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Abstract: In recent years, metal organic frameworks (MOFs) have been widely developed as vehicles
for the effective delivery of drugs to tumor tissues. Due to the high loading capacity and excellent
biocompatibility of MOFs, they provide an unprecedented opportunity for the treatment of cancer.
However, drugs which are commonly used to treat cancer often cause side effects in normal tissue
accumulation. Therefore, the strategy of drug targeting delivery based on MOFs has excellent
research significance. Here, we introduce several intelligent targeted drug delivery systems based on
MOFs and their characteristics as drug-loading systems, and the challenges of MOFs are discussed.
This article covers the following types of MOFs: Isoreticular Metal Organic Frameworks (IRMOFs),
Materials of Institute Lavoisier (MILs), Zeolitic Imidazolate Frameworks (ZIFs), University of Oslo
(UiOs), and MOFs-based core-shell structures. Generally, MOFs can be reasonably controlled at
the nanometer size to effectively achieve passive targeting. In addition, different ligands can be
modified on MOFs for active or physicochemical targeting. On the one hand, the targeting strategy
can improve the concentration of the drugs at the tumor site to improve the efficacy, on the other
hand, it can avoid the release of the drugs in normal tissues to improve safety. Despite the challenges
of clinical application of MOFs, MOFs have a number of advantages as a kind of smart delivery
vehicle, which offer possibilities for clinical applications.

Keywords: metal organic framework; targeting drug delivery system; nanoparticle

1. Introduction

Cancer is one of the major diseases to human health and the morbidity increased gradually.
Although treatments of cancer were being improved and survival rates increased in recent years,
the heterogeneity of cancer still demands further therapeutic strategies [1]. The most common cancer
treatments are restricted to chemotherapy, radiation, and surgery, involving a lot of side effects caused
by a non-specific tissue distribution of anticancer agents, insufficient drug concentrations at the cancer
and unmanageable toxicity. In recent years, a new class of cancer treatment methods, immunotherapy,
has a higher anti-cancer effect, but it is more toxic and only effective for some patients [2]. Cancer
targeting is one of the newly appeared promising biotherapies of cancer. The system of targeting
anticancer drug to the tumor tissues could improve local drug concentration, enhance the curative
effects, and reduce the side effects remarkably. To selectively target drugs to tumor tissues, a technique
called targeting drug delivery system (TDDS) is used [3]. TDDS plays a major role in the treatment of
cancer. It uses a variety of vehicles, such as liposomes, microspheres, nanoparticles, microemulsion,
albumin, lipoproteins, emulsion, and polymer conjugates. Its development, to a great extent, depends
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on the design of nanocarrier materials. Chitosan, hyaluronic acid (HA), polyethylene glycol (PEG),
lipoprotein, human serum albumin (HSA), graphene, mesoporous silica nanoparticles (MSNs) and
metal organic frameworks (MOFs) are commonly used [4,5]. With the development of polymers and
materials, drug nanocarrier materials have received much attention.

Metal organic frameworks (MOFs) are a class of hybrid materials formed by the self-assembly
of metal ions or clusters and polydentate bridging ligands typically under mild conditions [6].
Compared with the traditional porous material, MOFs have many advantages: numerous categories
(at present, there are more than five thousand kinds of materials, and the quantity that can be
synthesized in theory is almost infinite) [7], multiple functions (due to virtually limitless combinations
of metals and ligands, the physicochemical properties of MOFs can be judiciously tuned for specific
applications), the porosity and specific surface area are large, the crystal density is small, controllable
pore size, good biocompatibility, and bionic catalytic properties [8]. MOFs have shown promise for a
number of diverse applications including gas storage, catalysis, nonlinear optics, separations, sensing,
and light-harvesting.

MOFs can be regarded as potential drug delivery nanovehicles because of the abilities of their
adjustable pore size, high surface area, and the possibility to add functional groups to the frameworks.
MOFs can carry huge amounts of drugs, therefore biomedical applications of MOFs have focused on
their use as anticancer drug delivery vehicles. Since this research field is rapidly expanding, more
publications are reported about complex nanotheranostics. We were motivated to give an over-view of
such modern attractive nanosystems, along with an outline of the research field in general. In this
article, the recent developments on MOFs as targeting drug delivery systems which are able to release
therapeutic compounds once they reached the diseased tissues and cells are reviewed.

2. Synthesis, Functionalization, and Biomedical Applications of MOFs

2.1. MOFs Synthesis and Functionalization

So far, many synthetic methods of MOFs have been reported, such as the solvothermal method,
rapid precipitation method, one-pot synthesis, reverse microemulsion, a rapid microwave-assisted
method, ultrasonic synthesis, and so on. The synthesis methods and drug loading characteristics
of different MOFs are listed in Table 1. Several types of MOFs are discussed in this article. Table 2
categorizes MOFs and lists representative MOFs.

Usually, metal organic frameworks are synthesized by solvothermal method, which is one of
the most classical methods for the synthesis of MOFs. For instance, Yang and coworkers used
solvothermal method to synthesize IRMOF-3 [9]. The folic acid (FA) was then modified on IRMOF-3 by
post-synthesis modification. Similarly, Angshuman et al. utilized a mixed solvent solvothermal method
to get Fe3O4@IRMOF-3 [10]. The material was placed in a mixed solvent of DMF and pure ethanol
containing PVP, and then heated at 100 ◦C for 4 h to obtain a dark brown nano materials. Particle size
of synthetic IRMOF-3 was less than 100nm, and the particle size of Fe3O4@IRMOF-3 was about 200
nm. The hydrophobic nano-platform encapsulated paclitaxel, which had a drug loading of 12.32%
and released 65% under physiological conditions for 4 days. In addition, the brown N3-UiO-66-NH2

was synthesized by Nian using solvothermal method [11]. These nanocrystals were consistent in
size and had good drug loading properties. However, sometimes nanoparticles synthesized by
solvothermal method may have a large particle size, which is not conducive to targeted administration
by post-synthesis modification. Therefore, we need to properly control the ratio of metal ions to
organic ligands and the conditions under which the reaction is made to control the size of the particles,
thereby promoting the functionalization of the drug-loaded particles. In the end, we still need to use
some characterization methods (particle size distribution, scanning electron microscope, transmission
electron microscope) to evaluate the dispersity of the nanoparticles.

The nanoparticles with smaller particle size can be synthesized by the rapid precipitation method,
but the nanoparticles obtained by the method are usually cluster-like, have no fixed crystal form,
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and rarely obtain single crystal. Christopher synthesized ZIF-90 with different particle sizes (60–90 nm,
200–300 nm, 100–200 nm) by adding different amines (trioctylamine, tributylamine, trimethylamine)
(Figure 1) [12]. This method can quickly synthesize metal organic framework particles. As the reaction
temperature increases, the particle size also increases gradually. This method can rapidly synthesize
MOF particles, usually constituting a precipitate at the moment of amine addition.
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Figure 1. ZIF-90 nanoparticles (NPs) synthesized in trioctylamine at (A) 0 ◦C, (C) 100 ◦C, and (E)
150 ◦C and particles synthesized at room temperature using (B) trioctylamine, (D) tributylamine,
(F) trimethylamine [12]. Reprinted (adapted) with permission from (Versatile Synthesis and
Fluorescent Labeling of ZIF-90 Nanoparticles for Biomedical Applications). Copyright (2016) American
Chemical Society.

One-pot synthesis method is also widely developed in the preparation of metal organic frameworks.
The most well-known ZIF-8 can be synthesized in this way. Shi prepared CQ@ZIF-8 by one-pot method
with a drug-loading of 18% [13]. The particles were regular octahedral structures with an average
particle size of 250 nm. ZIF-8 is consistent under physiological conditions and is easily degraded
under acidic conditions. These features are beneficial to the targeted transport of the nanoparticles.
Coincidentally, Song also synthesized the photosensitizing target formulation ZnPc@ZIF-8/CTAB
by the same method, with a drug-loading of 29.5% [14]. After the release of the photosensitizer
ZnPc, the intracellular reactive oxygen species increased, thereby producing an anticancer effect. The
one-step synthesis of ZIF-8-based nano drug loading systems is appropriate and can target weak
acidic environments, and it has attracted much attention as a host for delivering both hydrophilic and
hydrophobic drugs. In addition, one-pot synthesis was administered by Wang et al. who obtained the
tumor targeting MOF of pH response and redox response (DOX@TTMOF) [15]. Additionally, Shi and
coworkers developed Ce-MOF by one-step synthesis [16]. They then combined ATP aptamer to the
Ce-MOF modified on the bare gold electrode. ATP aptamer could detect serum ATP in tumor patients
by electrochemical impedance spectroscopy. The precise diagnosis of tumors is the basis of accurate
tumor treatment. In addition, Su et al. obtained UiO-66@AgNCs@Apt@DOX by one-pot encapsulation,
who’s loading efficiency was twice that of two separate processes [17]. All of the above demonstrate
the simplicity and efficiency of one-step synthesis. One-step synthesis has been the choice of most
researchers for the development of drug-loaded MOFs.

However, when a part of the metal organic frameworks was used for drug loading, it is often
requested that the drugs have a strong interaction with the carrier to achieve a high drug loading
capacity. For example, ZIF-8 can be successfully used in one-step synthesis and drug delivery only if
the transported drugs have an acidic group. However, not all effective drugs have acid groups, which
greatly affects the use of ZIF-8 as a drug carrier. Therefore, a strategy is urgently needed to compensate
for this shortcoming. Zhang et al. wanted to load Cytarabine (Ara) with ZIF-8, but because of the
lack of a drug-acting group, it was not possible to achieve high drug loading capacity [18]. Therefore,
they proposed that Cytarabine (Ara) combined with New indocyanine green (IR820) to form a prodrug
together encapsulated in ZIF-8, this strategy greatly increased the drug loading capacity, which suggests
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that we can strengthen affinity between the carriers and the drugs by structural modification or other
methods to increase the drug loading capacity of MOFs.

