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IFN-g, should not be
ignored in SLE

Wenping Liu, Shumin Zhang and Jibo Wang*

Department of Rheumatology & Clinical Immunology, The Affiliated Hospital of Qingdao University,
Qingdao, China
Systemic lupus erythematosus (SLE) is a typical autoimmune disease with a

complex pathogenesis and genetic predisposition. With continued

understanding of this disease, it was found that SLE is related to the interferon

gene signature.Most studies have emphasized the important role of IFN-a in SLE,

but our previous study suggested a nonnegligible role of IFN-g in SLE. Some

scholars previously found that IFN-g is abnormally elevated as early as before the

classification of SLE and before the emergence of autoantibodies and IFN-a. Due
to the large overlap between IFN-a and IFN-g, SLE is mostly characterized by

expression of the IFN-a gene after onset. Therefore, the role of IFN-g in SLE may

be underestimated. This article mainly reviews the role of IFN-g in SLE and

focuses on the nonnegligible role of IFN-g in SLE to gain a more comprehensive

understanding of the disease.
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1 Introduction

Systemic lupus erythematosus (SLE) is a typical autoimmune disease that can affect

various tissues and organs throughout the body. SLE is characterized by excessive

activation of the immune system, resulting in increases in autoantibodies and immune

complexes and organ dysfunction (1). At present, the pathogenesis of SLE is unclear. Sun

exposure or viral infection can induce the disease in individuals with genetic

susceptibilities, and women are the most vulnerable group (2). With continued

development of sequencing technology, SLE was found to have a distinct interferon

(IFN) gene signature (3), which is found in approximately 75% of adult patients and 90%

of pediatric patients (4). Interferon is a cytokine produced in response to viral infection

and has various effects, such as regulating immunity, antiviral and antitumor activities

(5). According to the primary protein sequence, cognate receptor, gene locus, and cell

type responsible for its production, IFNs are mainly divided into three types. Type I IFNs

include IFN-a subtypes and IFN-b, -ϵ, -k, and -w. Type II IFNs include IFN-g. Type III
IFNs include IFN-l (6). Many studies have shown the dominance of IFN-a in SLE (7),

but some studies have also indicated that the IFN-g gene signature may occur early in SLE

(8) and may have an important role in lupus nephritis (LN) (9). Some studies found that
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the levels of IFN-g and its related genes were closely related to

the activation of type I IFNs in SLE patients (10, 11). More

importantly, treatment against IFN-a seems to have a limited

effect on SLE (12, 13), while treatment against IFN-g could be

more attractive (14). Our previous studies have emphasized the

important role of IFN-g in the initial and active stages of SLE

(15). Therefore, this review will focus on IFN-g and SLE to

contribute to the understanding and treatment of SLE.
2 IFN-g and its signal transduction

IFN-g is a pleiotropic type II IFN that is mainly produced by

effector Th1 CD4+ T cells, cytotoxic CD8+ T cells and NK cells

and to a lesser extent by other cell types, such as dendritic cells

(DCs), macrophages and B cells (16). IFN-g binds to the IFN-g
receptor (IFNGR), which is expressed on most cells and activates

janus kinase 1 (JAK1) and JAK2 through the canonical pathway

(Figure 1), leading to the phosphorylation of STAT1
Frontiers in Immunology 02
homodimers and binding to the IFN-g activation site (GAS)

followed by subsequent gene transcribe (17). In addition, IFN-g
can also play a role in signal transduction through noncanonical

pathways (18, 19). There is significant overlap (crosstalk)

between type I and type II inducible genes, and signaling

pathways can be shared between the two. Each interferon type

induces the production of the other, ultimately resulting in

stimulation from both sides and a mixed signature (17).

Therefore, it is difficult to tell the difference between the two.
3 IFN-g signature in SLE

Studies have shown that the level of IFN-g in the serum of

patients with SLE is higher than that in healthy individuals (20–

23), and there is abnormal accumulation of IFN-g in the body

long before the diagnosis of SLE and before the appearance of

autoantibodies and IFN-a (8). Both the mRNA and protein

levels of IFN-g were significantly higher in SLE patients than in
FIGURE 1

IFN-g production and canonical signaling pathways. Th1 CD4+ T cells, cytotoxic CD8+ T cells and NK cells and to a lesser extent other cell types,
such as dendritic cells (DCs), macrophages and B cells can produce IFN-g. IFN-g binds to the IFN-g receptor (IFNGR) to activate JAK1 and JAK2
leading to the phosphorylation of STAT1 homodimers and binding to the IFN-gamma activation site (GAS) followed by subsequent gene transcribe.
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healthy donors (9, 24), and the mRNA levels of type II IFN-

inducible genes (IRF1, GBP1, CXCL9, CXCL10, and SERPING1)

were elevated in SLE patients. In addition, the relative expression

levels of the important transcription factors TBX21 and EOMES

(25), which promote IFN-g gene expression, were also elevated

in SLE patients. We previously found an IFN-g signature when
analyzing the genetic signature of active SLE onset (15). Liu et al.

evaluated the relationship between the IFN-g signaling pathway
and disease activity-related indicators and found that IFN-g
titers had good correlations with disease activity (25, 26).

