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Summary
Background While bulk and single cell transcriptomic patterns in circulating leukocytes from trauma patients have
been reported, how these relate to changes in open chromatin patterns remain unstudied. Here, we investigated
whether single-cell ATAC-seq would provide further resolution of transcriptomic patterns that align with patient
outcomes.

Methods We performed scATAC-seq on peripheral blood mononuclear cells from four trauma patients at <4 h,
24 h, 72 h post-injury and four matched healthy controls, and extracted the features associated with the global epige-
netic alterations. Three large-scale bulk transcriptomic datasets from trauma, burn and sepsis patients were used to
validate the scATAC-seq derived signature, explore patient epigenetic heterogeneity (Epigenetic Groups: EG_hi vs.
EG_lo), and associate patterns with clinical outcomes in critical illness.

Findings Patient subsets with gene expression patterns in blood leukocytes representative of a high global epigenetic
signature (EG_hi) had worse outcomes across three etiologies of critical illness. EG_hi designation contributed inde-
pendent of the known immune leukocyte transcriptomic responses to patient prognosis (Trauma: HR=0.62 [95%
CI: 0.43�0.89, event set as recovery], p=0.01, n=167; Burns: HR=4.35 [95% CI: 0.816�23.2, event set as death],
p=0.085, n=121; Sepsis: HR=1.60 [95% CI: 1.10�2.33, event set as death], p=0.013, n=479; Cox proportional hazards
regression).

Interpretation The inclusion of gene expression patterns that associate with global epigenetic changes in circulating
leukocytes improves the resolution of transcriptome-based patient classification in acute critical illnesses. Early
detection of both the global epigenetic signature and the known immune transcriptomic patterns associates with the
worse prognosis in trauma, burns and sepsis.

Copyright � 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Single-cell ATAC-seq; Trauma; Burns; Sepsis; Critical care; Patient classification
*Corresponding authors at: Department of Surgery, University

of Pittsburgh, PA 15213, USA and Department of Immunology,

Center for Systems Immunology, University of Pittsburgh,

Pittsburgh, PA 15213, USA

E-mail addresses: harinder@pitt.edu (H. Singh),

billiartr@upmc.edu (T.R. Billiar).

www.thelancet.com Vol 76 Month February, 2022
Introduction
The immune system states associated with and underly-
ing the heterogeneity in clinical trajectories of acute crit-
ical illness remain to be elucidated. Transcriptional
profiling of circulating leukocytes has been used to clas-
sify disease trajectories of critically ill patients. Gene
array studies on human whole-blood1 or PBMC2
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Research in context

Evidence before this study

Transcriptomic profiling of circulating immune cells has
the potential to identify distinct patient subtypes that
associate with differential outcomes in acute critical ill-
ness. A large-scale study using bulk blood leukocyte
transcriptomes has revealed outcome associated pat-
terns in trauma (Xiao et al. J Exp Med 2011). Previously,
using signatures extracted from single-cell RNA-seq, we
were able to identify two subgroups (SG1 and SG2) in
whole blood leukocyte transcriptomes of trauma
patients, which were also recapitulated in sepsis and
burn patients (Chen et al. JCI insight 2021). Two major
transcriptomic classifications in adult sepsis have been
reported: SRS1-2 (Davenport et al. Lancet Respir Med
2016) and Mars1-4 endotypes (Scicluna et al. Lancet
Respir Med 2017). Mars3 aligns well with SRS2, and
Mars2 can be largely mapped to SRS1. However, as
highlighted in the recent reviews (Stanski et al. Nat Rev
Nephrol 2020, and Reddy et al. Lancet Respir Med
2020), unresolved differences between these studies
have hampered a harmonized consensus on transcrip-
tome-informed sepsis endotypes.

We hypothesized that epigenetic profiling using sin-
gle-cell ATAC-seq would provide further resolution of
the transcriptomic patterns that align with patient out-
comes in trauma as well as in burns and sepsis. A search
for scATAC-seq analyses on cells or tissues from patients
with critical illness, covering any time prior to paper
submission and using the following strategy “(((single
cell) AND (ATAC)) OR (scATAC)) AND ((trauma) OR (burn)
OR (sepsis) OR (septic shock) OR (hemorrhagic shock))”
identified no scATAC-seq studies in trauma, burns or
sepsis.

Added value of this study

We provide the first scATAC-seq study of immune cells
from trauma patients revealing the global epigenetic
alterations induced after severe systemic injury. These
global changes were linked to unique transcriptomic
patterns that allowed us to define epigenetic subgroups
(EG subtypes) consistently associated with differential
prognosis across three etiologies of critical illness. The
prognostic value of EG subtypes were independent of
the immune response (including inflammation, antigen
presentation, and IFN signaling pathways)-associated
transcriptomic subtypes we previously characterized in
trauma and others have defined in sepsis using bulk
leukocyte transcriptomes. The global epigenetic altera-
tions in acute critical illness potentially involve multiple
biological processes not specific to immune responses,
such as (i) de-repression of polycomb targets (non-
hematopoietic developmental genes), (ii) suppression
of genes involved in DNA repair and (iii) dysregulation
of genes related to RNA processing.