Other methods are also provided for the synthesis of metal organic frameworks. Zhang and his
group used vigorously stirring in combination with ultrasonic condition to synthesize ZIF-90 [19].
In this way, they synthesized ZIF-90 with a particle size of less than 300 nm to serve as drug carriers.
They used ZIF-90 to load both 5-FU and DOX, which improved the efficacy and overcame the
problem of drug resistance. In addition, this drug delivery system could rely on pH for targeted
drug delivery. A rapid microwave-assisted method was utilized by Jia et al. who synthesized
MB@THA-NMOF-76@cRGD (HTHA = 4,4,4-trifluoro-1-(9-hexylcarbazol-3-yl)-1,3-butanedione,
MB = methylene blue, NMOF = nanoscale metal−organic framework, and cRGD = cyclic ArgGly-Asp
peptide) [20]. This drug loading system has an average particle size of 89 nm and good uniformity.
Through x-ray diffraction, scanning electron microscope, and thermogravimetric analysis, it was
proved that the components of the system were modified. The author also studied its stability and
found that the system is highly resistant to light and acid. The liquid-solid-solution (LSS) method was
reported by Cai who synthesized Fe-soc-MOF to achieve photothermal therapy [21]. The nanosystem
has a particle size of about 100 nanometers, which is much smaller than those synthesized by other
methods. Another unique approach was introduced by Yu et al. who employed a template-directed
synthesis strategy [22]. In brief, this strategy relied on the growth of skeletal and interconnected ZIF-8
crystals on a long and soft filamentous micelle, which was finally removed by extraction to obtain zif-8
hollow nanotubes. This nanotube had an ultra-high drug loading rate of 350% and was effective in
avoiding the reticuloendothelial system (RES), forming a long-acting cycle (about one week). Cao used
a surfactant to assist synthesize ZIF-8 hollow nanospheres and encapsulated 10-HydroxyCamptothecin
(HCPT) for tumor therapy [23]. It provided a new idea for the synthesis of MOFs.

With the in-depth study of MOFs, single nanocarriers often have certain defects, accompanied
by low drug loading, burst release, and so on. The poor biocompatibility of some metal organic
frameworks also limits their clinical application. In recent years, researchers have worked to solve these
problems. In this context, composite nanocarriers have been shown to be better for the treatment of
cancer. For example, MnCo-MOF has strong toxicity and its application in vivo is dangerous. Wang and
colleagues developed a polydopamine hybrid nanogels [24]. The nanosystem could effectively reduce
the toxicity of the MOFs and improve the photothermal conversion efficiency of the photosensitizer.
In vitro and in vivo experiments show that the materials had good biocompatibility and excellent
photothermal effect. This strategy suggests that we can extend it to therapeutic applications of other
MOFs. Other than this, Abhik and coworkers studied the effects of complexes of Fe3O4 nanoparticles
and MOFs on the drug loading and releasing behaviors [25]. They found that the drug loading of the
composite was higher than that of a single nanocarrier. The materials had not burst release behavior,
and the loaded doxorubicin could be released for 25 days. Even in the first few days, Fe3O4@MIL-100
did not have any sudden release behavior. All the above experiments are excellent examples of
MOFs-based composite materials for targeted anti-cancer treatment. This indicates that we can further
develop multifunctional composite materials based on MOFs to conduct anti-cancer research at a
higher level.

2.2. Properties of Metal Organic Frameworks Regarding Drug Delivery Applications

The metal organic frameworks usually have a large specific surface area, a large pore diameter,
good biocompatibility, non-toxic to the human body and easy to be metabolized. Therefore, MOFs are
suitable as carriers for drug delivery. In order to increase the drug loading capacity, control the rate of
drug release, and deliver the drug to the destination accurately, we need to rationally adjust the pore
size, particle size, stability, and other properties of the MOFs. Here, we only briefly introduce the three
basic characteristics of MOFs that need to consider as drug carriers.
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Table 1. Synthesis and functionalization of metal organic frameworks.

Drug Delivery System Synthetic Method Loading Capacity Release Rate Achievement Ref.

DOX
@ZIF-8 One-pot synthesis 20% 95% (pH 5–6,

37 ◦C, 7–9 days) pH-responsive [26]

PEG-FA/(DOX+VER)@ZIF-8 One-pot synthesis

8.9%
(DOX)

32%
(VER)

27.37% (DOX) 76.48% (VER)
(pH 5, 37 ◦C, 24 h)

pH-responsive,
Overcoming multidrug

resistance
[27]

5-FU+DOX
@ZIF-90 Ultrasonic stirring

36.35%
(5-FU)
13.5%
(DOX)

95% (5-FU, 15 h)
91% (DOX, 25 h)

(pH 5, 37 ◦C)

pH-responsive,
Combination therapy [19]

DOX
@ZIF-8 NTs Template-directed synthesis 350%

(drug/mo-fs)
72% (DOX)

(pH 5, 37 ◦C, 50 h)

pH-responsive,
Ultra-high drug loading

and long-acting cycle
[22]

FA/5-FU
@IRMOF-3 Solvothermal method 20.4% 68%

(37 ◦C, 96 h)
pH-responsive,

Active targeting [9]

DOX
@TTMOF One-pot synthesis 14.3%

78%
(10 mM DTT,

pH 7.4, 37 ◦C, 140 h)

pH-responsive,
Redox responsive [15]

PD/M-NMOF AOT microemulsion method 4.3% (MB)
0.69% (dox)

72% (MB)
95% (Dox)

Magnetic-responsive
Light-responsive [28]

PTX/Fe3O4@IRMOF-3 mixed solvent solvothermal
method 12.32% 65%

(pH 7.4, 37 ◦C, 100 h) Magnetic-responsive [10]

mCGP solvothermal method
13.5%

(glucose oxidase and
catalase)

/
Starvation and

Photodynamic Therapy [29]

MB
@THA-NMOF-76

@cRGD

rapid microwave-assisted
method

3 ug/mg
(MB) /

Light-responsive,
Active targeting [20]

Gd-MTX NCP microwave heating 79.1%
(MTX)

100%
(pH 7.4, 37 ◦C

192 h)
Active targeting [30]

Fe-MIL-53-
NH2-FA-5-
FAM/5-FU

a reflux method at
low temperature 23%

the gentle release
for 25 h in pH 7.4
for 20 h in pH 5

Light-responsive,
Magnetic-responsive

Active targeting
[31]

ZIF-8/5-FU
@FA-CHI-

5-FAM
solvothermal method 51%

complete release
(pH 7.4, 37 ◦C,

45 h
pH 5, 37 ◦C, 21 h)

Light-responsive,
pH-responsive,
Active targeting

[32]

FA/5-FU
@MOF-808 stirring-reflux method 38.42% 60–70%

(pH 5, 37 ◦C, 24 h)
pH-responsive,

Active targeting [33]

FA/5-FU@
NH2-UiO-66 stirring-reflux method 30.26% 60–70%

(pH 5, 37 ◦C, 24 h)
pH-responsive,

Active targeting [33]

CoFe2O4@Mn-MOF layer to layer method
75 ± 1.22%

(Encapsu-lation
efficienc-y)

55%
(pH 7.4, 37 ◦C,

20 h)
Magnetic-responsive [34]

BSA/Cu/NQ NP protein-nanoreactorv
method 13.6% / Active targeting [35]

Fe-soc-MOF@PPy The liquid-solid-
solution (LSS) method 15% / Light-responsive [21]

Table 2. The molecular formula of the metal organic frameworks (MOFs) that appear in this article.

Classifications Abbreviations Examples The Molecular Formula Ref

Isoreticular Metal
Organic Frameworks IRMOF-n IRMOF-3 C24H5N3O13Zn4 [9]

Materials of Institute Lavoisier MIL-n NH2-MIL-53
(Fe) C8H6NO5Fe [31]

Zeolitic Imidazolate Frameworks ZIF-n
ZIF-8 C8H10N4Zn [27]

ZIF-90 C4H4N2OZn [12]

University of Oslo UiO-n NH2-UiO-66 C48H30NO32Zr6 [11]

Zhejiang University ZJU-n ZJU-801 C12H4O32Zr6 [36]

2.2.1. The Effect of Pore Size of MOFs on the Drug Loading Capacity

Although the pore size of MOFs is adjustable, its regulation ability is restricted. Generally, a
larger pore size means a higher drug loading capacity. In recent years, some researchers have prepared
hollow MOFs to pursuit higher drug loading capacity and multi-functional targeted drug delivery. For
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example, Gao et al. synthesized hollow ZIF-8, which had a drug loading capacity of 51% and modified
three substances [32]. In addition, we can also modify the pore size of MOFs by changing organic
ligands to improve drug loading capacity. In recent years, there have been few studies in this field,
which provides a new direction for our future research, to study the effects of metal organic framework
nanoparticles with different pore sizes on drug loading performance.