Manman et al. found that IFNG expression and the IFN-II

score were positively correlated with SLEDAI scores and anti-

dsDNA antibody levels but negatively correlated with serum

complement third-component levels (25). Moreover, some

studies also showed that the levels of IFN-g in the serum of

patients with LN were higher than those of patients with SLE

without LN (27), and IFN-g was detected in the renal tissue of

patients with LN. Single-cell transcriptome analysis of kidney-

infiltrating immune cells revealed that all patients produced

IFN-g (9). Furthermore, transgenic mice overexpressing IFN-g
developed autoantibodies against dsDNA and proliferative

glomerulonephritis (28). Overall, the IFN-g signaling pathway

is activated in SLE patients, and IFNG levels and IFNII scores

can be used as indicators of SLE disease activity to guide

clinical treatment.
4 Genetics and epigenetics of
IFN-g in SLE

SLE is a disease with genetic characteristics. DNA sequence

differences and epigenetic differences such as DNA methylation

and acetylation can alter gene expression and play an important

role in SLE (29). Single nucleotide polymorphisms (SNPs) are

the most common genetic polymorphisms. Multiple IFN-g
related SNPs have been identified as risk loci in SLE. The

greatest risk of developing SLE was detected in individuals

with a Met14/Val14 genotype of IFNGR1 or a Gln64/Gln64

genotype of IFNGR2 (30). IFN-g gene polymorphisms

associated with susceptibility to SLE (31). Marut’s study found

an association between the IFN-g gene polymorphism (+874A)

and the manifestations of SLE arthritis (32). A SNP of STAT4

(rs7574865) (33) was found to be associated with SLE in the

IFN-STAT signaling pathway. In addition, many SNPs of

interferon regulated factors (IRFs) have also been found to be

associated with the risk of developing SLE, including IRF3

rs2304206 (34), IRF5 rs200464 (35), IRF7 rs1131665 (36),

IRF8 rs11644034 and rs2280381 (37) polymorphism. More

important, epigenetic regulation is an important mechanism of

transcriptional activation in SLE pathogenesis. Epigenetics refers

to the genetic regulation of changes in gene expression caused by

changes in DNA methylation, histone acetylation, and

chromatin accessibility without changing the nucleotide
Frontiers in Immunology 03
sequence of DNA (38). The enhanced response of Th1 cells in

SLE is accompanied by transcriptional activation of the

intracellular IFGN locus (39, 40), which is mainly due to

various epigenetic changes such as H3K4 tri-methylation (41),

H4-Ac catalyzed by histone acetyltransferase (42), and

chromatin conformational remodeling (43). On the other

hand, IFN-g can also induce extensive remodeling of the

epigenome (44). For example, IFN-g induces IRF1-STAT1 and

histone acetylation to mark promoters and enhancers of TNF

and IL6 loci, resulting in increased inflammatory responses in

response to subsequent over-induction by TLR ligand

stimulation (45). Additionally, acetylation (H3K27Ac) is

associated with gene expression, while trimethylation

(H3K27me3) is associated with gene silencing (46). It was

found that IFN-g stably silences a small group of genes of

anti-inflammatory including MERTK, PPARG and RANK by

maintaining H3K27me3 at gene promoters (47). Thus, IFN-g
treatment made these genes refractory to the induction of

glucocorticoids and IL-4. All these epigenetic changes

involving IFN-g promote and solidify the inflammation

development of SLE.
5 Mode of action of IFN-g in SLE

IFN-g is a major proinflammatory cytokine that regulates the

functions of several important immune system cells (Figure 2),

including B cells and T cells (48, 49), and contributes

significantly to the development of SLE.
5.1 IFN-g affects T cell function in SLE