Implications of all the available evidence

The most important implication of these findings is that
immune cell transcriptomic patterns can be

dramatically impacted by not only focal epigenetic reg-
ulatory mechanisms that drive the established immune
responses, but also through global epigenetic changes
that potentially associate with the state of cellular stress
and have a broad impact on diverse biological pro-
cesses. Combining the transcriptomic patterns derived
from the global epigenetic changes with the canonical
immune response patterns adds a new level of resolu-
tion to transcriptomic patient subtyping in acute critical
illness. Subgroups that have transcriptomic patterns in
circulating immune cells that exhibit extreme deviation
from steady state in both the focal and global epige-
netic regulatory mechanisms have the worst outcomes.
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revealed transcriptional patterns that associate with out-
comes after severe injury. We previously performed sin-
gle-cell RNA sequencing (scRNA-seq) on PBMC from
trauma patients and showed that many of the changes
observed in bulk leukocytes could be localized within
the myeloid compartment, notably CD14+ monocytes.3

We applied these gene signatures to the bulk leukocyte
datasets to identify two patient transcriptomic sub-
groups (Signature Groups: SG1 and SG2) in trauma
patients, where SG1 associated with worse outcomes
and had a greater induction of pro-inflammatory genes
and suppression of genes involved in MHC II and IFN
signaling pathways. The two SG subtypes and the asso-
ciation with differential prognosis were recapitulated in
burn and sepsis patients.3

Single-cell assay for transposase-accessible chroma-
tin using sequencing (scATAC-seq)4 provides genome-
wide analysis of open (accessible) chromatin regions
within individual cells derived from heterogenous popu-
lations. Currently, leukocyte scATAC profiles have not
been analyzed in the context of immune dysfunction
associated with acute critical illness. We postulated that
epigenetic profiling using scATAC-seq would comple-
ment transcriptional profiling and generate novel geno-
mic features for analyzing patient heterogeneity
associated with outcomes in trauma as well as in burns
and sepsis. Thus, we assessed the epigenomic changes
that occurred over time in PBMC isolated from patients
suffering severe trauma. scATAC-seq revealed not only
the expected epigenetic patterns associated with known
immune cell transcriptional responses in severely
injured patients but importantly uncovered global chro-
matin alterations across major immune cell types. We
developed a computational genomics strategy to extract
the gene expression signature associated with the global
epigenetic alterations identified by scATAC-seq. This
“global epigenetic signature” was used to explore
patient heterogeneity and the associated clinical out-
comes by analyzing large-scale datasets of whole-blood
leukocyte transcriptomes from trauma, burn and sepsis
patients. We demonstrate that combining the newly
defined transcriptomic patterns revealed by global epi-
genetic alterations (Epigenetic Groups: EG subtypes)
www.thelancet.com Vol 76 Month February, 2022
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with the established immune response transcriptomic
patterns (SG subtypes) provides superior resolution of
patient heterogeneity in acute critical illness than EG or
SG subtyping alone. Patients manifesting transcrip-
tomic patterns in circulating immune cells that are
reflective of the established immune responses as well
as global epigenetic alterations have the worst out-
comes.
Methods

Study design and participants
Patients suffering blunt or penetrating trauma that were
admitted to the intensive care unit of UPMC Presbyte-
rian University Hospital and suffering hypotension (sys-
tolic blood pressure <90 mmHg) or tachycardia (heart
rate > 108) on admission were eligible for enrollment.
Four patients were randomly selected from a larger
cohort enrolled between December 2018 and April
2019. Blood samples were obtained within 4 h of injury
and at 24 h and 72 h after injury. Demographic charac-
teristics of the four patients are shown in Tables S2 and
S3. The healthy controls were recruited based on match-
ing age and sex of each enrolled patient. The raw scA-
TAC-seq datasets in the FASTQ format with filtered
peak/barcode matrix have been uploaded to the Gene
Expression Omnibus (GEO) database (GSE175694).
Ethics
Trauma patients and healthy volunteers were enrolled
in an observational study approved by the University of
Pittsburgh Institutional Review Board (IRB protocol
number: 19040329). Informed consent was obtained
from all the subjects or next of kin.
Procedures
Human peripheral blood mononuclear cells (PBMCs)
were isolated by standard Ficoll centrifugation (Ficoll-
Paque PLUS, Cat#17-1440-03, GE Healthcare). The
isolated cells were cryopreserved and thawed for
analysis according to the 10x Genomics protocol
(CG00039_RevC). After thawing, the cells were resus-
pended in calcium and magnesium free buffer (PBS
with 0.04% BSA) and immediately processed for nuclei
isolation, strictly following the 10x Genomics protocol
(CG000169_RevD). Chromium Next GEM Single Cell
ATAC Library & Gel Bead Kit v1.1 (Cat#1000175, 10x
Genomics), Chromium Next GEM Chip H Single Cell
Kit (Cat#1000162, 10x Genomics) and Single Index Kit
N Set A (Cat#1000212, 10x Genomics) were purchased
for scATAC library preparation. The experimental steps
strictly followed the 10x Genomics Next GEM single-
cell ATAC kit v1.1 protocol (CG000209_RevD). Librar-
ies were pair-end and dual-indexing sequenced on an
Illumina NovaSeq 6000 in the UPMC Genome Center.
www.thelancet.com Vol 76 Month February, 2022
The BCL files generated by an Illumina sequencer
were processed by the Cell Ranger Atac pipeline (v1.2.0)
and mapped to GRCh38 human reference genome. The
generated peak-by-barcode count matrix was processed
using Signac5 (R package, v1.0.0.9000) and Seurat6 (R
package, v3.2.0). We removed the cells that failed quality
control (as described in the Supplementary methods),
leading to an average of 3562.5 cells/sample (57,000
cells/ 16 samples) that passed quality control. Taking
advantage of 15-state ChromHMM model,7 we gener-
ated a new count matrix, the state-by-barcode count
matrix, to evaluate global epigenetic alterations in CD14
+ monocytes as described in the Supplementary meth-
ods. The cells fell into two groups of clusters displaying
high vs. low global epigenetic alterations (Global_hi vs.
Global_lo). Differential accessible peaks were identified
between the two groups. The “global epigenetic sig-
nature” is a composite of the peaks that were more
accessible in Global_hi. The peaks were annotated to
the nearest genes using ChIPseeker8 (R package,
v1.20.0) yielding the genes used to derive the global epi-
genetic signature. We calculated the signature score of
global epigenetic signature in the scATAC-seq data of
other immune cell types.