2.2.2. Particle Size Control to Achieve Functional Transfer of MOFs and Improve Biocompatibility

Particle size is another important property of drug-loaded MOFs. The particle size can determine
the targeting ability of the drug delivery system. When the particle size is around 100 nm, the drug
loading system is relatively easy to passively target to cancerous tissues. This phenomenon will be
described in detail later. In order to achieve active or multi-functional targeting, the particle size of
metal organic frameworks should preferably be within 100 nm to avoid clearance by macrophages of
the reticuloendothelial system and liver. Therefore, it is necessary to control the particle size of MOFs.
In a typical example, Duan et al. devoted research to controlling the particle size of AZIF-8 (amorphous
zeolitic imidazolate framework-8) by a simple method and studying the effects of its particle size on
the treatment of tumors [37]. They used nontoxic poly-allylamine hydrochloride (PAH) to precisely
control the size of the AZIF-8 by one-pot synthesis method, which broke the tradition of being unable to
control the MOFs’ particle size precisely and the need for toxic solvents for synthesis and modification.
The addition of PAH could change the nucleation rate of AZIF-8, which affected the particle size of
AZIF-8. The more PAH, the larger the particle size of AZIF-8, but the other physical and chemical
properties were not covered. Through a series of in vitro and in vivo studies, AZIF-8 at 60 nanometers
had the best curative effects with excellent biocompatibility and high tumor uptake capacity.

Gao needed to perform magnetic sensitization, light sensitivity, active targeting, and load
chemotherapeutic drugs at the same time [31]. Thus, they studied the factors influencing the particle
size. They concluded that the lower the concentration of the reactants, the larger the particle size
of Fe-MIL-53-NH2. Additionally, Gao et al. studied the effects of benzoic acid on the particle size
of UIO-66-NH2 and synthesized it by a hydrothermal method [38]. Unlike the above, the lower the
benzoic acid, the smaller the particle size. Therefore, these experiments also reflected the effect of
reactant concentration on the particle size of MOFs. However, these studies only proved the factors
affecting particle size, and there lacked the study of particle size for effectiveness and safety. Some
studies only considered the drug-loading capacity, but ignored the effects of particle size on the
circulation in the body. Even with the highest drug-loading, the drug loading system is rapidly
metabolized and even causes death of model animals after entering the systemic circulation. Therefore,
the therapeutic effects cannot be achieved. Such researches are obviously lacking in value. In recent
years, MOFs-based nanocarriers used for cancer treatment have a large difference in particle size, and
there is a lack of comprehensive evaluation of the particle size in their application. This also provides
direction for our future researches.

2.2.3. Stability of MOFs: Another Property to Consider

Stability is the most basic requirement for the drug-loading systems. In order to improve the
efficacy and reduce the toxicity of anticancer drugs, some intelligent drug-loaded nanosystems have
begun to attract people’s attention. First, these nanoparticles should be stable when stored in vitro to
ensure efficacy and safety. Then these drug-loaded nanosystems in vivo are preferably stable prior to
reaching the target site and responsive to release of the drug at the tumor site. Rachel obtained Zn-MTX
NCP (MTX = methotrexate, NCP = nanoscale coordination polymers) and Zr-MTX NCP materials
using Zn2+ and Zr4+ as metal ions, respectively, using the high-temperature surfactant-assisted method
and the microwave heating method, and found that both were unstable [30]. The reason might be that
the particles would polymerize in the water to break the surface liposome. Finally, they employed
microwave heating method to obtain Gd-MTX NCP. Then the phospholipid bilayer was utilized to
wrap the metal organic framework. It was noted that the drug-loading system was stable. Therefore,
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the establishment of any drug-loading system should take into full consideration the influence of each
element on its stability. However, more research is needed on the effects of stability on the body’s
efficacy and toxicology.

3. Applications of Metal Organic Frameworks in Targeting Cancer

Normal cells rely on the integrity of regulatory circuits that control cell proliferation and
maintenance. The regulatory circuits are disrupted in cancer cells, and the type and behavior of
the cancer cell vary depending on the type of damage caused to the regulatory circuits [39]. This
particularity can be exploited against tumor cells in attempts to treat the disease, using passive targeting,
active targeting, physicochemical targeting, or a combination of the three [40].

The use of targeted MOFs can also solve the lack of selectivity of some drugs, since they can
host, transport and direct the therapeutic agents to the tumor selectively. This strategy permits to
allow for a reduction in the dose required for conventional chemotherapy, increasing therapeutic
efficacy and diminishing undesired side effects. Specific cells and organs within the body can also be
targeted by modifying the nanomaterials’ surface with antibodies or appropriate ligands. For example,
Chen et al. reported the Zr-UiO-66 was further functionalized with pyrene-derived polyethylene glycol
(Py−PGA-PEG) and conjugated with a peptide ligand (F3) to nucleolin for targeting of triple-negative
breast tumors [41]. Functionalized Zr-UiO-66 demonstrated strong radiochemical and material stability
in different biological media. Based on the findings from cellular targeting and in vivo positron
emission tomography (PET) imaging, the author concludes that Zr-UiO-66/Py−PGA-PEG-F3 can serve
as an image-guidable, tumor-selective cargo delivery nanoplatform. Figure 2 summarizes the types
of tumor targeted therapies. Table 3 summarizes the strategies for targeted therapy using MOFs in
recent years.
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Table 3. Targeting strategies for metal organic frameworks.

Targeting Cancer Cell

Drug Target Target Cell Line Targeting Type Ref.

BSA/SAs@MOF CA IX 4T1 cancer cells Light-responsive [42]

Caspase-FA/TMPyP@MOF FRs HeLa cells Light-responsive [43]

FA/5-FU
@IRMOF-3 FRs

HeLa cells, lung
adenocarcinoma A549 cells,

KB cells
Active targeting [9]

PNA@UiO-66 miRNAs MDA-MB-231, MCF-7 Gene-responsive [44]

Polymer-Modified Gd MOF αvβ3-integrins FITZ-HSA tumor cells Magnetic-responsive
Light-responsive [45]

CPC@MOF CaB HeLa cells Light-responsive [46]

mCGP (4T1) cancer cell
membrane

4T1 cancer cell,
B16F10 cells,
HepG2 cells,
COS7 cells

Starvation and
Photodynamic Therapy [29]

MB
@THA-NMOF-76

@cRGD
αvβ3-integrins HeLa cells,

A549 cells
Light-responsive,
Active targeting [20]

Gd-MTX NCP sigma receptors Jurkat ALL cells Active targeting [30]

Zr(IV)-based porphyrinic
MOF–UCNP

epidermal growth
factor receptor The MDA-MB-468 cells

Gene-responsive,

Light-responsive
[47]

Fe-MIL-53-
NH2-FA-5-
FAM/5-FU

FRs MGC-803
and HASMC cells

Light-responsive,
Magnetic-responsive

Active targeting
[31]

ZIF-8/5-FU
@FA-CHI-

5-FAM
FRs MGC-803 cells

Light-responsive,
pH-responsive,
Active targeting

[32]

UCNPs@MOF-
DOX-AS1411 nucleolin MCF-7 cells

Light-responsive,
pH-responsive,
Active targeting

[48]

UCNPs@ZIF-8/FA/5-FU FRs
HeLa cells,

mouse fibroblast
(L929) cells

Light-responsive,
pH-responsive,
Active targeting

[49]

MOF@HA@ICG CD44 MCF-7 cancer cells Light-responsive,
Active targeting [50]

Fe-soc-MOF@PPy / 4T1 cancer cells Light-responsive [21]

FA@Ni-hemin metal organic
framework FRs MCF-7 cancer cells Active targeting,

Redox responsive [51]

PEG-FA/PEGCG@ZIF-8 NPs FRs HeLa cells pH-responsive,
Active targeting [52]

Streptavidin/GOx@ZIF-8-AuNCsbiotinylated antibody
against galectin-4

colorectal cancer, breast
hepatocellular carcinoma,

gastric cancer, etc.

Active targeting,
Light-responsive [53]

RGD@CPT@ZIF-8 αvβ3 receptor HeLa cells Active targeting,
pH-responsive [54]

DOX@MOFs-Glu glucose-transported
protein (GLUT1) HeLa cells

Active targeting,
pH-responsive,

the magnetic resonance (MR)
imaging

[55]

3.1. Passive Targeted Therapy Used Metal Organic Frameworks

Passive targeting refers to the targeting of nano-targeted drug system on specific organs or disease
sites according to the physiological mechanism after entering the blood circulation through intravenous
injection. The nanoparticles were widely used in the anti-tumor drugs delivery system, because they
have an ability to target tumor tissue passively, which is due to the enhanced permeation and retention
effect (EPR effect.). Jihye et al. studied the passive targeting function of PCN-224 with different
particle sizes [56]. They verified that MOFs can enhance photodynamic efficacy. Photosensitizers
without MOFs get the lowest cytotoxicity. TCPP@PCN-24 with a particle size of 90 nm has the best
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photodynamic therapy effect, and TCPP@PCN-24 with a particle size of 190nm has the worst effect.
Duan also proved that 60nm AZIF-8 has better anti-tumor effect than other particle sizes, due to the
strongest retention effect in the tumor area of this particle size [37].

3.2. Active Targeted Therapy Based on Metal Organic Frameworks

Active targeted therapy is to transport the drug system to a specific part by means of the high
affinity between the ligands and the overexpressed receptors on the targeted cell surface. Researchers
can generally modify the surface of drug-loaded MOFs so that it is not recognized by macrophages.
In addition, researchers can attach specific ligands (such as folate, RGD peptide, aptamers, etc.) on
metal organic frameworks to target receptors (folate receptors, etc.). In addition, MOFs linked by
monoclonal antibodies become immune microspheres to avoid macrophage uptake. Furthermore,
researchers can modify MOFs into pharmacologically inert physics and activate them when they reach
the surrounding cancer cells, so as to exert pharmacodynamic effect.

