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1  | INTRODUCTION

In grassland ecosystems, the roles of plant nutrient strategies in plant-
soil feedback, biogeochemical cycling, and land nutrient management 

are increasingly recognized (Fry et al., 2017; Yuan & Chen, 2009). At 
the individual plant level, the concentrations, stoichiometry, and re-
sorption efficiency of nitrogen (N), phosphorus (P), and carbon (C) have 
important influences on plant growth, reproduction, and competitive 
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Abstract
While mowing-induced changes in plant traits and their effects on ecosystem func-
tioning in semi-arid grassland are well studied, the relations between plant size and 
nutrient strategies are largely unknown. Mowing may drive the shifts of plant nutrient 
limitation and allocation. Here, we evaluated the changes in nutrient stoichiometry 
and allocation with variations in sizes of Leymus chinensis, the dominant plant species 
in Inner Mongolia grassland, to various mowing frequencies in a 17-yr controlled ex-
periment. Affected by mowing, the concentrations of nitrogen (N), phosphorus (P), and 
carbon (C) in leaves and stems were significantly increased, negatively correlating with 
plant sizes. Moreover, we found significant trade-offs between the concentrations 
and accumulation of N, P, and C in plant tissues. The N:P ratios of L. chinensis above-
ground biomass, linearly correlating with plant size, significantly decreased with in-
creased mowing frequencies. The ratios of C:N and C:P of L. chinensis individuals were 
positively correlated with plant size, showing an exponential pattern. With increased 
mowing frequencies, L. chinensis size was correlated with the allocation ratios of leaves 
to stems of N, P, and C by the tendencies of negative parabola, positive, and negative 
linear. The results of structure equation modeling showed that the N, P, and C alloca-
tions were co-regulated by biomass allocation and nutrient concentration ratios of 
leaves to stems. In summary, we found a significant decoupling effect between plant 
traits and nutrient strategies along mowing frequencies. Our results reveal a mecha-
nism for how long-term mowing-induced changes in concentrations, accumulations, 
ecological stoichiometry, and allocations of key elements are mediated by the varia-
tions in plant sizes of perennial rhizome grass.
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ability, particularly in nutrient-poor ecosystems (Vergutz, Manzoni, 
Porporato, Novais, & Jackson, 2012). Some previous studies provided 
evidences for scale dependence of plant nutrient strategy to changes 
of environmental factors (Li, Hou, et al., 2016). For example, some em-
pirical studies reported divergent responses in grassland plant stoi-
chiometry to N addition and mowing at species and community levels 
(Han, Sistla, Zhang, Lu, & Han, 2014). Moreover, a recent analysis from 
a standardized nutrient addition experiment conducted at 42 nutrient 
network sites in eight countries showed that grassland productivity is 
limited by multiple nutrients (Fay et al., 2015). Accordingly, an under-
standing of plant nutrient strategies at organ level is of great theoret-
ical interest; it reveals the underlying mechanisms of biogeochemical 
cycling and is therefore of importance for improving the productivity 
and quality of agro-grassland systems.

Traditionally, mowing is an important aspect of land-use man-
agement in arid and semi-arid natural grasslands and is frequently 
performed by local herdsmen in Inner Mongolia (Baoyin, Li, Bao, 
Minggagud, & Zhong, 2014). Experimentally, defoliation, that is, the 
removal of plant photosynthetic shoot tissue, is a key mechanism by 
which large herbivores affect ecosystem functioning of grasslands 
and can be simulated by mowing (Chen et al., 2014). Mowing affects 
plant growth directly by removing and damaging photosynthetic tis-
sues and indirectly by affecting biologically regulated processes in 
the soil through its influence on soil organisms (Carey, Beman, Eviner, 
Malmstrom, & Hart, 2015; Delaney, 2012). It is possible that mowing 
negatively affects plant nutrient acquisition and growth by decreasing 
root mass, but this effect is species specific (Cheplick, 1998; Han, Luo, 
& Du, 2007; Zhao, Chen, & Lin, 2008). The effects of mowing-induced 
changes on nutrient strategies within individual plants are still poorly 
understood.