We queried a published, large-scale, whole-blood leu-
kocyte transcriptomic dataset from trauma patients
(GSE36809). For biological interpretation of the global
epigenetic signature, we extracted the genes that
showed an intermediate to high correlation with the
global epigenetic signature (Spearman’s correlation: |r|
� 0.4) and performed Gene Set Enrichment Analysis
(GSEA).9

To explore epigenetic heterogeneity of trauma
patients, we used the global epigenetic signature genes
to cluster each patient at the first sampled time point
using hierarchical clustering based on the method of
Ward. The identified patient clusters were further anno-
tated as EG_hi or EG_lo (Epigenetic Group: high vs.
low) based on the expression level of the global epige-
netic signature genes. We identified differential
expressed genes (DEGs) between the two EG subtypes
using limma (R package, v3.40.6) and then performed
GSEA. Univariate and multivariate time-to-event analy-
sis (event = recovery) were performed using survival (R
package, v3.1.8).

We also explored the epigenetic heterogeneity in
published, large-scale, whole-blood leukocyte transcrip-
tomic datasets from burn (GSE37069) and sepsis
(GSE65682) patients, two other major etiologies leading
to critical illness. Considering the shared features of
critical illness and potential unique features from the
different etiologies, we used DEGs between two EG sub-
types of trauma patients (top 2000 up + top 2000
down) as the pool of epigenetic associated genes. Then,
the variable epigenetic associated genes were used to
cluster burn and sepsis patients within the correspond-
ing dataset using hierarchical clustering according to
3
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the method of Ward. Similar to the analysis in trauma
patients, the identified patient clusters were annotated
as EG_hi or EG_lo. We also performed survival analysis
and adjusted for potential covariates.

We illustrate the full analytic work flow in Figure 1
and summarize the major conclusions in a table of the
results (Table S1).
Statistical analysis
Statistical analysis was performed under R 3.6.0. To
identify the DA peaks between two clusters, we selected
Signac5 (R package, v1.0.0.9000) using logistic regres-
sion and adding the total number of fragments and
experimental batches as latent variables. The detected
DA peaks were adjusted by the Bonferroni method
(default method by Signac) for multiple testing. For
enrichment analysis, raw hypergeometric p values were
corrected by Benjamini-Hochberg method using the p.
adjust() function (method = ‘BH’) for multiple testing.
The adjusted p value was considered statistically signifi-
cant at < 0.05. For comparison between groups, cate-
gorical variables were quantified by Fisher’s Exact Test,
and the continuous variables were quantified by
Wilcoxon’s Rank-Sum Test, and two-sided p values
were computed. Univariate time-to-event analysis was
done by Kaplan-Meier analysis (log-rank test). Multivari-
ate time-to-event analysis was performed by Cox propor-
tional hazards regression. Age, sex, other variables
unevenly distributed between the two EG subtypes, and
the SG subtypes we previously defined were adjusted by
Cox proportional hazards model. Sample size based on
feasibility and available subjects based on past experi-
ence should provide sufficient provision. Post-hoc sam-
ple size justification for the analysis of each bulk dataset
is provided in Supplementary methods. Blinding was
not applicable since no specific grouping was involved
in signature extraction.
Outcomes
The primary goal of this study was to characterize the
trauma-induced epigenetic changes. We established the
epigenetic heterogeneity and corresponding prognostic
value for trauma patients. We also queried burn and
sepsis patents, and found that high global epigenetic
alterations (EG_hi) were consistently associated with
poor prognosis across three major etiologies for critical
illness.
Bias and confounding
When performing scATAC-seq analysis batch effects
can lead to critical confounding bias if not controlled for
appropriately. To minimize the influence of batch
effects, we first processed and sequenced our samples
in parallel batches. Four samples for each
patient + healthy control (1-paired healthy control + 3-
time points for each patient) were processed in parallel.
For 4 patients, this means that 16 samples were proc-
essed in 4 parallel batches. That a single cluster of den-
dritic cells and single cluster of CD16+ monocytes were
identified across the 16 samples in contrast to identifica-
tion of multiple clusters of CD14+ monocytes after
trauma further confirmed that the batch effects were
minimal compared with the biological changes (Figures
S2a�S2c). In addition, we always added batch as a
latent variable when extracting DA peaks between clus-
ters. We also expect a selection bias for each large-scale
dataset, due to study-specific inclusive and exclusive cri-
teria. However, since we queried three bulk datasets
from different studies, we reasoned that our conclu-
sions should be generalizable.
Role of funding source
This project was supported by an R35 grant from
National Institutes of Health: 1R35GM127027-01 (T.B.).
The funding source did not have any role in study
design, data collection, data analyses, interpretation or
writing of report.
Results
To characterize the accessible chromatin regions in cir-
culating cells after severe injury, we isolated PBMCs
from four trauma patients across three time points
(<4 h, 24 h, 72 h) post-injury (Tables S2 and S3). These
cells were analyzed in parallel with age and sex matched
healthy controls yielding a total of 16 samples that were
subjected to scATAC-seq with a total of »57,000 cells
passing quality control (see Supplementary methods for
the filtering criteria) (Figure S1). The epigenomic pro-
files comprised of open chromatin regions revealed pro-
nounced shifts over time after trauma that were
distinguishable from their steady state counterparts
(Figures S1b�S1d).

Given our previous scRNA-seq analyses of CD14+
monocytes in severely injured patients,3 we first ana-
lyzed for corresponding chromatin alterations within
this immune cell type using a peak-by-barcode matrix
(Supplementary analysis and Figures S2�S5). We reca-
pitulated our previous scRNA-seq findings in scATAC-
seq. Specifically, the up-regulation of inflammatory
genes and the down-regulation of MHC II pathway
components and IFN signaling after trauma were
largely reflected with changes in differentially accessible
(DA) chromatin peaks associated with enhancers (Enh),
active transcription start sites (TssA) or flanking active
transcription start sites (TssAFlnk) (Figure S3d, anno-
tated in blue). We also observed an increased ratio of
DA peaks associated with bivalent histone modifications
at Tss or Enh regions after trauma (Figure S3c, desig-
nated with red arrows). These bivalent regions were
enriched for transcription factor binding site motifs for
www.thelancet.com Vol 76 Month February, 2022



Figure 1. The whole work flow of this study.
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the HOX, PAX and LMX families (Figure S3d, anno-
tated in red), that encode embryonic regulators of devel-
opmental patterning.10 Alterations of such
developmental genes was not anticipated in mature
immune cells. We hypothesized that this was due to
extreme cellular stress caused by trauma and could be
reflected by global epigenetic alterations.