5.1.1 CD4+T cell
Imbalance of Th1 and Th2 cells is common in the

pathogenesis of SLE (50). Earlier studies suggested that the

production of large amounts of antibodies in SLE was

associated with Th2 responses in peripheral blood (51), but

growing evidence suggests the importance of the T helper 1

(Th1) response in SLE (52). The immune response in

proliferative LN has been shown to be biased toward the Th1

axis (53, 54). Th1 cells can secrete IFN-g to promote SLE-related

pathology, while IFN-g in turn enhances the pathogenic role of

Th1 cells. IFN-g plays a vital role in the differentiation and

maturation of Th1 cells (55). Although IL-12 is a typical cytokine

that is necessary for the activation of Th1 cells, the role of IFN-g
is still very important (56). IFN-g and STATI can activate the

downstream transcriptional target T-bet, and the transcription

factor T-bet is the main regulator of the Th1 phenotype and can

stabilize the Th1 phenotype (57). More importantly, Th1

polarization in the absence of IFN-g induction is incomplete

(58, 59). In addition, IFN-g signaling is actively involved in

inhibiting CD4+ T-cell differentiation into Th2 (60), which is
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one of the reasons for the imbalance of Th1/Th2. Although in

vitro studies have shown that IFN-g has an inhibitory effect on

Th17 cells (61, 62), increased Th17 cells and IL-17 cytokines

have also been found in SLE patients (63). The ratio of Th17 and

Th1 cells in SLE patients were both higher than that in healthy

controls. And it was found that Th17 cells play an important role

in SLE histopathological damage (64, 65). Shah’ study found that

the frequency of IL-17+ cells was directly correlated with the

frequency of IFN-g+ cells (66). Anyhow, elevated IFN-g in SLE

resulting in a skewed phenotype of CD4+ T cell populations

toward Th1 and Th17, which play an important role in the

pathogenesis of SLE.

5.1.2 Treg cell
Treg cells act as immunosuppressors, and defects in function

or numbers are thought to contribute to SLE pathogenesis due to

their role in maintaining peripheral immune tolerance (67).

Recent studies have shown that in addition to the ability of IFN-g
to directly inhibit Treg cell function (68–70), the inhibition of

effector T-cell activation by Treg cells is suppressed in an IFN-g-
enriched environment, and this inhibition requires the

expression of IFNGR on Treg cells (71). Of course, there have

been some studies showing that although the function and

number of regulatory T cells in SLE patients are defective, this
Frontiers in Immunology 04
effect is due to the resistance of effector T cells to inhibit SLE,

rather than defects in Treg cell functions (72). In conclusion, the

mechanism by which IFN-g inhibits Treg cell functions remains

to be elucidated.

5.1.3 CD8+ T cells
CD8+ T cells are cytotoxic cells that kill infected or damaged

cells by releasing cytotoxins such as granzymes and perforin.

There appears to be some inconsistency in the role of CD8+ T

cells in SLE (73). On the one hand, CD8+ T cells in the peripheral

blood of SLE patients often have reduced granzyme B and

perforin production and exhibit impaired cytolytic function

(74), which impairs the removal of autoreactive B cells and

increases autoantibodies, accelerating the onset of lupus.

Furthermore, the decrease in cytolytic capacity was associated

with poor control of Epstein–Barr virus infection and

susceptibility to infection (75, 76), which are more common in

SLE. On the other hand, in contrast to the decreased cytolytic

functions of circulating CD8+ T cells, CD8+ T cells extracted

from sites of inflammation mostly showed enhanced effector

functions (77, 78), leading to tissue damage. The effects of IFN-g
on CD8+ T cells are also multifaceted. IFN-g signaling directly

regulates several aspects of CD8+ T-cell biology. Most

importantly, IFN-g is required for cytolytic capacity of CD8+ T
FIGURE 2

Effects of IFN-g on several immune cells in the pathogenesis of SLE. IFN-g affect the function of a variety of immune cells in the pathogenesis of
SLE, involving T cell, B cell, macrophage, dendritic cell and et al. The effect of IFN-g on CD8 cells in SLE is two-sided. IFN-g can promote the
differentiation of naive CD4+ T cells into inflammatory Th1 and Th17 cells, while inhibiting their differentiation into Treg cells and Th2 cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.954706
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.954706
cells (79). In fact, early experiments using recombinant proteins

showed that full cytolytic capacity was not achieved until CD8+

T cells were exposed to IFN. IFN-g signaling in CD8+ T cells

upregulates the expression of IL-2 receptor, the transcription

factor T-bet, and granzymes. IL-2 responsiveness is critical for

the generation of cytolytic CD8+ T cells, while granzymes are

responsible for mediating the cytolysis of CD8+ T-cell targets

(80). IFN-g also regulates CD8+ T-cell proliferation after antigen

exposure (81). Conversely, IFN-g-restricted CD8+ T-cell effector

responses were found in some studies (82). In short, the effect of

IFN-g on CD8+ T cells remains unclear.
5.2 IFN-g affects B cell function in SLE

5.2.1 B cell production
B cells play an important role in the pathogenesis of SLE

(83). These cells are mediators of inflammation, enhancing

inflammation and leading to direct tissue and cell damage by

producing pathogenic antibodies. IFN-g signaling can promote

B-cell division during the early proliferative response following

primary antigen exposure (84). IFN-g can stimulate T cells (85),

and antigen presenting cells (APCs) to produce B lymphocyte-

stimulating factor (BLyS) (86), which is essential for B-cell

differentiation, proliferation and survival, regulates B-cell

generation and maturation (87, 88), and has been identified as

a therapeutic target for SLE.