Plant nutrient strategies, ecological stoichiometry and nutrient al-
location, for example, are always size dependent (Ågren, 2008). In gen-
eral, small plants were relatively enriched in N and relatively depleted 
in P compared to larger plants (Méndez & Karlsson, 2005). In Inner 
Mongolia grassland, Bai et al. (2012) reported that plant stoichiometric 
responses to grazing ranged from large in the meadow steppe to small 
in the typical steppe to generally insignificant in the desert steppe. 
However, the question of how mowing-induced changes in plant nu-
trient strategies are mediated by plant phenotypic traits of this species 
has not been experimentally tested in semi-arid grasslands.

In addition, typical steppes dominated by Leymus chinensis, a native 
and perennial rhizomatous grass, cover the largest area in the east-
ern Eurasian temperate grassland along the border to China (Li, Liu, 
et al., 2015). This study is a continuation of work previously presented 
(Li, Hou, et al., 2016). Our previous study demonstrated that the al-
lometric scaling of different phenotypic traits in L. chinensis leaves 
and stems varies with different mowing intensities, which is likely to 
be an ecological strategy used by L. chinensis in adapting to abiotic 
disturbances (Li, Hou, et al., 2016). Here, this study used a long-term 
mowing intensity experiment to evaluate the effects of mowing on 
the concentrations, accumulations, ecological stoichiometry, and allo-
cations of key elements in L. chinensis. We address the novel question 
of the relations of phenotypic traits (e.g., plant height and leaf size) and 

nutrient strategies of L. chinensis. We addressed three main questions: 
(1) How does mowing influence the relationships between L. chinensis 
size and C, N, and P concentrations in leaves and stems? (2) How does 
mowing intensity affect the relationship between L. chinensis C:N:P 
stoichiometry and morphological plasticity? (3) How does mowing in-
tensity affect C, N, and P allocation patterns in L. chinensis with varying 
plant sizes?

2  | MATERIALS AND METHODS

2.1 | Study site

Our field experimental site was located at the Inner Mongolia 
Grassland Ecosystem Research Station (IMGERS, 43°38′N, 116°42′E, 
1,200 a.s.l.) of the Chinese Academy of Sciences in the Xilinhot, Inner 
Mongolia Autonomous Region, P.R. China. The semi-arid continen-
tal climate of this area is characterized by a mean (1998–2013) pre-
cipitation of 253.45 mm and a mean temperature of 13.77°C during 
grassland growth season (April to August). Maximum precipitation 
usually falls during the growing season (June, July, and August), co-
inciding with the highest temperatures in this period. The coefficient 
of variation for precipitation is over 20% because of the inter-annual 
variability (Li, Hou, et al., 2016). The major soil types of this area are 
calcic chestnut and calcic chernozem. Before this experiment began, 
L. chinensis (a perennial rhizomatous grass) and Stipa grandis (a peren-
nial bunchgrass) typically dominated the grassland communities of our 
study area (Bai et al., 2004; Li, Liu, et al., 2015).

2.2 | Experimental design and sampling

The establishment of experimental area has been described in detail 
by Li, Hou, et al. (2016) and Li, Liu, et al. (2016). Here we expounded 
the experimental design briefly. The experimental treatments were 
contained by a long-term continuous mowing exclusion, and three 
frequencies of mowing in a randomized block design, which was 
established nearly two decades ago (beginning in 1998). All the per-
manent plots were 10 m × 10 m in size. The information of the treat-
ments was (1) CK, no mowing; (2) M1/2, mowing once every 2 years; 
(3) M1/1, mowing once a year; and (4) M2/1, mowing twice a year. The 
mowing was conducted each year on 16 August (or 1–3 days later 
depending on the weather) for the M1/2 and M1/1 treatments and on 
15 June and 15 September for the M2/1 treatment. The lawn mower 
was used to cut the grass to a 6-cm stubble height (Li, Hou, et al., 
2016; Li, Liu, et al., 2016). Three replicate plots in each treatment 
were used in this study. In each plot of all of the mowing treatments, 
five 1 × 1 m2 quadrats were randomly selected in 2013. In all plots of 
the different mowing regimes, temporary markers were set up at each 
sampling point prior to clipping before the growing season in early 
April 2013, avoiding the abnormal disturbances of sampling quad-
rats in mowing plots. The field sampling was carried out on 15–20 
August 2013 corresponding to the time of annual peak-standing bio-
mass of L. chinensis. Three L. chinensis individuals were randomly se-
lected for measurement in each of the quadrats. All of the leaves and 
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stems from each individual were sampled and measured according to 
their phytomer position from the base to the apex (Coelho, Valério, & 
Monteiro, 2009; Yang, Auerswald, Bai, Wittmer, & Schnyder, 2011).