To systematically evaluate the global epigenetic alter-
ations within CD14+ monocytes (analysis depicted in
Figure 2a), we took advantage of the chromHMM 15-
state model (E124: the model for CD14+ monocytes).7 A
state-by-barcode matrix was generated by counting total
cut sites for each of the 15 states in individual cells for
all CD14+ monocytes. Seven clusters were identified
based on the new count matrix (Figures 2b and S6a).
These clusters are referred to as “State15_CC#” (Cell
Cluster based on 15States) in order to distinguish the
clusters from the peak-by-barcode matrix mentioned
above. Cell cycle phases were evenly distributed across
these seven clusters (Figure S6b). Hierarchical cluster-
ing demonstrated that the seven State15 clusters could
be generally classified into two categories (Figure 2c).
State15_CC4, 5, 2 and 1 aligned with the accessibility
patterns in the reference epigenome. In contrast,
State15_CC0, 3 and 6 exhibited greater accessibility in
regions that were less accessible in the reference epige-
nome. This indicated that CD14+ monocytes repre-
sented by State15_CC0, 3 and 6 underwent higher
global epigenetic alterations than cells from
State15_CC4, 5, 2 and 1. Thus, State15_CC0, 3 and 6
were defined as “Global_hi”, while State15_CC4, 5, 2
and 1 were designated as “Global_lo” (Figure 2d). Fur-
thermore, the cells of Global_hi were prominent after
trauma (Figure 2e). These results supported our hypoth-
esis that trauma induced global epigenetic alterations in
CD14+ monocytes.

Next, we sought to directly extract the features associ-
ated with the global epigenetic alterations by identifying
the DA peaks between the cells of Global_hi vs. Glob-
al_lo (Figure 2a, Supplementary Spreadsheet 1). A total
of 83 peaks were statistically significantly more accessi-
ble in the Global_hi cells, while no peaks were statisti-
cally significantly more accessible in the Global_lo cells.
These 83 peaks were associated with 65 unique genes.
Among MSigDB11 (v5.2) C2 curated gene sets (Supple-
mentary Spreadsheet 1), the top enriched gene sets (p <
0.05) associated with the global epigenetic signature
largely involved polycomb targets (SUZ12 targets or
domains with H3K27me3) and bivalent domains. Con-
sistent with these targets, the top enriched GO terms
were associated with neuron development or morpho-
genesis, which are known to involve developmental
genes marked by bivalent domains and regulated by pol-
ycomb-group proteins (PcG).10 We used these findings
to define a “global epigenetic signature” that could be
identified by assessing the either the 83 DA peaks or the
65 associated genes.
Because the genes associated with morphogenesis
and neuron development would not be expected to be
expressed in myeloid, or even in hematopoietic lineages,
we next asked whether other types of immune cells
underwent similar epigenetic changes after trauma. To
assess this, we calculated the average accessibility of the
global epigenetic signature (83 peaks) in other major cir-
culating immune cell types using our scATAC-seq data.
Notably, B cells, NK and T cells, DC and CD16+ mono-
cytes also showed an increase in the accessibility of
peaks representing the global epigenetic signature after
trauma (Figure S7). Thus, the global epigenetic changes
appear to be a generalized genomic feature reflected by
major immune cell types in trauma patients. Indepen-
dent analysis of global epigenetic alterations in T cells
using the pan T cell E034 reference epigenome7 also
supported this conclusion (Supplementary analysis,
Figure S8).

We next sought to validate the global epigenetic sig-
nature inferred from our profiling of chromatin states
using transcriptional datasets. Since the global epige-
netic alterations took place across the major circulating
immune cell types after trauma, we reasoned that the
transcriptional impact on the associated genes would be
detectable within the bulk transcriptional profiles of
whole-blood leukocytes. Thus, we queried a published,
large-scale, whole-blood leukocyte transcriptomic data-
set from trauma patients (n=167, Figure 3a).1 A total of
37 of the 65 genes that comprised the global epigenetic
signature were present in the trauma dataset. Com-
pared with the healthy controls, the genes associated
with the global epigenetic signature were clearly up-reg-
ulated after trauma. Furthermore, this up-regulation
persisted in patients with a slow recovery based on unre-
solved organ dysfunction (time-to-recovery [TTR] � 14
days) and was maintained at an even higher level in the
patients that failed to recover within 28 days after injury
(Figure 3b). To further interpret the global epigenetic
alterations, we extracted the genes from this bulk data-
set that were highly or intermediately correlated with
the global epigenetic signature genes (Spearman corre-
lation: |r| > 0.4) and performed GSEA (Gene Set
Enrichment Analysis)9 using the correlation coefficient
as the rank (Figure 3a). As anticipated, the gene sets
included polycomb and bivalent domain targets that
were statistically significantly enriched in genes posi-
tively correlated with the global epigenetic signature
(Figure 3e�3g, Supplementary Spreadsheet 2). Thus,
the transcriptional signature derived from the trauma-
induced global epigenetic alterations observed in single
cell analysis (4 representative patients) was reflected in
a bulk whole-blood leukocyte transcriptomic dataset
(167 patients). In addition, we also observed enriched
gene sets that were negatively correlated with the global
epigenetic signature. These were associated with DNA
repair and RNA processing (Supplementary Spread-
sheet 2), indicating that the global epigenetic alterations
www.thelancet.com Vol 76 Month February, 2022



Figure 2. Characterization of global epigenetic changes across ChromHMM 15 states in CD14+ monocytes.
(a) Schematic of workflow of how the state-by-barcode count matrix was generated and the global epigenetic signature was

extracted, n=4 patients (16 samples) (b) UMAP was performed and color coded by the cell clusters identified based on the state-by-
barcode matrix. These clusters are referred to as “State15_CC#”. (c) Hierarchical clustering of the State15_CC# clusters shown in (b),
revealing two distinct groups of clusters showing high vs. low global epigenetic alterations: Global_hi vs. Global_lo. (d) UMAP plot
as shown in (b) was color coded by the two groups revealed in (c). (e) The changes in cell composition in each of the 4 patients at
each sampled time point.
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could be involved in multiple biological processes
including, de-repression of polycomb targets (non-
hematopoietic developmental genes), deficiency in
DNA repair, and dysregulation of RNA processing.
Importantly, no genes from the previously identified
SG transcriptomic signatures3 had a Spearman correla-
tion coefficient |r| > 0.4 (Figure 3c, 3d), indicating that
the chromatin alterations revealed by our epigenetic
profiling yielded a new set of actionable trauma-induced
gene expression changes.