Modification of MOFs with folic acid is currently the most commonly used for targeted therapy.
Since folate receptors are overexpressed on the surface of cancer cells. Folic acid can specifically bind
to them, and then the drugs are focused and released in cancerous tissues. For example, Jihye and
coworkers used folic acid to modify TCPP@PCN-224 which improved the efficacy of the original
nano drug delivery system [56]. Same as above, folic acid was modified by Li et al. on a metal
organic framework to get FA/DOX@UiO-68 [57]. They injected different substances into the tail
vein of liver cancer mice. Tumors in the FA/DOX@UiO-68 group were smaller than those in the
doxorubicin. Targeted anticancer activity of the nanosystem was confirmed by internal and external
stimuli responses. Laha and his companions obtained IRMOF-3@CCM@FA in a one-step process,
which also utilized folic acid to deliver curcumin to the triple negative breast cancer cells [58]. A series
of in vivo and in vitro experiments demonstrated the superior targeting performance of this strategy.

Of course, there are some other overexpressed receptors on the surface of cancer cells, and
researchers can use any of these receptors for active targeted therapy. For example, anisamide (AA) can
specifically recognize sigma receptors on the surface of cancer cells. Based on this principle, Rachel used
A DOPE-AA (DOPE = dioleoyl l-α-phosphatidyl-ethanolamine) in combination with Gd-MTX NCPs to
kill leukemia cancer cells [30]. In addition, Hyaluronic acid specifically recognized overexpressed CD44
on the surface of tumor cells [50]. Therefore, MIL-100 (Fe) nanoparticles could aggregate in tumor tissues
by modifying hyaluronic acid on their surfaces. MOF@HA@ICG NPs showed better photothermal
effect at the tumor site by comparison with ICG and non-hyaluronic acid-modified drug-loaded
MOFs (MOF@ICG NPs). Similarly, taken into account this strategy, Chen and colleagues have also
developed VEGF (vascular endothelial growth factor)-responsive doxorubicin-loaded NMOFs, and
the experimental results were also satisfactory [59]. This gating strategy has inspired researchers to
find other suitable ligands for targeted therapies. More importantly, this strategy is not confined to the
treatment of tumors, and other difficult diseases that have overexpressed receptors are applicable. Hu
and coworkers synthesized Rho-BSA/Cu/NQ nanoparticles (NPs) based on albumin as a reactor for a
simple method [35]. In particular, the nanoplatform had good solubility, therefore it may be used for
injection administration. Owing to its ability to actively target, the system can have a high utilization
rate at the target site. Based on a large number of previous studies, Hu has conducted a series of in vitro
and in vivo experiments to demonstrate the potential for clinical application of the drug delivery
system with highly effective utilization, excellent stability, superior biosafety. The success of these
researches suggests that researchers can load any other applicable drug into this system for efficient
cancer treatment.

Qi et al. modified anti-EpCAM antibodies to ZnMOFs, which specifically capture tumor cells [60].
Additionally, in Li’s report, a biomimetic theranostic O2-meter was introduced to people [61]. It referred
to the modification of tumor cell membrane fragments on the surface of MOFs, so that it could identify
tumor tissues efficiently, and could avoid the phagocytosis of macrophages and achieve immune
escape. The biomimetic nanosystem will be described in detail later.
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There are numerous specific receptors on the surface of cancer cells that can be used as targets
for tumor diagnosis and treatment. The active targeting strategy is simple and easy, coupled with
the unique affinity for tumor cells, greatly increasing the efficiency of targeted therapy. Therefore,
active targeted therapy has become an indispensable part of anti-cancer research based on MOFs in
recent years.

3.3. Physicochemical Targeting Depended on Metal Organic Frameworks

Physicochemical targeting refers to the use of physical or chemical methods to make the
MOFs-based nano-drug delivery system release drugs or generate heat, thus leading to the apoptosis
of tumor cells or the ablation of solid tumors. Without specificity, this method has few side effects on
systemic tissues, and mainly plays a role in the lesions. Numerous scientists have carried out in-depth
research on it.

3.3.1. Metal Organic Frameworks for pH-Responsive Targeted Treatment

The rapid proliferation of tumor cells leads to local hypoxia, and its metabolism is also affected.
The most direct result is an increase in lactate secretion and a decrease in pH. As the cancer tissue has a
lower pH than normal tissue of the human body, the pH-responsive metal organic frameworks have
become one of the most widely used environmentally responsive carriers.

ZIF-8 is one of the most classic metal organic frameworks because it releases the drugs in a
tumor environment (lower pH) and remains stable under normal physiological conditions, with the
characteristics of innocuity and good biocompatibility. In addition, ZIF-8 is usually synthesized
and loaded drug by one-pot method, which is convenient and efficient. Thus, it attracts more
interest of many researchers. For example, Chen loaded 3-methyladenine (3-MA) into ZIF-8 by a
one-step method [62]. 3-MA is an autophagy inhibitor that interferes with autophagy behavior of
tumor cells and induces tumor cells apoptosis. Owing to the sensitivity of ZIF-8 to pH, 3-MA is
mainly released near tumor tissues, avoiding early metabolism and improving the bioavailability of
3-MA. In addition, Zheng et al. encapsulated the anti-cancer drug doxorubicin (DOX) within the
ZIF-8 crystals [26]. ZIF-8 crystals loaded with DOX are efficient drug delivery systems in breast
cancer therapy using pH-responsive release. The drug is released slowly at low pH (5.0–6.5) and
not responded under physiological conditions (PBS, pH 7.4). However, drug resistance is one of the
causes of chemotherapy failure in cancer. Therefore, several drugs have been used in combination
for chemotherapy, which can improve the efficacy and reduce drug resistance. In addition, Zhang
and his colleagues first reported a combination of doxorubicin and verapamil hydrochloride based on
metal organic frameworks to defeat drug resistance [27]. Simultaneously, they modified the nano-drug
delivery system with PEG-FA, which not only realized active targeting but also satisfied the long-term
circulation. This PEG-FA/(DOX+VER)@ZIF-8 released faster and more at pH 5.0 than at physiological
conditions. Furthermore, Liang et al. encapsulated doxorubicin and bovine serum albumin with ZIF-8,
which also could be kept under physiological conditions and released under tumor conditions [63].
Tang et al. synthesizes a nanocapsule using the pH sensitivity of ZIF-8 [64].

In addition, countless other metal organic frameworks have also been found to have pH
responsiveness. Wang and coworkers developed a pH-responsive core-shell metal organic framework
(CS-MOFs) that degraded and released artesunate (AS) and Fe3+ at low pH for co-treatment of
cancer [65]. After the release of Fe3+ is reduced to Fe2+, reacting with AS to form excess reactive
oxygen species which leaded to enhanced cytotoxicity. Vandana synthesized MIL-101-Fe with pH
responsiveness by solvothermal method [66]. This property facilitated the concentrated release of
nanoparticles in the tumor area. Then they modified polyethyleneglycol (PEG) on the surface of the
particles and found that it could enhance the stability of the nanoparticles. Chen et al. received 5-Fu
@Dy(III)- organic framework which can release 78% at pH 5 but 50% at pH 7.4 [67].

Furthermore, a pH responsive nanoplatform can also be obtained by modification of the surface
of the MOFs. It is a great choice to fix chitosan on the surface of MOFs. The amino group of chitosan
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can be protonated or deprotonated to achieve pH response [68]. Take into account this property,
Reza and colleagues synthesized CS/DOX@Bio-MOF [69], which proved that the nanoplatform was
almost completely released at pH 6.8 and released a little at pH 7.4. They have demonstrated that
the nanoparticles have good biocompatibility. This report gives us a new idea for the preparation of
pH-responsive nanoplatforms.

The pH-responsive nano drug-loading system based on MOFs can transport the drug to the tumor
region with lower pH, improve the stability of the drug under physiological conditions, and enhance
the release of the drug in the target region. However, this strategy does not completely prevent the
release of the drug during its circulation in the body. Usually the drugs are released faster under low
pH conditions, but they are also released under normal conditions, so it is necessary in order to further
improve the system’s ability to selectively release the drug, or to improve the targeting ability by
combining with other strategies.

3.3.2. Light-Responsive Targeting of Cancer with MOF-Based Nano-Therapeutics

Recently, new treatment method based on photosensitized therapy for cancer has begun to
receive attention of researchers and it is considered to be a promising treatment due to their many
irreplaceable advantages, such as acting on local tumor sites, strong damage to the tumor, and no drug
resistance. Phototherapy includes photothermal therapy (PTT) and photodynamic therapy (PDT) as
well fluorescence imaging strategy.

Here, we first introduce several commonly used drugs and materials for photoresponsive therapy.
As a kind of chromophores, porphyrin absorbs visible light, producing a singlet excited state that
decays to the first triplet excited state [70]. This last state transfers its energy to molecular oxygen
(3O2) in the medium, generating singlet excited oxygen (1O2), which is responsible for the death of
cancer cells. Upconversion nanoparticles (UCNPs) are a class of materials that satisfy the anti-Stokes
law of illumination. In other words, the materials can be pleased to be emit high-energy light by
low-energy light, such as infrared light to excite visible light. They can be used for biomonitoring,
medical treatment, CT and MRI. Currently, researchers in cancer treatment have a tendency to link this
material with other carrier materials to meet high-efficiency diagnosis and treatment. This review will
introduce UCNPs in combination with MOFs for targeting cancer in Section 3.4 more elaborate.