2.3 | Measurements

Using the method described by (Pérez-Harguindeguy et al., 2013), 
the measurement of phenotypic traits of these individuals, including 
leaf length (LL), leaf width (LW), leaf number (LN), stem length (SL), 
stem diameter (SD), and plant height (PH), has been described in our 
previous study (Li, Hou, et al., 2016; Li, Liu, et al., 2016). Leave areas 
of L. chinensis were scanned using a digital scanner and then were 
measured using the software of Photoshop. Subsequently, leaves 
and stems were packed in separate paper bags and were oven-dried 
at 65°C for 48 hr and weighed for leaf biomass (LBM), stem biomass 
(SBM), and aboveground biomass (ABM).

The samples of L. chinensis leaves and stems were smashed using 
a mechanical micromill and passed through a 40-mesh sieve. The total 
concentration of C in leaves and stems was determined using the 
H2SO4–K2Cr2O7 oxidation method (Bennett, Judd, & Adams, 2003). 
Total concentration of N was analyzed using the Alpkem autoanalyzer 
(Kjektec System 1026 Distilling Unit, Sweden), and total concentrations 
of P was determined colorimetrically at 880 nm after reaction with mo-
lybdenum blue. All stoichiometric ratios of L. chinensis leaves and stems 
C:N:P were calculated as mass ratios (Lü, Lü, Zhou, Han, & Han, 2012).

2.4 | Statistical analysis

In our statistical analysis, the measured values of all the leaves from 
the base to the apex in one individual were averaged to represent the 
leaf phenotypic traits. Then, the mean values of each of the leaf or 
stem phenotypic traits were calculated by the measurements taken 
from three L. chinensis individuals in a single quadrat. Primarily, the 
method of principal components analysis (PCA) was performed to de-
termine the relationships among the phenotypic traits and the effects 
of different mowing frequencies on these traits (Fort et al., 2015; Li, 
Hou, et al., 2016). For this analysis, all variables were normalized be-
cause they had different units. The importance of a phenotypic trait 
of L. chinensis for a given component was indicated by its relative 
loading on the component. The significance of these loadings was 
tested using Pearson’s correlation test for all traits of L. chinensis in-
dividuals (Bagousse-Pinguet, Bello, Vandewalle, Leps, & Sykes, 2014). 
Secondly, one-way ANOVAs with Duncan’s multiple-range tests were 
performed across all variables in plant traits response to mowing in-
tensity (Chen et al., 2016). The degree of response of L. chinensis traits 
to mowing was analyzed using the plasticity index (PI) given by the 
following equation (Moreno & Bertiller, 2015):

where FU represents the phenotypic traits of plants in without mow-
ing treatment and FM represents the phenotypic traits of plants sub-
jected to different mowing frequencies.

The allocation ratios of leaves to stems in N, P, and C were calcu-
lated by allocation ratio (AR) given by the following equation:

where LE and SE represent the accumulation amount of N, P, and C in 
L. chinensis leaves and stems, respectively.

In addition, the direct or indirect pathways of mowing frequencies 
on individual L. chinensis N, P, and C allocation patterns were analyzed 
by structural equation modeling (SEM) method (Byrne, 2013). The 
SEMs were developed based on our hypothesized relationships be-
tween variables and tests of preliminary models. The final SEMs were 
applied to each of the L. chinensis nutrient-related indices (i.e., leaf to 
stem ratios of nutrient concentrations and biomass allocation). The 
utility of each nutrient index within the SEM was compared based on 
a number of measures, including the power of the particular model to 
explain the variation in L. chinensis N, P, and C allocation (r2), measures 
of model significance and fit (χ2), and the significance of the functional 
trait variables within the model (Li, Hou, et al., 2016). The SEM was 
performed using the IBM SPSS AMOS 18 software packages.