Next, we sought to determine if we could identify
patient heterogeneity based on the genes associated
with the global epigenetic response to systemic injury.
Using the trauma bulk gene array from the 167 severely
injured patients referenced above1, we extracted the
global epigenetic signature genes to cluster the patients.
This was done based on 37 genes from the global
www.thelancet.com Vol 76 Month February, 2022
epigenetic signature that were present in the trauma
bulk gene array data. Based on the first timepoint (»12
h after injury), patients were clustered into three groups
(T1�T3) (Figure 4a, Supplementary Spreadsheet 3). T3
patients showed obviously higher expression of the
global epigenetic signature compared with T2 and T1.
Thus, T3 patients were annotated as EG_hi, and T1 and
T2 patients were annotated as EG_lo (Figure 4b). EG_hi
trauma patients also tended to have a persistent up-reg-
ulation of the global epigenetic signature along the 28-
day timeline (Figure S9).

To further analyze the transcriptomic profiles
between trauma epigenetic subtype EG_hi vs. EG_lo,
we identified the DEGs between these two groups of
patients and performed GSEA (Figure S10a). The genes
up-regulated in EG_hi trauma patients were largely
associated with bivalent domains and polycomb targets
7



Figure 3. Validation of the global epigenetic signature in trauma bulk microarray data.
(a) Schematic of the workflow of the analysis shown in this figure, including 167 trauma patients sampled longitudinally (775

samples) and 37 healthy controls. (b) The changes in global epigenetic signature scores after trauma, color coded by different clini-
cal trajectories (TTR: Time-To-Recovery). Curves were fitted by Loess regression. (c,d) Spearman’s correlation coefficients were com-
puted for a genome-wide gene correlation with the global epigenetic signature score. Density plot of correlation coefficients r

were plotted in (c). |r|= 0.4 was labeled as the vertical dashed lines. The genes from the CD14+ signatures we previously used to
define SG subtypes (called SG signatures and largely associated with inflammation, MHC II expression and IFN signaling) were color
coded in blue as shown in (d). (e�g) GSEA results of hallmark gene sets (e), curated gene sets (f) and GO terms (g) (MSigDB gene
sets v5.2) using the highly-to-intermediately correlated genes identified above (|r| > 0.4). The enrichment p value was computed
by fgsea (R package) with 10,000 permutations, and corrected by Benjamini-Hochberg method for multiple testing. The statistically
significantly enriched pathways were shown (adjusted p-value < 0.05) and sorted by normalized enrichment scores (NES). NES > 0
indicates that the enriched gene set is positively associated with global epigenetic signature, and NES < 0 indicates a negative cor-
relation. If the number of significantly enriched pathways was more than 15, only the top 15 pathways were shown in the figure.
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(targets of PRC2, EED, SUZ12 or domains with
H3K27me3) (Figure S10b�S10d, Supplementary
Spreadsheet 4). The genes down-regulated in EG_hi
trauma patients were generally enriched in RNA proc-
essing and DNA repair. This was consistent with the
GSEA analysis described above using the genes found
www.thelancet.com Vol 76 Month February, 2022



Figure 4. Epigenetic subtypes and their prognostic value in trauma patients.
(a) Hierarchical clustering of trauma patients by global epigenetic signature genes with an available expression value in the

trauma dataset. The 1st sampled time point (»12 h of injury) for each patient (n = 167 samples) was extracted for the clustering
analysis. Three distinct clusters of trauma patients (Epigenetic groups: T1�T3) were observed. (b) Identified patient clusters were fur-
ther annotated as EG_hi or EG_lo, based on the global epigenetic signature scores. The boxes span from the Q1 to the Q3, with the
centerline showing the median. Lower whiskers represent Q1 - 1.5*IQR, and upper whiskers represent Q3 + 1.5*IQR (Q1: the first
quantile, Q3: the third quantile, IQR = Q3 - Q1). (c�e). Time-to-event analysis between EG_hi vs. EG_lo trauma patients. The event
was set as recovery (absence of organ dysfunction). (c) Univariant analysis by Kaplan-Meier estimate. Log-rank p value is shown. (d)
Multivariant analysis using Cox model to adjust potential co-variants of EGs. (e) Multivariant analysis using Cox model to further
adjust for SG subtype designations.
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to highly correlate with the global epigenetic signature
(Figure 3e�g, Supplementary Spreadsheet 2) and the
gene set over-representation test directly using global epi-
genetic signature genes (Supplementary Spreadsheet 1).
Therefore, the 37 gene subset derived from the published
bulk leukocyte gene array data are likely to be representa-
tive of the global epigenetic alterations and sufficient to
define epigenetic subtypes in trauma patients.