Fluorescence imaging is a sensitive photochemical reaction. Based on MOFs, this method can
easily and accurately diagnose cancer while reducing the side effects on the body. This is expected
to achieve the diagnosis and treatment of tumors in one step. Fluorescence imaging has witnessed
significant advances in in vitro and in vivo imaging. Zhang and his peers used fluorescence reactions
to diagnose cancer [53]. Specifically, Glucose oxidase was encapsulated in ZIF-8 (GOx/ZIF-8 composite),
and then the drug system is modified by streptavidin to identify galectin-4, a tumor marker. Glucose
oxidase produces hydrogen peroxide and further reacts with iron (II) ions to produce hydroxyl groups,
which are recognized by gold nanoclusters to produce fluorescence quenching. Fluorescence intensity
correlates with the concentration of galectin-4, even a very small amount of galectin-4 can be diagnosed.
It provides a very sensitive way to detect tumors.

Photothermal therapy (PTT) refers to a method of targeting a material with high photothermal
conversion efficiency to tumor tissue, and converting light energy into heat energy to kill cancer cells
under the illumination of near-infrared light. Zhang et al. designed a multifunctional photosensitized
nanoprobe [43]. Their group firstly formed a TMPyP@MOF by one-pot synthesis method, then
Cy3-labeled caspase-3 substrate peptide and a FA were assembled on TMPyP@MOF surface. Thus, this
nanoprobe could be targeted to the cancer site, caused apoptosis of cancer cells by phototherapy, and
monitored therapeutic effects in situ. In addition, Mn-IR825 NMOPs was applied as a photothermal
agent for light-sensitive targeted ablation of tumor tissue [71]. They have demonstrated that the
nanoplatform has low cytotoxicity, good light stability, high photothermal conversion efficiency, and
can be excreted quickly, avoiding long-term toxicity by in vitro and in vivo assay. Therefore, it has
prospects for tumor imaging and treatment. Furthermore, Indocyanine Green (ICG) is a negatively
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charged polymethyl cyanine dye. Unlike cyanine dyes such as Cy3 and Cy5, it is under a higher
absorption and emission wavelength. It allows deeper penetration than fluorescein angiography.
However, due to its low solubility and low tumor specificity, a carrier material is urgently needed to
load it to increase its clinical application. Cai et al. developed MOF@HA@ICG, which had a drug
loading of 40% and was targeted to reach cancerous tissues through hyaluronic acid modification [50].
The system had minimal toxicity, good stability, and strong near-infrared absorption. More importantly,
the nanoplatform enabled FL imaging, PAI (photoacoustic imaging), T2-weighted MRI, and PTT
treatments. These supply the possibility for MOF-based PTT clinical applications.

Photodynamic therapy (PDT) refers to the use of photodynamic effects for the diagnosis and
treatment of cancer. It consists of three basic elements: oxygen, photosensitizer and visible light.
The basic principle is that the photosensitizer enters the tumor tissue and is activated by light of
appropriate wavelength to produce a photosensitivity reaction, which ultimately results in cell damage
and death. For example, Zhu et al. reported low cytotoxic iron-porphyrin MOF modified by BSA
and SA can trigger tumor photothermal therapy and photodynamic therapy even under hypoxic
condition [42]. The authors found that a single source at 660nm induced greater damage to the tumor
by PDT and PTT in these nanocomposites. Another example is that Nian and his colleagues have
prepared a series of photosensitive nano drug delivery systems based on UiO-66 [11]. They achieved
light-sensitive targeted therapy by modifying phthalocyanine (Pc) and Erlotinib (E). Experimental
results show that the nanosystem has good anticancer activity. In addition, Jin and his team used
isotope labeling on nanoparticles and found that 64Cu can achieve magnetic resonance imaging and
photoacoustic tomography [72]. Finally, the cancer tissue is destroyed by the photothermal effect to
achieve therapeutic effect. Tumor tissue temperature increased by 20 ◦C within 5 min. In Jia’s paper,
HTHA (4,4,4-trifluoro-1-(9-hexylcarbazol-3-yl)-1,3-butanedione) could improve the penetration of
infrared light into tissues and avoid tissue damage (Figure 3) [20]. MB is a photosensitizer that can
produce singlet reactive oxygen under the illumination of near-infrared light. cRGD can target MOF
to the specific location and improve the biocompatibility of drug-loaded system. All of these were
allocated to one system and work together to increase the anti-tumor activity of MOF. It was necessary to
demonstrate this platform had the best therapeutic effect at 808 nm. He and his coworkers synthesized
a light-sensitive Zr(IV)-based Porphyrinic metal organic frameworks, through the modification of
UCNPs, enhanced the production of singlet reactive oxygen species, thereby improving anti-tumor
ability [47]. The cytotoxicity is the strongest under 980 nm near-infrared light, and the death rate of
cancer cells reaches 80% within 20 min. However, there are still some shortcomings in photodynamic
therapy that severely limit its clinical application, such as unprotected penetration ability, and only
showing strong killing effect on superficial cancer tissues, which lead to PDT is mostly used for
the treatment of skin cancer. In addition, photodynamic therapy is required to provide an aerobic
environment, and tumor tissue is also in an anoxic environment due to its specificity, which also
affects the effect of photodynamic therapy. Therefore, it is imperative to find strategies to overcome
these problems, such as using near-infrared rays to penetrate deep tissues and loading substances
in the drug-loading system that can improve the anoxic environment, such as catalase. Fang et al.
designed and synthesized Lu@CoTCPP(Pd), an inner light integrated metal-organic framework to
overcome the above difficulties [73]. This nanosystem achieved photodynamic therapy through the
inner chemiluminescence resonance energy transfer (CRET) and had a curative effect on deep tumors.

Light-responsive targeting of cancer with MOF-based nano-therapeutics can diagnose and treat
at the same time. Photoresponsive therapy can induce cancer tissue ablation, but its selectivity is
low. When using this strategy, we are required to determine the location of the tumor, which reduces
the efficiency of the treatment, and most of the drugs have been metabolically inactivated during
prolonged circulation in the body. Therefore, most researchers nowadays are accustomed to using this
strategy in combination with active targeting or other strategies to improve efficacy.
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Framework To Achieve Near-IR-Triggered and -Targeted Two-Photon Absorption Photodynamic
Therapy). Copyright (2018) American Chemical Society.

3.3.3. Magnetic-Field-Responsive Metal Organic Frameworks-Based Targeted Anticancer Treatment

Magnetic-responsive treatment refers to the combination of drugs with magnetic materials (such
as Fe2O3) that reach the tumor area under magnetic field guidance. Magnetic materials are not merely
capable of guiding magnetic targeting but also as T2 contrast agents for magnetic resonance imaging.
Thus, magnetic responsive therapy is a promising approach to cancer treatment. In this context,
paramagnetic materials and superparamagnetic materials show great ascendancy.

For instance, Ke and coworkers first reported magnetic MOFs for targeted drug delivery [74]. It
refers to the combination of Fe3O4 and MOFs to form magnetic MOFs. Fe3O4/Cu-based MOFs loading
Nimesulide can be utilized to treat pancreatic cancer. It also can be utilized for magnetic resonance
imaging and controlling drug release based on the nanoplatform. Although they failed to overcome their
side effects, they provided a new idea for drug delivery for subsequent researchers. Immediately after,
Yang et al. developed a magnetic-field-responsive drug delivery system based on Fe3O4/ZIF-8-Au25
(IZA) nanospheres for magnetic targeting, phototherapy and nuclear magnetic imaging [75]. The group
verified through in vitro and in vivo experiments that the therapeutic effect under external magnetic
field is significantly higher than that without magnetic field. In addition, CoFe2O4NPs@Mn-organic
framework was published in Ahmad’s article [34]. Daunorubicin was successfully encapsulated in
this nanocarrier. Subsequent experiments showed that the material can promote apoptosis of MCF-7
cells. In addition, it has controlled release ability and low cytotoxicity. The above experiments provide
possibilities for the application of magnetic-field-responsive MOF. A composite material of graphdiyne
and MOFs, Fe3O4@UIO-66-NH2/graphdiyne (FUGY), with superior ability for magnetic targeting, was
designed and synthesized by Xue’s team [76]. This integrated nanosystem releases more drugs at the
tumor site.

However, superparamagnetic iron oxides (SPIOs) are considered as a kind of negative contrast
agent whose imaging effect is dark. There is another positive contrast agent based on Gd3+, but Gd3+

has greater cytotoxicity. Chelates are often used to stabilize Gd3+ and reduce its toxicity. Thus, Misty
and colleagues prepared a polymer-modified Gd3+ MOF to eliminate the side effects of Gd3+ and
used it for magnetic targeted imaging [45]. Growth inhibition studies were used to evaluate the
safety of materials. The Gd MOF nanoparticles with the RAFT (reversible addition-fragmentation
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chain transfer) copolymer not containing MTX increased cell viability compared to Gd(III) chloride
salt, 1,4-benzenedicarboxylic acid methylammonium salt and unmodified Gd MOF nanoparticles.
The results show that the metal-organic framework modified by the polymer not only has excellent
imaging effect, but also eliminates the toxicity of Gd3+. The combination of the nanocarrier with
other functional substances is made possible by the introduction of the polymer. GRGDS-NH2 was
successfully modified in this drug delivery system, which made it possible for this system to recognize
αvβ3-integrins and target to FITZ-HSA tumor cells. In addition, Kathryn and colleagues synthesize
Mn NMOF for magnetic resonance imaging [77].

This strategy based on magnetic targeting can both diagnose and treat tumor. Of course, it also
has the same problem as light-sensitive drugs, that is, the efficiency is relatively low, and researchers
apply it more to the diagnosis of tumors.