3  | RESULTS

3.1 | Phenotypic plasticity in responds to mowing

Mowing had significantly negative effects on majority of the leaf and 
stem phenotypic traits (p < .05). The exception to this is the increas-
ing of LN per L. chinensis individual under light mowing disturbance 
(Figure 1a). Based on our results, leaf and stem phenotypic traits can 
be classified into sensitive (i.e., PH and SL) and insensitive traits (i.e., 
LN and SD) according to the level of variation (from about 0.00% to 
60%) in PI (Figure 1a). Mowing significantly increased the variability of 
plant functional traits (p < .05). The CV values of plant traits were sig-
nificantly correlated with PI (p < .05, Figure 1b). Based on the PCA re-
sults, we found that the first PCA axis, which explained 74.04% of the 
total variance, mainly represented L. chinensis plant size as estimated 
by height (Figures 1c and S1). The second PCA axis, which accounted 
for 16.71% of the total variance, was strongly associated with stem 
and leaf width (Figure 1c, Table S1). Mowing significantly decreased 
the loading score of plant size along PCA axis 1, PCA axis 2, and PCA 
axis 3 (Figure 1d).

3.2 | Trade-offs between plant size and nutrient 
concentrations

Mowing significantly increased the concentrations of N, P, and C in 
leaves and stems (p < .05, Figure 2), albeit with differences between 
the three elements. The N concentrations in treatment M2/1 but M1/1, 
M1/2 had significant difference with control treatment (Figure 2a). In 
contrast, increasing mowing intensity gradually increased P concen-
trations (Figure 2b). In comparison with N and P, the relation of C 
concentrations and mowing frequencies was fluctuant (Figure 2c). In 
relative terms, the nutrient concentrations in leaves were significantly 

(1)PI=
FU−FM

FU
×100%,

(2)AR=
LE

SE
,
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higher than in stems, especially in terms of N (p < .05, Figure 2). 
Moreover, we found that L. chinensis individual sizes and phenotypic 
traits were negatively correlated with N, P, and C concentrations 
(p < .05, Figure 3a and Table S2).

3.3 | Mowing drive the decrease of nutrient 
accumulations

With increasing mowing frequencies, the accumulated amounts of 
N, P, and C gradually and significantly decreased (p < .05, Figure 4). 
At the organ scale, nutrient accumulation amounts in L. chinensis 
leaves were significantly higher than in stems (p < .05, Figure 4). 
We also detected a positive correlation between L. chinensis in-
dividual size and accumulated amounts of N, P, and C (p < .05, 
Figure 3b and Table S3). Moreover, the concentrations were nega-
tively correlated with the accumulation of N, P, and C in the bio-
mass of leaves, stems, and the whole aboveground (Figure S2). In 
general, the most significant trade-off was found for P between 

the two nutrient strategies of the three elements (p < .01, Figure 
S2).

3.4 | Relations between ecological stoichiometry and 
plant size

Ecological stoichiometry showed that N:P ratios significantly de-
creased with increasing mowing frequencies (p < .05). The N:P ra-
tios in leaves were significantly higher than those in stems (p < .05, 
Figure 5a). The C:N ratios in leaves and stems first increased and then 
decreased with increasing mowing frequencies (Figure 5b). In con-
trast, C:P ratios were negatively correlated with mowing frequencies 
(p < .05, Figure 5c). Moreover, C:N and C:P ratios were significantly 
lower in leaves than in stems (p < .05, Figure 5). In addition, N:P ratios 
were linearly correlated with mowing intensity (p < .05). Ratios of C:N 
and C:P of the whole L. chinensis individual were positively correlated 
with plant size, following an exponential pattern (p < .01, Figure 3c 
and Table S4).