We next compared clinical outcomes between the
EG_hi versus the EG_lo trauma patients. EG_hi trauma
patients showed a trend towards slower recovery
(Kaplan-Meier analysis: log-rank p value = 0.076, Haz-
ard Ratio [HR] = 0.74 [95%CI: 0.53�1.03], Figure 4c),
compared with EG_lo patients. Sex, height, ISS (Injury
Severe Score) and total crystalloids received within 12 h
after injury (TOTAL_XLOIDS_12HR, a marker of worse
disease state) were statistically significantly and
www.thelancet.com Vol 76 Month February, 2022
differentially distributed between EG_hi vs. EG_lo
(Table S4). After adjusting for age, sex and the other
unevenly distributed co-variants between two EG
groups, the p value for EG classification became statisti-
cally significant (Cox regression: p = 0.005, HR = 0.6
[0.41�0.86] Figure 4d). We then added the SG designa-
tion,3 the transcriptomic subtypes that define the well-
established immune response transcriptomic patterns
in myeloid cells after trauma, into the Cox model. Both
SG1 (more pronounced immune response) and EG_hi
were statistically significantly and independently associ-
ated with slower recovery (EG_hi: p = 0.01, HR = 0.62
[0.43�0.89]; SG2: p = 0.003, HR = 1.69 [1.20�2.38],
Cox regression, Figure 4e). This analysis suggests there
are two distinct mechanisms that contribute to the dif-
ferential prognosis following systemic injury that are
reflected by the SG and EG subtypes.
9
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We have previously shown that the SG subtypes and
their association with differential prognosis can be reca-
pitulated using leukocyte transcriptomic datasets from
burn and sepsis patients.3 To determine if our findings
on global epigenetic heterogeneity in trauma could also
be identified in burn and sepsis patients, we first sought
to use the global epigenetic signature genes that were
used to cluster trauma patients to cluster burn and sep-
sis patients using published gene array datasets (Burns:
GSE37069; Sepsis: GSE65682). However, the patient
clusters based on these signature genes did not show an
obvious association with survival, the outcome endpoint
provided in these studies. This led us to hypothesize
that while these other etiologies for acute critical illness
are likely to be influenced by global epigenetic pro-
cesses, the gene co-expression patterns may vary by eti-
ology. Hence, the limited number of genes in the global
epigenetic signature derived from trauma patients may
not be sufficient to define the full profile of heterogene-
ity for other etiologies. Therefore, we took two steps to
identify epigenetic-associated genes for clustering burn
and sepsis patients. In step 1, we extracted the top 2000
up-regulated and top 2000 down-regulated genes in
EG_hi vs. EG_lo trauma patients to obtain a broad set of
initial features of potential relevance. These 4000 top
DEGs are displayed by heatmap and is comprised of three
Gene Clusters (GC), including: Trauma_GC3 (highly
expressed in EG_hi trauma patients), Trauma_GC2
(markedly suppressed in EG_hi trauma patients) and a
small fraction of relatively less variable genes (Trau-
ma_GC1) (Figure S10e). In step 2, we used only the vari-
able genes (standard deviation of scaled expression � 0.5
among the analyzed samples) from the top 4000 DEGs to
cluster the burn and sepsis patients.

Using a longitudinal burn whole blood transcrip-
tomic dataset we extracted the 1st time point from all
adult burn patients (� 18 y, n = 121). Based on the two
steps described above, 1482 genes were used to cluster
burn patients (Figure 5). There were three easily distin-
guishable subgroups of burn patients (B1�B3)
(Figure 5a). B2 was the only subgroup with a global epi-
genetic signature higher than healthy controls
(Figure 5b). Thus, B2 patients were annotated as EG_hi,
and B1 and B3 were annotated as EG_lo (Supplementary
Spreadsheet 5). EG_hi burn patients had worse survival
(K-M analysis: log-rank p = 0.019, HR = 4.31
[1.14�16.52], Figure 5d). For co-variants, BAUXSCORE
and MAX_DENVER_2_SCORE (two burn and trauma
severity scores) were unevenly distributed between
EG_hi vs. EG_lo (Table S5). After adjusting for age, sex,
the unevenly distributed co-variants and SG classifica-
tion, EG_hi burn patients still showed a trend towards
worse survival compared with the other burn patients
(Cox regression: p = 0.085, HR = 4.35 [0.816�23.2],
Figure 5e,f). Furthermore, the gene expression profile
of EG_hi burn patients (gene cluster: Burn_GC2,
Figure 5a and Supplementary Spreadsheet 6) can be
generally mapped to EG_hi trauma patients (gene clus-
ter: Trauma_GC3) (Figure 5c). Unlike the adult blunt
trauma group, the complete burn dataset contained a
large number of young children and infants (n = 120).
The prognostic value of the EG subtypes showed a dif-
ferent pattern between the patients � 18 y vs. <18 y
(Figure S11). In contrast, the prognostic value of SG sub-
type designation exhibited a similar pattern between the
two burn patient age groups. This finding suggests a
lower influence of global epigenetic alterations on the
outcomes of young children after burns.

The sepsis dataset12 contained a single sampled time
point for each patient within 24 h of ICU admission. All
but one patient in this dataset were � 18 y (one patient
was 17 y) and we included all patients from both the dis-
covery and validation cohorts, for a total of 479 patients
(Figure 6). After applying our two-step process, 976
genes were used to cluster these 479 patients. Sepsis
patients were generally clustered into three epigenetic
groups (S1�S3, Figure 6a). S3 patients were the only
subgroup with a global epigenetic signature higher than
healthy controls. Thus, S3 patients were annotated as
EG_hi, and S1 and S2 patients were annotated as EG_lo
(Figure 6b, Supplementary Spreadsheet 5). Consistent
with the burn and trauma findings, EG_hi sepsis
patients also experienced worse survival compared to
the other sepsis patients (K-M analysis: log-rank
p = 0.012, HR = 1.6 [1.11�2.33], Figure 6d). No baseline
variables were unevenly distributed between the two EG
groups (Table S6). Thus, after adjusting for age, sex and
SG classification by Cox model, the EG_hi sepsis sub-
type still statistically significantly associated with worse
survival (Cox regression: p = 0.013, HR = 1.60
[1.10�2.33], Figure 6e,f).