3.3.4. Targeted Drug Delivery Strategy Based on Thermosensitive MOFs

There are some metal organic frameworks that are sensitive to heat. We can use these
temperature-sensitive metal organic frameworks to deliver drugs. Hyperthermia on the body can
effectively stimulate the release of the drug by MOFs. This may be due to the fact that MOFs are
prone to degradation at slightly elevated temperatures, or it may be due to a decrease in the force
between MOFs and drugs under hyperthermia conditions. Xing and his group designed a temperature
and pH dual responsive MOFs, Zn-cpon-1 [78]. The nanoparticles can be dual-targeted without any
modification, which enables synthesize materials and load drugs simply and efficiently. The release rate
of nanosystems increased with increasing temperature. Lin et al. synthesized ZJU-64 and ZJU-64-CH3,
which enabled heat-responsive delivery of drugs [79]. These two materials released drugs more quickly
and faster under the high temperature conditions caused by hyperthermia. This phenomenon was due
to high temperature break host-guest interactions. Jiang and his team reported a nano-system with
thermally responsive release drug [36]. ZJU-801, due to the introduction of the naphthalene moiety,
showed a different release property from NU-801. ZJU-801 accelerates drug release rate with increasing
temperature, while NU-801 shows burst release at different temperatures.

3.3.5. Targeted Anti-Tumor Therapy Strategy Based on Ion-Responsive MOFs

Encapsulation of the drugs in the metal organic framework by ionic interactions tends to have a
higher drug loading. This interionic force controls the release of the drugs. Yang et al. constructed a
cationic metal organic frameworks (ZJU-101) to delivery diclofenac anions [80]. The drug delivery
system controlled the release of the drug by exchange between the anions. Due to the interaction
between ions, the drug loading of the nanosystem reached 0.546 g/g. The delivery system can release
drugs faster under weakly acidic conditions. Wu and his team designed Fe3O4@UiO-66-NH2 [81].
They achieved ionic sensitive release drugs by modifying WP6 on the surface of the material. Under
pathological conditions, local Ca2+ and Zn2+ levels in the body usually increased. These ions will
stimulate the drug delivery system and promote drug release. Regardless, the advent of ion-responsive
delivery systems provides new directions for targeted therapy.

3.3.6. Redox Phase-Responsive-Metal Organic Frameworks-Based Targeted Anticancer Treatment

Redox-responsive release refers to the modification of a specific group on the surface of MOFs
to encapsulate the drugs inside the materials. Only when certain conditions are met will the redox
reaction be stimulated to expose the drugs and release the drug molecules. For example, Lei and his
partner designed and synthesized a redox-responsive metal−organic framework, MOF-Zr(DTBA),
to load curcumin for anticancer experiments [64]. Overexpressed glutathione (GSH) in tumor cells can
cleave the disulfide bonds in this nano platform, and then lead to the release of curcumin.
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3.4. MOF-Based Nanotherapeutics for Gene Delivery

As a biomarker, microRNAs usually express abnormally in cancer cells. Detection of overexpressed
microRNAs can help diagnose cancer in time to avoid further deterioration or metastasis. The metal
organic framework nanoparticles with gene transfer function can accurately detect over-expressed
microRNAs in cancer cells. This enables us to provide appropriate treatment strategies early in the
cancer which can improve the survival rate of cancer patients.

Metal-based organic matrix-based nanomaterials were examined as gene delivery vehicles by
Yi et al. who first loaded the nucleic acid probe with ZIF-8 and delivered the nanoplatform to
live cells [82]. Due to the pH sensitivity of ZIF-8, then this nanoplatform degraded in the acidic
endosome to release the nucleic acid probe and Zn+. Zn+ acts as a cofactor for 8-17 DNAzyme and
can be utilized to microRNA imaging to become a tool for tumor diagnosis. Additionally, Wu and
colleagues exploited NMOF (UiO-66) nanoparticles (NPs) and fluorescence-labeled peptide nucleic
acid (PNA) binding products to accurately and specifically detect the content of cells polypeptide
miRNA and spatiotemporal changes in living cancer cells [44]. Peptide nucleic acid (PNA) has different
fluorescence phenomena when combined with different substances, and it has no fluorescence when
loaded on a metal organic skeleton nanocarrier. When the nanoplatform reaches the cancer cell region,
it releases PNA and bind to the target miRNAs to generate fluorescence. Their team provides a very
effective strategy for miRNA monitoring. Qiu bound five DNA probes to MOF1, which specifically
recognize five microRNAs in gastric cancer cells [83]. After the DNA molecule is complementary to
the target microRNA, the fluorescent molecule emits a signal, which provides us with immediate
diagnostic information.

In addition, Chen et al. modified ATP aptamers or ATP-AS1411 hybrid aptamers on drug-loaded
MOFs (Rhodamine 6G and doxorubicin loaded MOFs) [84]. ATP aptamer or ATP-AS1411 hybrid
aptamer can be used as a switch to control drug release. When the drug-loading system recognizes
ATP-expressing cancer cells, they can combine with ATP. Chen describes this behavior as ‘uncovering
the hat’. This will advance the release of the drug. When the drug-loaded particles do not recognize the
cancer cells, their caps will not open and the drug will be stably encapsulated in the system. The system
is able to enter MDA-MB-231 breast cancer cells. It shows higher cytotoxicity than normal MCF-10A
epithelial breast cells. Overexpression of some albumin receptors on tumor cells suggests that we can
take advantage of albumin as a reactive transport reactor. Su et al. modified the AS1411 aptamer on
the surface of the metal organic framework to target cancer cells [17].

The application of genes to the targeted therapy of MOFs enables precise localization and is
much more efficient than active targeting. This strategy has become a hot topic of current research.
However, there is also a need to defeat the problem of drug-loading systems being easily cleared
by immunization.

3.5. MOFs-Based Bionic Immune Escape Strategy

In recent years, the rise of bionic technology has inspired researchers in the field of biomedicine.
The application of biomimetic technology based on MOFs in anticancer treatment can effectively
solve a series of problems stemming from other strategies. Of course, this strategy has stricter
requirements on the particle size of MOFs. Biomimetic techniques which mean modifying tumor
cell membrane fragments on the surface of MOFs have been mentioned previously. A biomimetic
nanoplatform (CAT-PS-ZIF@Mem) modified by cancer cell membrane fragments was developed by
Cheng to enable self-providing O2 [85]. Cancer cell membrane fragments helped rapid localization
and long-term cycling of nano drug-loading systems, improving bioavailability. The authors hoped
to be able to increase the oxygen content of tumor tissues by catalase. Confocal Laser Scanning
Microscopy and UV–Vis experiments also verified that under the action of catalase, endogenous
hydrogen peroxide decomposed to produce O2. The study also found that Al(III) phthalocyanine
chloride tetrasulfonic acid (AlPcS4) would self-quench, and its ability to produce 1O2 was greatly
enhanced by being encapsulated with MOFs. This strategy of bringing functions together on one
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platform greatly enhanced the efficiency of cancer prevention. Li and coworkers exploited a relatively
novel approach for multi-targeted anti-cancer research [61]. It acted on cancer tissues that combined a
biomimetic theranostic O2-meter with photodynamic therapy. Since porphyrin needed to consume
oxygen, the oxygen content of the tumor area would decrease as the treatment progresses, which
would lead to a decrease in treatment efficiency. The drug-loaded nanosystem could detect the content
of O2 in the tumor area on the one hand, and achieve immune escape on the other hand, and which
jointly improve the anti-cancer efficiency. A similar report was issued by the same team who used
biomimetic technology to achieve high-efficiency, precise targeting and avoid removal by the immune
system [29]. They increased the oxygen content of the tumor microenvironment by loading reactive
oxygen species and catalase on the MOFs, improving the efficiency of photodynamic therapy while
achieving starvation therapy. A series of experiments in vitro and in vivo confirmed the system’s
excellent anti-cancer ability. Furthermore, they reported another anti-cancer platform-TPZ@PCN@Mem
based on the bionic principle [86]. It described that when porphyrin was used for phototherapy.
Oxygen was consumed to cause a hypoxic environment, which deteriorated the therapeutic effect.
However, the team did not improve the hypoxic environment but made the drug system utilized this
hypoxic environment to fight cancer. There were reducing drugs that kill tumor cells in a hypoxic
environment. Therefore, they proposed modifying MOFs with tirapazamine (TPZ). Depending on their
report, TPZ@PCN@Mem could damage cancer tissue with minimal side effects. Bionic technology has
unparalleled superiority in the field of anti-cancer. Accurate drug delivery, immune escape, long-acting
cycle, and other advantages made bionics technology arouse the interest of many researchers, and
became a hot topic in recent researches. Researchers often combined biomimetic techniques with other
targeted strategies to improve the targeting capabilities of nanosystems and to improve treatment
outcomes. Wan simultaneously demonstrated biomimetic technology and photodynamic therapy on a
nanoplatform. Considering the limitations of photodynamic therapy (resistance to reactive oxygen
species and unstable treatment efficiency), gas therapy was added to the platform [87]. On the one
hand, L-Arg activated photodynamic therapy under near-infrared conditions, and on the other hand,
L-Arg acted as an oxidant to cause nitrification to produce NO. Therefore, treatment could be continued
under normal conditions or under hypoxic conditions. Coupled with the help of cancer cell membrane
fragments, drug-loaded system could achieve targeted therapy and avoid excessive immune clearance.
Experimental results showed that 4T1 tumors were completely ablated with negligible side effects. This
suggests that we can rely on multi-targeted therapy to overcome the drawbacks of a single treatment,
which can improve the treatment effect.