F IGURE  1 Effects of different clipping frequencies on the phenotypic plasticity of Leymus chinensis. (a) Plasticity indexes (mean ± standard 
deviation) of L. chinensis functional traits according to clipping intensity. (b) Relationship between the plasticity index and coefficient of 
variation (CV) of L. chinensis functional traits. (c) PCA bi-plot of L. chinensis functional traits for the four treatments explained by the first 
(PCA axis 1) and second (PCA axis 2) principal axes. (d) Box plots illustrate the score distribution of L. chinensis functional traits from the four 
experimental communities along the three principal axes. Solid circles and empty circles in Figure 1a represent a significant effect of clipping 
and no significant effect of clipping on L. chinensis functional traits, respectively. Symbols in Figure 1c: ▵, CK (no clipping); ▾, M1/2 (herbage 
harvested once every second year); ○, M1/1 (herbage harvested once every year); ●, M2/1 (herbage harvested twice every year). Different letters 
in Figure 1d indicate significant difference (p < .05). LN, Leaf number; LL, leaf length; LW, leaf width; LA, leaf area; SL, stem length; SD, stem 
diameter; PH, plant height
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3.5 | Effects of mowing frequencies on 
nutrient allocation

We observed three different response patterns in the allocation ratios 
of N, P, and C from leaves to stems (Figure 6). Allocation ratios of N 
first decreased and then increased with increasing mowing intensity. 
Allocation ratios of P and C were negatively and positively correlated 
with mowing intensity (p < .05). The allocation ratios were as follows: 
N > P > C (p < .05, Figure 6). In addition, the plant phenotypic traits 
of L. chinensis were correlated with the allocation ratios of N, P, and 
C by the tendencies of parabola, positive, and negative, respectively 
(p < .05, Figure 3d and Table S5). The results of structure equation 

modeling and partial least-squares regression showed that the alloca-
tion patterns from leaves to stems in N, P, and C were co-regulated 
by the biomass allocation and nutrient concentration ratios of leaves 
to stems (Figure 7).

4  | DISCUSSION

As a dominant species in eastern Eurasian temperate grasslands, 
L. chinensis is sensitive to habitat changes and various disturbances (Li, 
Liu, et al., 2015). In general, phenotypic plasticity is an important strat-
egy by which plants adapt to heterogeneous habitats and effectively 
gain access to resources (Davidson, Jennions, & Nicotra, 2011; Via 
et al., 1995). Studying changes in plant phenotypic plasticity and nutri-
ent strategies subject to mowing can provide insight into the mecha-
nisms of grassland productivity formation, which might be important 
for enhancing ecosystem functions (Grant, Kreyling, Dienstbach, 
Beierkuhnlein, & Jentsch, 2014). In this research, we revealed the eco-
logical processes of how long-term mowing-induced changes in con-
centrations, accumulations, ecological stoichiometry, and allocations 
of key elements mediated by the variations in plant size of L. chinensis.

Our findings show that the majority of L. chinensis phenotypic 
traits tend to be reduced in response to long-term mowing, which 
is consistent with the results from previous studies in many mowing 
experiments in semi-arid grasslands (Li, Wu, et al., 2015; Spasojevic 
& Suding, 2012). We also found that the PI values of leaf and stem 
phenotypic traits were significantly positively correlated with mowing 
intensity. Mowing in the Inner Mongolia grassland of China is a pri-
mary management strategy and also simulates grazing (Baoyin et al., 
2014). Previous studies have reported that phenotypic plasticity is 
an important mechanism for grazing avoidance in plants which expe-
rienced long-term grazing (Fu, Thompson, Willms, & Mackay, 2005; 
McKinney & Fowler, 1991). Therefore, the results of this study and 
of previous studies indicate that there are a number of similarities in 
the changes in functional traits in response to mowing and grazing. 
Our finding that leaves were more stable than stems in response to 
mowing implies that plants might invest more photosynthetic prod-
ucts to leaves in order to improve fitness. We also detected that leaf 
number increased slightly in response to light mowing disturbance and 
then decreased significantly with increased mowing frequency. This 
result suggests that there is a trade-off between leaf number and leaf 
size at the early stage of perennial mowing or in the case of slight dis-
turbance, implying that plant will produce a compensatory growth at 
individual scale (Lennartsson, Ramula, & Tuomi, 2017).

