∗V ∗ )

]

dx −
∫ 1

0
w(x)dβ(x)

∫ 1

0
(1 − ε(y))k1H

∗ I ∗(y)
[

κ(
H∗

H
) + κ(

I ∗(x)
I (x)

· H I (y)

H∗ I ∗(y)
)

]

dydx

−
∫ 1

0
w(x)d

∫ 1

0
γ (y, x)I ∗(y)κ(

I ∗(x)
I (x)

I (y)

I ∗(y)
)dydx −

∫ 1

0
w(x)β(x)

· (1 − ξ)k2H
∗
∫ 1

0
η(y)I ∗(y)κ(

V ∗

V

I (y)

I ∗(y)
)dydx

+
∫ 1

0
w(x)dβ(x)(1 − ξ)k2H

∗V ∗
[
V

V ∗

− ln
V

V ∗

]

dx +
∫ 1

0
w(x)dβ(x)(1 − ξ)k2H

∗V ∗
[

ln
I (x)

I ∗(x)
− I (x)

I ∗(x)

]

dx

+
∫ 1

0
w(x)β(x)d

·
∫ 1

0
(1 − ε(y))k1H

∗ I ∗(y)
[

ln
I (x)

I ∗(x)
− I (x)

I ∗(x)
− ln

I (y)

I ∗(y)
+ I (y)

I ∗(y)

]

dydx

+
∫ 1

0
w(x)d

∫ 1

0
I ∗(y)

· γ (y, x)

[
I (y)

I ∗(y)
− ln

I (y)

I ∗(y)
+ ln

I (x)

I ∗(x)
− I (x)

I ∗(x)

]

dydx

+
∫ 1

0
w(x)β(x)(1 − ξ)k2H

∗
∫ 1

0
I ∗(y)

· η(y)

[
I (y)

I ∗(y)
− ln

I (y)

I ∗(y)

]

dydx +
∫ 1

0
w(x)β(x)(1 − ξ)k2H

∗
∫ 1

0
η(y)I ∗(y)

[

ln
V

V ∗ − V

V ∗

]

dydx .

(25)

Recalling dV ∗ = ∫ 1
0 η(y)I ∗(y)dy, the seventh and eleventh terms on the right-hand

side of (25) can be rewritten as

∫ 1

0
w(x)β(x)(1 − ξ)k2H

∗
∫ 1

0
η(y)I ∗(y)

[

ln
I (x)

I ∗(x)
− I (x)

I ∗(x)

]

dydx,

∫ 1

0
w(x)β(x)(1 − ξ)k2H

∗dV ∗
[

ln
V

V ∗ − V

V ∗

]

dx .

(26)
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Substituting (26) into (25), we have

dG

dt
= −

∫ 1

0
w(x)

[

dβ(x)(1 − H∗

H
)(cH − cH∗)

]

dx

−
∫ 1

0
w(x)dβ(x)(1 − ξ)k2H

∗V ∗
[

κ(
H∗

H
)

+ κ(
I ∗(x)
I (x)

HV

H∗V ∗ )

]

dx −
∫ 1

0
w(x)dβ(x)

∫ 1

0
(1 − ε(y))k1H

∗ I ∗(y)
[

κ(
H∗

H
) + κ(

H I (y)

H∗ I ∗(y)

· I
∗(x)
I (x)

)

]

dydx −
∫ 1

0
w(x)d

∫ 1

0
γ (y, x)I ∗(y)κ(

I ∗(x)
I (x)

I (y)

I ∗(y)
)dydx

−
∫ 1

0
w(x)β(x)(1 − ξ)k2H

∗

·
∫ 1

0
η(y)I ∗(y)κ(

V ∗

V

I (y)

I ∗(y)
)dydx

+
∫ 1

0
w(x)

∫ 1

0

[

β(x)k2(1 − ξ)H∗η(y)I ∗(y) + dγ (y, x)I ∗(y)

+ dβ(x)(1 − ε(y))k1H
∗ I ∗(y)

]

×
[

ln
I (x)

I ∗(x)
− I (x)

I ∗(x)
− ln

I (y)

I ∗(y)
+ I (y)

I ∗(y)

]

dydx .

(27)
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