3.6. MOFs-Based Core-Shell Nanomedicine Carriers

It is worth to mention that appropriate modifications to MOFs using other materials can effectively
take advantage of various materials, and its shortcomings can be ignored. Chen et al. synthesized
89Zr-UiO-66/Py−PGA-PEG-F3 for positron emission tomography of tumors [41]. This technique was
utilized because it was more penetrating and more sensitive than optical imaging. Py-PGA-PEG was
capable of providing a group for binding to a peptide ligand (F3) and a nucleoside. Nucleosides
can target tumor cells to improve the therapeutic effect of drugs on cancer and reduce biological
toxicity. The nanoplatform has also been shown to be pH-sensitive, with a low release rate under
normal physiological conditions, a slightly better release rate in the tumor environment, and the best
release effect under tumor cytoplasmic conditions, with a cumulative release rate of approximately
37.06% in 2 weeks. In spite of this, its release conditions had yet to be improved to improve release
rate and utilization. In vitro and in vivo experiments showed that the material had excellent effects
for radiotherapy of cancer, and no toxicity was noted in the body. This study can encourage other
researchers to study further radioactive MOFs. Furthermore, a core-shell nanoparticle UCNPs@MOF
NCs was developed by Deng et al. who modified AS1411 aptamer on the surface of the particles to
specifically recognize the nucleolin on the surface of tumor cells [48]. This nanoplatform could rely on
UCNPs for optical imaging and convert near-infrared light into visible light to minimize light damage
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and achieve greater penetration. In vitro cell experiments found that the substance acts on MCF-7 cells
(human breast cancer cells) to produce green fluorescence, while 293 cells (human embryonic kidney
cells) have no positive results. The study also found that UCNPs@MOF NCs had a greater affinity
for cancer cells than simple target receptors, which meant that there were other beneficial effects for
materials and cancer cells. Meanwhile, the composite material could also achieve pH sensitive release
of the drug, that was to say, the slightly acidic environment of the tumor tissue could cause degradation
of the system to release doxorubicin. Considering the combination of UCNPs with mesoporous silica
or hydrophilic polymers leaded to a decline in photo-imaging function, and it was become a necessity
to find new carrier materials. The metal organic frameworks can load UCNPs without affecting the
optical function of UCNPs, and at the same time achieve drug loading. Therefore, there were several
reports on the combination of UCNPs and metal organic frameworks for cancer treatment. What is
more, multi-functional combination showed a stronger anti-cancer effect. Another similar report was
published by Angshuman, who used the same principles to synthesize the core-shell nanomedicine
carriers (UCNPs@ZIF-8/FA/5-FU) mentioned above using different materials [49]. Similarly, the drug
delivery system enabled pH-sensitive release and fluorescence image, and the system could easily reach
cancerous tissue due to folic acid modification. UCNP@UIO-66(NH2)/FA/DOX was also synthesized
using the same principle [88]. Angshuman used this nanoparticle for breast cancer treatment.
The in vitro cell experiments showed that the particles were effective against the MDA-MB-468 cells.
The similar material had a high drug loading capacity (DOX), which satisfied the pH-responsive drug
release, actively targeted cancer cells through folic acid, and achieved up-conversion luminescence.
Its in vivo experiments have yet to be further studied. The development of cancer therapy has been
progressing, and people’s pursuits are also growing. Using a variety of materials to fight cancer is
undoubtedly a cost-effective way. Of course, we just have to consider the reactions that these strategies
produce when we use them in the body. Therefore, deeper research needs to be done in the future.

3.7. Multi-Targeted Response of MOF Nanomaterial for Anticancer Treatment

Each of these methods has its limitations, and more researchers are focusing on multi-targeted
anti-cancer. They combined several targeted strategies on a nano-platform to achieve precise treatment
and eliminate the shortcomings of each strategy.

The most common is to combine active targeting with other targeted strategies. Armed with
this strategy, Song et al. applied both pH response and light response to ZIF-8 and synthesized
ZnPc@ZIF-8 and ZnPc@ZIF-8/CTAB [14]. The targeting system released photosensitizers around
tumor cells and increased photodynamic anticancer efficiency by producing excessive ROS. Such a
strategy was mentioned in Chen’s report that the modification of folic acid to pH-sensitive ZIF-8
enabled dual targeting and efficient delivery of Epigallocatechin-3-gallatea to target cells. Moreover,
M-NMOFs was a superparamagnetic nanoparticle synthesized by Shalini through the AOT (Aerosol
OT) microemulsion method [28]. Meanwhile, this M-NMOFs was utilized to wrap the doxorubicin
and the photosensitizer methylene blue. The nanoplatform was transferred to the target area under
the intervention of an external magnetic field to release doxorubicin. Photosensitizers also exhibited
photodynamic effects under light, which greatly enhanced cytotoxicity. Thus, this nano transport
system combined magnetic targeting and photoresponse to enhance anticancer effects. This system
provided some reference for additional researchers. For the first time, Angshuman used folic acid
to modify magnetic nanocarriers encapsulating paclitaxel and the fluorescent molecule rhodamine
B isothiocyanate (RITC) [10]. Therefore, paclitaxel could be well absorbed by liver cancer cells,
and fluorescence analysis and magnetic resonance imaging would be performed through this nano
platform. Folic acid-modified MOFs have improved the performance of the original MOFs which can’t
achieve precisely targeted positing and efficient therapy. Similarly, folic acid-modified multifunctional
nano drug-loading system also appeared in Liu’s research [46]. As a photosensitizer, chlorine e6
(Ce6)-labeled CaB substrate (Ce6-peptide) provided photodynamic therapy. Cam was employed
as an anticancer drug for chemotherapy. Folic acid as a ligand could specifically recognize cancer
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cells carrying folate receptors and achieve localization. Combined with various treatment methods,
CPC@MOF improved the efficiency of cancer prevention. Kin et al. also used folic acid modification
for active targeted therapy [89]. A calcium zoledronate (CaZol) and a polyethylene Glycol (PEG)
formed a nano-metallic framework of core-shell structure, and CaZol was not only a structure of
a metal organic framework but also an anticancer drug. Folic acid-modified nMOFs were more
potent than Zol alone in vitro and in vivo. The nano-platform was also pH sensitive. That was
to say it was stable at pH 7.4, and would be internalized by the cells in the tumor area to release
Zol. Shi et al. also prepared a pH responsive and folic acid induced dual targeting formulation
FA-PEG/CQ@ZIF-8 [13]. The same strategy was also included in Dong’s report [33]. The folic
acid was modified on a pH-sensitive metal organic framework to obtain FA/5-FU@MOF-808 and
FA/5-FU@NH2-UiO-66. The nanomaterial also had good targeting properties. In addition, as an
active targeting agent, folic acid−Bovine serum albumin (FA−BSA) was modified on ZIF-8, which
was also loaded with CuS and quercetin (Figure 4) [90]. The nano-platform can actively transport
the photothermal agent and the chemotherapeutic drug to the cancer tissue. Fluorescence imaging
revealed that the drug was successfully internalized by cancer cells, and the cancer tissue was ablated
by near-infrared irradiation. The combination of chemotherapy and PTT, coupled with the targeting
function of FA-BSA, made the anti-cancer effect of the drug system far greater than the single anti-cancer
treatment. Wu also did a similar job, which was to use PTT in combination with chemotherapy to
complement each other and improve the anti-cancer ability of the drug-loading system [91]. At the
same time, folic acid acted as a guide to transport the drug-loaded particles to the target site. The
difference was that the system had pH and temperature sensitive properties due to the addition of
pillararene-based pseudorotaxanes. Of course, in addition to folic acid, other molecules can be utilized
to induce active targeting. Dong et al. used RGD to recognize the αvβ3 receptor on the surface of
cancer cells and synthesized RGD@CPT@ZIF-8 [54]. At the same time, the nanoplatform was also
sensitive to pH. It did not release in a neutral environment and released 75% of the drug within 24
h in a weak acid environment. In addition, DOX@MOFs-Glu was synthesized by Zhang and his
colleagues who combined pH-responsive drugs, active targeting and CT imaging [55]. The glucose
specifically recognized the glucose-transported protein (GLUT1) overexpressed on the surface of tumor
cells. Gd3+ ions can contribute to achieving magnetic resonance (MR) imaging. 5-boronobenzene-1,
3-dicarboxylic acid (BBDC) could bind to glucose and be polymerized or decomposed in different
pH environments to control drug release. The nano-platform had excellent biocompatibility due to
the addition of glucose, and was not readily metabolized in the body. In summary, it will produce a
stronger and more effective lethality on tumor tissues to combine active targeted therapy with other
types of anticancer methods. It has become a more conventional multi-targeted anti-cancer approach
in recent years. Of course, there are numerous other multi-targeted strategies for efficient and accurate
cancer treatment. ZIF-67/Fe3O4/DOX was obtained by a simple method, which could be targeted to the
tumor tissue under the action of an external magnetic field. Then the drug-loading system released the
drugs under the action of H2O2 catalysis and water effect [92]. This versatile MOFs nano-platform
could not only perform excellent positioning functions, but also improve the therapeutic effect together
with chemotherapy.