The contents of key nutrient elements in aboveground tissues are 
important for plant growth and development in nutrient-poor ecosys-
tems (Fay et al., 2015). In this study, the finding that heavy mowing 
significantly increases N, P, and C concentrations does not support 
our initial hypothesis that plant morphological plasticity in response 
to artificial mowing rooted in the decreasing nutrient concentra-
tions in plant tissues. To date, there are no studies on the in-depth 
mechanisms of the mowing-induced increase in nutrient contents. 
Theoretically, this may be related to the three previously discussed 

F IGURE  2 Effects of long-term mowing frequencies (large 
figures) and sampling position (small figures) on N (a), P (b), and C (c) 
concentrations of Leymus chinensis individuals. The different colors in 
the large figures represent the four mowing frequencies ( , Control; 
, 1/2-cut; , 1-cut, , 2/1-cut). The upper cases of L, S, and A in 

the small figures represent sampling positions (L, leaf; S, stem; A, 
aboveground, i.e., leaf + stem). Data represent mean ± SE values; 
different letters above the error bars indicate significant difference 
(p < .05)
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possible reasons, that is, the growth dilution hypothesis, “func-
tional equilibrium” theory and the nutrient competition hypothesis 
(Li, Liu, et al., 2016). Firstly, if the decrease in the accumulation of 
leaf biomass is more than the decrease in nutrient acquisition under 
mowing, nutrient concentrations will decrease (Bai et al., 2012; Shi 
et al., 2013). This is possibly the reason why we found significant 

trade-offs between the concentrations and accumulation of N, P, and 
C in leaves, stems, and aboveground biomass. In addition, we spec-
ulate that this may also be associated with the changes in nutrient 
competition patterns. Secondly, the “functional equilibrium” theory 
predicated that plants respond to a decrease in aboveground re-
sources with increased allocation to shoots (Poorter & Nagel, 2000). 

F IGURE  3 Nutrient concentrations (a), nutrient accumulation (b), ecological stoichiometry (c), and nutrient allocation (d) of Leymus chinensis 
individuals in response to the variations of plant size along with mowing frequencies. The relationships of PCA1 with C:N and C:P were fitted by 
the equation of Exponential Rise to Maximum, the relationship between PCA1 and N allocation ratio was fitted by quadratic equation while the 
other relations were fitted by linear regression equation
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Therefore, mowing will promote more biomass to allocate to the leaf 
obtaining the most light resource (Chapin, Schulze, & Mooney, 1990). 
Thirdly, the competition of grassland plants for soil nutrients signifi-
cantly weakened in mowed habitats, while in nonmowed habitats, 
increased nutrient concentrations were promoted (Lü et al., 2014; 
Veen, de Vries, Bakker, van der Putten, & Olff, 2014). These results 
are in agreement with a number of empirical studies on changes in 
soil nutrient availability and nutrient competition patterns with in-
creased mowing disturbance (Helsen, Ceulemans, Stevens, & Honnay, 
2014; Tilman & Wedin, 1991).

The stoichiometry of C:N:P in plant tissues is associated with 
plant growth strategies, which strongly influence its adaptation to 
various abiotic or abiotic disturbances, such as mowing (Hillebrand 
& Kahlert, 2001). Our results show that the N:P ratios in leaves and 
stems significantly decreased with increasing mowing frequencies. 
Previous studies have revealed that decreasing N:P ratios indicate 
N-limitation in plant growth and development (Han et al., 2014). 
Hence, it is likely that heavy mowing limits L. chinensis growth 

through causing N deficiency, that is, increasing N requirement of the 
plant and decreasing N availability in the soil. Moreover, we detected 
that the N:P ratios in leaves were significantly higher than those in 
stems of L. chinensis. We speculate that this is most likely associated 
with the adaptive changes in allometry between leaves and stems, 
as shown previous studies (Li, Wu, et al., 2015). Because of the re-
quirement of biosynthesis in protein-associated compounds, plants 
developed the adaptive strategy of allocating more N to leaves than 
to stems.