EG_hi sepsis patients highly expressed the gene
cluster Sepsis_GC1 (Figure 6a and Supplementary
Spreadsheet 6). Surprisingly, Sepsis_GC1 was more
enriched in genes found in Trauma_GC1 (relatively low
variable DEG in trauma) compared with Trauma_GC3
(highest expression in EG_hi trauma patients)
(Figure 6c). This indicates that sepsis patients exhibit a
down-stream co-expression pattern somewhat distinct
from trauma and that a single cell epigenomic analysis
is warranted to identify the sepsis-specific epigenetic
changes. Despite these differences, the GSEA based on
the DEGs between sepsis EG_hi and EG_lo (Figure S12,
Supplementary Spreadsheet 7) generally showed a pat-
tern similar to the results obtained between the two EG
groups in trauma patients (Figure S10b�S10d). Thus,
by querying three large-scale bulk transcriptomic data-
sets, we were able to demonstrate the global epigenetic
alterations based on EG subtypes, as a shared prognos-
tic factor across different etiologies of critical illness.

As a proof-of-concept analysis, we performed LASSO
regression to extract a group of genes as a classifier to
distinguish EG_hi vs. EG_lo trauma patients. We ran-
domly sampled the 167 patients into training set (80%)
www.thelancet.com Vol 76 Month February, 2022



Figure 5. Epigenetic subtypes and their prognostic value in burn patients.
(a) Epigenetic subtypes in adult burn patients. The 1st sampled time point for each patient was extracted for the clustering anal-

ysis. The top 2000 up and top 2000 down DEGs between trauma EG_hi and EG_lo patients that showed standard deviation of scaled
expression � 0.5 among the 121 burn samples were used to cluster burn patients (Epigenetic groups: B1�B3). These genes largely
fell into two gene clusters Burn_GC1-GC2. (b) Identified burn patient clusters were further annotated as EG_hi or EG_lo, based on
the global epigenetic signature scores. The boxes span from the Q1 to the Q3, with the centerline showing the median. Lower
whiskers represent Q1 - 1.5*IQR, and upper whiskers represent Q3 + 1.5*IQR (Q1: the first quantile, Q3: the third quantile, IQR = Q3 -
Q1). (c) Mapping of gene clusters (Burn_GC#) derived from burn patients to those identified in trauma patients (Trauma_GC#). Fold
enrichment was computed between each Burn_GC# and each Trauma_GC# and then scaled between 0 to 1 for each Burn_GC#.
(d�f) Survival analysis between EG_hi vs. EG_lo burn patients. (d) Univariant analysis by Kaplan-Meier estimate. Log-rank p value is
shown. (e) Multivariant analysis using Cox model to adjust potential co-variants. (f) Multivariant analysis using Cox model to further
adjust for SG subtype designation.

Articles
and test set (20%). A total of 40 genes were selected
using the training set and these achieved an accuracy of
0.97 in the test set (Figure S13). This analysis demon-
strates the feasibility of classifying EG subsets by assess-
ing the expression levels of a small set of genes in blood
samples. The classifier may need to be tuned based on
the transcriptomic platform and it will be necessary to
establish etiology-specific classifiers for burn and sepsis
patients.
Discussion
This study characterized the open chromatin patterns
using scATAC-seq on PBMC from humans undergoing
www.thelancet.com Vol 76 Month February, 2022
the acute systemic stress of trauma. Using standard
ATAC seq analytic methods combined with the
ChromHMM 15-state epigenome model7 within CD14+
monocytes, we show that known changes in transcrip-
tomic patterns associated with the immune dysfunction
of critical illness largely relate to established focal
changes in active chromatin states (TssA/TssAFlnk/
Enh) of the reference monocyte epigenome (Figure
S3d). Unexpectedly, we also found that trauma induced
global epigenetic alterations and that these changes
were observed across major immune cell types. The
transcriptomic patterns with higher expression of the
global epigenetic signature extracted from the scATAC-
seq data was associated with worse outcomes in trauma
11



Figure 6. Epigenetic subtypes and their prognostic value in sepsis patients.
(a) Epigenetic subtypes in sepsis patients. The top 2000 up and top 2000 down DEGs between trauma EG_hi and EG_lo patients that also showed standard deviation of scaled expression

� 0.5 among the analyzed sepsis samples were used to cluster sepsis patients (Epigenetic groups: S1�S3). These genes fell into four gene clusters Sepsis_GC1-GC4. (b) Identified sepsis
patient clusters were further annotated as EG_hi or EG_lo, based on the global epigenetic signature scores. The boxes span from the Q1 to the Q3, with the centerline showing the median.
Lower whiskers represent Q1 - 1.5*IQR, and upper whiskers represent Q3 + 1.5*IQR (Q1: the first quantile, Q3: the third quantile, IQR = Q3 - Q1). (c) Mapping of gene clusters (Sepsis_GC#)
derived from sepsis patients to those identified in trauma patients (Trauma_GC#). Fold enrichment was computed between each Sepsis_GC# and each Trauma_GC# and then scaled
between 0 to 1 for each Sepsis_GC#. (d-f) Survival analysis between EG_hi vs. EG_lo sepsis patients. (d) Univariant analysis by Kaplan-Meier estimate. Log-rank p value is shown. (e) Multivar-
iant analysis using Cox model to adjust potential co-variants. (f) Multivariant analysis using Cox model to further adjust SG subtype designations.
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patients, a finding recapitulated in independent tran-
scriptomic datasets from burn and sepsis patients.
Thus, global epigenomic changes represent a previously
unrecognized contributor to transcriptomic patterns in
acute critical illness.

From our previous studies3 and the studies of
others13,14 using single cell RNA sequencing of PBMC
from critically ill patients, a common finding across
trauma and sepsis is the up-regulation of pro-inflamma-
tory genes and suppression of genes associated with
MHC and interferon signaling in myeloid cells. We pre-
viously characterized two patient subtypes referred to as
SG1 or SG23 that are distinguished by the magnitude in
these prototypic changes. SG1 designation (higher mag-
nitude changes) early in the clinical course aligned with
delayed recovery after trauma, and higher mortality in
burns and sepsis. In this scATAC study, we go beyond
the information captured by single cell transcriptomics
to identify EG (epigenetic group) subtypes representing
different degrees of global epigenetic alterations and the
associated transcriptomic features. The patients with
the highest levels of global epigenetic alterations
(referred as EG_hi) in whole blood leukocytes were asso-
ciated with the worst prognosis across the three etiolo-
gies of critical illness. Furthermore, the designation of
EG subtype had prognostic value independent of catego-
rizing patients based on SG subtypes.