If the diagnosis and treatment of the tumor can be completed in one step, it will provide greater
convenience. In Gao’s paper, magnetic mesoporous nanomaterial Fe-MIL-53-NH2, chemotherapeutic
drug 5-fluorouracil (5-FU) and the fluorescence imaging agent 5-carboxyfluorescein (5-FAM) were
pooled in a nanoplatform with folic acid for active targeted modification [31]. Although using
common modifications, this identical group synthesized a nano platform that integrated pH sensitivity,
fluorescence imaging, and folate receptor-specific recognition to actively targeting [32]. ZIF-8 was
a pH-responsive material, folic acid was used to actively target cancer cells, 5-FAM was used as a
fluorescent agent to monitor drugs, and chitosan could improve the affinity of folic acid and 5-FAM
with ZIF-8. The difference was that Gao et al. experimentally verified the localization of folic acid.
It was found that the folate-negative nanosystem had insufficient affinity with tumor cells, and the
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nano-platform modified by folic acid can bind well to tumor cells, but can not enter normal cells. In
addition, Du et al. synthesized ZIF-8, then utilized Fe2+ to absorb this MOFs [93]. Interestingly, in
the tumor environment, low pH and high GSH content, Fe2+ was oxidized to superparamagnetic
Fe3+, ZIF-8 was degraded into fluorescent agent ZnO. What is more, there was no such change in
the normal cellular environment. Thus, this strategy can be exploited for early cancer diagnosis. In
addition, new indocyanine green (IR820) and Cytarabine (Ara) were co-loaded in ZIF-8 by Zhang et al.
to achieve chemotherapy, fluorescence imaging and PTT [18]. This strategy also combined diagnosis
with treatment. Active targeting has become one of the functions of this platform due to the surface
modification of hyaluronic acid. In addition, Zhang and colleagues synthesized AuNS@MOF-ZD2
nanocomposites, which combined PTT and MRI [94]. The nanomaterial could produce thermal effects
under the irradiation of 808nm light which can induce apoptosis of cancer cells. Magnetic resonance
imaging would diagnose and observe the therapeutic effects. The hemin and Ni were assembled
together to form an enzymatically active metal organic framework, which could undergo a redox
reaction [51]. By folic acid modification, the MOFs would detect the presence of cancer cells very
sensitively, and the generated reactive oxygen species also had a strong killing effect on MCF-7 cells.
This strategy could monitor the prognosis of the tumor in real time, so that the treatment plan could be
adjusted at any time.
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Although active targeting can deliver drugs to tumor tissue, it is more or less metabolized or
pre-released before reaching the tumor tissue. As a result, the researchers demonstrated a nanosystem
that released drugs only in specific areas. There was a door in this drug-loaded nanosystem. The door
was used to lock the drugs in the MOFs. When it reached the tumor area, the door opened and
the drug was released. Two different stimulating drug-released MOFs were presented in Chen’s
report [95]. Both were nucleic acids-based multifunctional MOFs. Nucleic acid double-strand can
cover the drug-loaded MOFs to form a lock and control the release of the drug. The two nanoparticles
surface-modified with the AS1411 aptamer bond to ATP of tumor cells and promoted the internalization
of drug-loaded particles by cancer cells. One of them was sensitive to pH. When the drug-loading
platform was in a weakly acidic tumor microenvironment, the double strands opened, prompting
drug release to take action on cancer cells. The other was a metal ion-dependent drug release system.
Only in the presence of metal ions of DNAzyme and substance complexes, the double strand was
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opened and released the drug. This unique drug delivery system accurately controlled the drug’s
internalization by cancer cells, producing strong cytotoxicity. Based on the same strategy, Zhao modified
the metal organic framework with nucleolin-specific AS1411 aptamers and encapsulated porphyrins
and doxorubicin, which simultaneously achieved pH-sensitive, active targeting and photodynamic
therapy [96]. Currently, Wu has also developed a controlled release strategy based on MOFs, which
used water-soluble carboxylatopillar [6] arene (WP6) as a valve to control drug release [81]. When
the drugs were encapsulated in a nanosystem, under normal conditions, the valve of the system was
closed, the drugs cannot be released, and the valve would open when the drug-loaded particles reached
the designated site, and the drug would be released. The conditions under which the valve was
opened were in a slightly acidic environment or at a slightly higher temperature or a high iron content.
In view of the multi-functional nano-targeting platform has become a hot topic of current researches.
The Fe3O4@UiO-66@WP6 synthesized by Wu was also utilized Fe3O4 as core, which constituted a
magnetically sensitive drug release system. The drug release ability, safety, and effectiveness in vitro
of the system were evaluated, and it was regarded as having application prospects. However, the
study lacked in vivo studies. Whether the system can be used before being metabolized has to be
proven. This strategy can effectively reduce the release of drugs outside the target area to reduce
adverse reactions and improve the therapeutic effect.

4. Possible Challenges of MOFs Application in Cancer Therapy

4.1. Quality Control: from Small-Scale Production in Laboratories to Large-Scale Industrial Production

As mentioned above, MOFs are excellent drug carriers. However, at present, the researches
on the biomedical performance of MOFs remain in small-scale production and experiment in the
laboratory. When MOFs are synthesized in mass production, their quality is often difficult to control
which may lead to the changes in material size, pore size, etc. Drug loading capacity and release rate
will also be affected. Therefore, the development of stable and controllable MOFs is one of the most
serious challenges.

4.2. Toxicity and Biocompatibility

Despite the incomparable advantages, more attention needs to be paid to the in vivo studies of
MOFs, including biocompatibility and toxicity. As degradable materials, the mechanism and metabolic
processes of MOFs in the body need more data to understand. In recent years, a large number of
studies on the in vitro cytotoxicity of MOFs have been reported [27,35,45,55,56,58–61,77]. Although
these data show that MOFs have good biosafety at a given dose, cell models do not demonstrate
that they still display the same biocompatibility in the body. Although some studies have reported
anti-tumor effects of MOFs-based drug delivery systems in experimental animals, studies on their
metabolism and toxicity have rarely been explored.

Zhang et al. used breast cancer nude mice as a model to study the metabolism of Fe3O4@C@PMOF
in nude mice [97]. The nanoparticles can be used for fluorescent imaging in vivo. The researchers
observed fluorescent spots in the liver and lymph nodes, demonstrating that the nanoparticles can
participate in both blood circulation and lymphatic circulation. Subsequently, the tumor area became
the tissue with the brightest fluorescence intensity. Within 8 days, the nanoparticles were eliminated
from the body through feces. The injected mice behaved normally and the weight did not decrease
remarkably. Eight days after injection, no pathological changes were noticed for the main organs of
mice. It shows that the nanoparticles have good biocompatibility. Tarek et al. analyzed the in vivo
toxicity of iron(III) MOFs [98]. All studied parameters (serum, enzyme, histology, etc.) were consistent
with low acute toxicity. The nanomembrane is isolated by the liver and spleen, and then further
biodegraded into iron and organic carboxylic acids, and is directly cleared in urine or feces, maintaining
intact the iron homeostasis. This shows iron(III) carboxylate MOFs nanoparticles are biodegradable and
non-toxic. Chen and his team studied the in vivo biosafety of a porphyrinic MOF nanoplatform [99].
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They evaluated the toxicity of the nanoplatform to the main organs, tissues, and blood of mice.
All indicators are normal, which indicates that the nano system has good security. Ma et al. also
demonstrated the biosafety of quercetin-modified Zr-MOFs through similar experiments [100]. The
nanoparticles did not show organ and blood toxicity. Wang and his colleagues studied the long-term
toxicity of porphyrinic MOF Nanodots in the body [101]. They found that these nanoparticles had
extremely low systemic toxicity and could eventually be cleared through the kidneys.

Anyway, the clinical progression of MOFs still requires a large number of experiments to study its
biological processes and biosafety in vivo. One need to focus not only on the novel and many design
strategies to treat cancers, but also on clearance and toxicity.

4.3. Avoid Drug Release or Immune Clearance Before Reaching the Target Site

The chemotherapeutic drugs usually cause serious adverse reactions to the body. Therefore, it is
important to improve the stability of the targeted drug delivery system so that they were not released
outside the tumor and cause severe adverse reactions to the body. We also are required to prevent
the drug-loaded particles from being cleared by the immune system before reaching the target site.
Taken into account this, biomimetic techniques coated with cell membranes have emerged, but this
technique has higher requirements for materials. Thus, in order to obtain a MOFs-based drug delivery
system suitable for clinical applications, we still require considerable development from the synthesis
to quality control, as well as in vivo process monitoring. Anyway, MOFs-based drug delivery system
has shown an unprecedented advantage.

5. Conclusions and Perspectives

We summarized the research reports on MOFs in tumor targeted therapy in recent years,
and reviewed the tumor targeted therapy of MOFs from four aspects: passive targeting, active
targeting, physicochemical targeting (pH response, light response, magnetic response, gene targeting),
and multi-targeting, in order to provide reference and help for the research of MOFs in the precise
treatment of tumors and other difficult diseases.

The adjustable pore size, biodegradability, and biocompatibility of MOFs make them ideal as
drug delivery systems. However, ordinary MOFs-based drug-loaded granules usually fail to achieve
long-term circulation in the body, which is metabolized prematurely by the body or cleared by the
immune system. These are only to reduce the efficacy. More seriously, when the drug-loaded particles
are in the process of circulation, the premature release of the chemotherapeutic drugs will make these
drugs toxic to normal tissues. Excitingly, the structure of MOFs allows surface modification for targeted
delivery. Targeting strategies can maximize efficacy and minimize adverse effects. Usually a strategy is
not sufficient for the purpose of delivering drugs efficiently. The emergence of multifunctional MOFs
can make up for the shortcomings of a single targeting. Multi-targeted response MOFs nanoparticles
have become the most commonly used strategy. We can also refer other materials to MOFs to absorb a
wide range of advantages. In any case, we always believe that MOFs will be able to demonstrate their
skills in the biomedical field.

Although there are still many challenges for MOFs to be used in actual production, such as
unstable quality and unclear drug metabolism. We firmly believe that through our unremitting efforts,
these problems will be solved in the near future. There is no doubt that targeted delivery systems
based on MOFs are one of the most promising biomedical applications. We look forward to the day
when we can defeat tumors, which will benefit all humanity.
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