To some extent, the ratios of C:P and C:N ratios in plant tissues 
can be a predictive indicator for nitrogen- and phosphorus-use ef-
ficiency (Hidaka & Kitayama, 2013). We found that the C:N ratios 
in leaves and stems first increase and then decrease with increasing 
mowing frequencies, implying that moderate mowing is likely to 
increase the potential for N use efficiency. However, in our study, 
C:P ratios were negatively correlated with mowing frequencies, 

F IGURE  4 Effects of long-term mowing frequencies (large 
figures) and sampling position (small figures) on N (a), P (b), and C 
(c) accumulation in Leymus chinensis individuals. Annotations and 
abbreviations as in Figures 1 and 2

F IGURE  5 Effects of long-term mowing frequencies (large figures) 
and sampling position (small figures) on ecological stoichiometry of 
C:N:P in Leymus chinensis individuals. Annotations and abbreviations 
as in Figures 1 and 2
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resulting in a lower P use efficiency in L. chinensis leaves and  
stems.

Our results demonstrated that the decrease in plant height after 
long-term mowing corresponds with an increased C allocation from leaf 
to stem of L. chinensis at the individual scale, suggesting that an L. chin-
ensis individual invests more of its photosynthetic products in leaves 
than in stems during plant miniaturization. In general, leaves are among 
the most important functional organs of a plant and are required for 
photosynthesis, transpiration, and nutrient use (Bloomfield, Farquhar, & 
Lloyd, 2014). Long-term mowing, the removal of photosynthetic shoot 
tissue, limits plant photosynthesis (Thorne & Frank, 2009). It is possible 

that the mowing-induced increase in the leaf to stem biomass ratio com-
pensates the ability to carry out photosynthesis in the presence of defo-
liation each year. Potentially, increased leaf to stem biomass associated 
with individual plant miniaturization may be a mechanism for plant adap-
tation to mowing-induced changes related to plant–soil interactions and 
ecosystem functioning (Sørensen, Kytöviita, Olofsson, & Mikola, 2008).

5  | CONCLUSION

We conclude that mowing intensity is negatively correlated with 
phenotypic trait values and positively correlated with variability in 
plant functional traits in L. chinensis populations. In plants affected by 
mowing, the concentrations of N, P, and C in leaves and stems were 
significantly increased, negatively correlating with plant individual 
sizes. Moreover, the results show significant trade-offs between the 
concentrations and accumulation of N, P, and C in leaves, stem, and 
aboveground biomass. The N:P ratios of L. chinensis aboveground bio-
mass, linearly correlating with plant size, significantly decreased with 
increasing mowing frequencies. In contrast, the C:N and C:P ratios of 
L. chinensis individuals were positively correlated with plant size and 
showed an exponential pattern. With increasing mowing intensity, 
L. chinensis size was correlated with the allocation ratios of N, P, and 
C by the tendencies of parabola, positive, and negative, respectively. 
Structure equation modeling showed that the allocation patterns from 
leaves to stems in N, P, and C were co-regulated by biomass alloca-
tion and nutrient concentration ratios of leaves to stems. Our results 
reveal a mechanism for long-term mowing-induced changes in con-
centration, accumulation, ecological stoichiometry, and allocation of 
key elements mediated by the variations in plant sizes of perennial 
rhizome grass.

F IGURE  6 Effects of long-term mowing frequencies (large 
figures) on N, P, C allocations in leaves and stems of Leymus chinensis 
individuals. The small figure indicates the comparison N, P, C 
allocations ratios. Annotations as in Figures 1 and 2

F IGURE  7 Final results of the structure equation modeling analysis of the effects of mowing frequencies on N (a), P (b), and C (c) allocation in 
Leymus chinensis in semi-arid grassland. The proportions of plant N (d), P (e), and C (f) allocation variation in L. chinensis individuals are explained 
by the leaf to stem ratios of nutrient concentrations and biomass allocation. Values associated with arrows represent standardized path 
coefficients; R2 values associated with response variables indicate the proportion of variation explained by relationships with other variables. 
**p < .05; ns, p > .05. Abbreviations: XRco, leaf to stem ratios of N, P, and C concentration; XRal, leaf to stem ratios of N, P, and C accumulation
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