The well-described inflammatory and immune sup-
pressive transcriptomic changes during acute critical ill-
ness largely associate with focal epigenetic changes
regulating immune response-associated genes, mainly
involving Tss or Enh regions. By comparison, the tran-
scriptomic changes that associate with the global epige-
netic alterations associated with several biological
processes not known to be associated with immune
responses, including de-repression of polycomb targets,
and suppression of genes involved in DNA repair, and
RNA processing. Polycomb group proteins are a well-
characterized system for controlling developmental
genes. Polycomb repressive complexes 2 (PRC2) cata-
lyzes the methylation of histone H3K27 and facilitate
the binding of PRC1, which is associated with gene
silencing and chromatin compaction.15 The aberrant de-
repression of polycomb targets caused by acute stress of
trauma, sepsis or burns may interfere with immune cell
functions. Deficient DNA repair could also contribute to
dysfunctional immune responses due to a failure to res-
cue activated cells from DNA damage.16 Non-coding
RNAs (ncRNA) act as vital epigenetic mediators to coor-
dinate gene expression.17 The factors and molecular
mechanisms that drive dysregulation of epigenetic regu-
lators during acute cellular stress and the ensuing alter-
ations in gene expression remain to be elucidated.

Transcriptomic subtypes based on bulk mRNA anal-
ysis of whole blood leukocytes have been characterized
in adult sepsis patients, yielding two major patient clas-
sifications: SRS1-218 and Mars1-4.12 The Mars3
www.thelancet.com Vol 76 Month February, 2022
transcriptomic pattern align well with SRS2, and Mars2
can be largely mapped to SRS1 (2nd and 3rd bar in the
original Figure S7D of Mars study12). The SRS study
demonstrated that SRS1 designation was associated
with a worse prognosis than SRS2. The Mars study
demonstrated that the Mars1 endotype consistently
associated with poor prognosis, while classification as
Mars2-4 was not as clinically useful for prognosis. How-
ever, 60�70% Mars1 patients were classified as SRS2
rather than SRS1 (1st bar in original Figure S7D of Mars
study12). We had demonstrated in our previous report
the following3: (i) SG and SRS classifications largely
overlap (SG1 � SRS1, SG2 � SRS2); (ii) three out of
four Mars subtypes can be generally mapped to SG sub-
types (Mars2 � SG1, Mar3 & 4 � SG2); (iii) Mars1 has
characteristics distinct from SG or SRS subtyping.
Taken together, this indicates that classification of sep-
sis patient heterogeneity based on leukocyte transcrip-
tomic patterns has significantly advanced the field but
has not led a complete consensus picture. Mars1
patients were reported to exhibit a pronounced decrease
in both innate and adaptive immune responses with a
selective increase in genes associated with heme metab-
olism.12 Our examination of the relationship between
Mars endotypes and the epigenetic subtypes defined in
the current study found that the majority of Mars1
patients would be classified as EG_hi sepsis patients
(Figure S14). This raises the possibility that Mars1 is dis-
tinguished from other sepsis outcome groups, in part,
by greater global epigenetic alterations.

Some consistencies emerge from our previous and
current analyses of the transcriptomic data from leuko-
cytes derived from trauma, burn and sepsis patients.
These include the following: (i) For SG subtypes, SG1
(high inflammation and suppressed MHC II and IFN
signaling) always associates with worse prognosis; (ii)
For EG subtypes, EG_hi associates with worse progno-
sis; (iii) The prognostic value of EG or SG designation
are independent. We also note that the co-occurrence
relationship between SG1 and EG_hi did not show a
consistent pattern across these three datasets (Trauma:
OR = 2.52 [95%CI: 1.21�5.49], p = 0.008; Burn:
OR = 0.9 [95%CI: 0.41�2.13], p = 1; Sepsis: OR = 0.77
[95%CI: 0.51�1.15], p = 0.204, Figure S15, two-sided
Fisher’s exact test). This supports the notion that the
factors that drive the pathologic SG and EG gene signa-
tures are part of distinct biologic processes. Differential
global epigenetic heterogeneity, which reflects pro-
cesses distinct from inflammation, may also be a factor
in the failure of trials targeting the inflammatory
response in human sepsis.19

There are limitations to our study. First, the scATAC
cohort was derived from a limited number of trauma
patients with differences in cell viability (13 samples
with viability > 80% and 3 samples with viability
65�80%). However, we were able to characterize and
confirm the single-cell derived signatures in whole
13



Figure 7. Proposed new model for transcriptome-based patient classifications during critical illness. Schematic depicts the independent contribution of the EG and SG designation based on
blood leukocyte transcriptomic patterns measured during acute critical illness.
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blood leukocyte transcriptomes in hundreds of patients
across three etiologies of critical illness, demonstrating
the reproducibility of our findings. Second, it will be
necessary to generate scATAC-seq data from cells
derived from burn and sepsis patients to directly extract
the specific global epigenetic features and to confirm
and refine the patient classification for each etiology.
Last, even though our study highlighted the potential
prognostic value of assessing epigenetic heterogeneity,
the underlying biological processes still need to be eluci-
dated.

By introducing epigenetic features into the patient
classification systems in acute critical illness we provide
evidence that the magnitude of global epigenetic altera-
tions is an important contributor to patient heterogene-
ity. We propose a new model for patient classification in
critical illness that includes epigenetic features shown
in Figure 7. The combination of the transcriptomic pat-
terns derived from the global epigenetic alterations (EG
subtypes) with the focal regulatory mechanisms driving
canonical immune response patterns (SG subtypes)
adds a new level of resolution to transcriptomic patient
subtyping in acute critical illness. Subgroups that have
transcriptomic patterns in circulating immune cells
that exhibit extreme deviation from steady state in both
the focal and global epigenetic regulatory mechanisms
have the worst outcomes.
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