5.2.2 Germinal centers formation in B cells
Furthermore, IFN-g can induce the formation of germinal

centers (GC) and B cells (89). IFN-g integrates with BCR-, TLR-

and/or CD40-dependent signaling to promote expression of the B-

cell-intrinsic key transcription factor of B-cell lymphoma 6 protein

(BCL-6) inmouse andhuman primary B cells (90). BCL-6 is critical

in GC reactions (91). Lack of B-cell IFN-gR signaling significantly

reduced all autoantibody isotypes by eliminating spontaneous GC

formation (90). Furthermore, Chodisetti et al. found that type II but

not type I IFN signaling was essential for TLR7-mediated

promotion of autoreactive B cells and systemic autoimmunity

(92). IFNg and its downstream signaling molecules STAT1 and

T-bet have nonredundant roles in B cell-mediated promotion of

TLR7-driven development of AFC, GC and SLE, and type I IFN

signaling contributes modestly to these processes (90, 92, 93).

5.2.3 IgG class switching
In addition to IFN-g-mediated activation of STAT1 in B cells to

induce autoantibody production (89), IFN-g plays an important

role in antibody class switching. IFN-g is able to promote B-cell IgG

class switching to more pathogenic (mouse IgG2a and IgG3)

autoantibodies (94–97) and promote the activation of IgGFc

receptors and complement (98), contributing to disease severity.

In addition, IFN-g is involved in the development of lupus-
Frontiers in Immunology 05
associated hypergamma globulinemia (99, 100). IFNG also

activates CD11b+ cells (101), enabling these cells to bind to

antibody-coated target cells, thereby promoting inflammation

and exacerbating the development of SLE.
5.3 IFN-g affects dendritic cells

Dendritic cells (DCs) are the most typical APCs, which can

activate naive T cells and trigger T cell responses that lead to

tissue damage in SLE (102). Among the numerous DCs, CD11b+

DC subset appears to be specialized in MHC class II-mediated

antigen presentation in vivo (103). Like the mouse CD11b+ DC

subset, human BDCA1 DCs may act as a subset of DCs that

exclusively present antigens through MHC class II molecules

(104). Upregulation of CD11b+ DCs has been found to have a

central role in the pathological development of LN and a major

role in driving end-organ disease (105). IFN-g plays a critical role
in the maturation and differentiation of DCs, and affects the

entire process of antigen processing and presentation. IFN-g is
considered to be an important stimulator of MHC class II gene

expression (106). The ability to upregulateMHC class II is unique

to IFN-g, which induces the expression of class II transactivator

(CIITA) (107), a master regulator of MHC transcription, and

promotes the assembly of the MHC II enhancer. IFN-g can

upregulate the expression of CD40, CD80, CD83 and CD86

molecules onDCs to induce DCsmaturation (108). Besides, IFN-

g can up-regulate the expression of immunoproteasome

components of LMP1 and LMP7 (109) and the expression of

transporter proteins (TAPs) associated with antigen processing

(110), which plays an important role in antigen presentation

process involving MHC II.
5.4 IFN-g affects macrophages

Aberrant activation and unbalanced polarization of

macrophages have been shown to be involved in the pathogenesis

of SLE (111). IFN-g can enhance the quantity, quality and pool of

peptides bound by class I and class II MHC (106, 109, 112–114),

furthermore, IFN-g can activate the transcription of class I and class
II MHCmolecules, induce the expression of MHC class I and class

II antigens in macrophages, endothelial cells or epithelial cells,

promote the local presentation of antigens, activate macrophages

(115) and induce macrophage polarization to the M1 phenotype

(116, 117), which can enhance the secretion of cytokines (IL-1 and

TNF) (118) and increase the release of reactive oxygen species

intermediates andNitricoxide (NO) (119). These M1macrophages

exhibit proinflammatory functions and play an important role in

organ damage in SLE (120). And IFN-g regulates the synthesis of
chemokines such as CXCL10 (121). These effects have a marked

effect on the activation of inflammatory cell populations.
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6 Targeting IFN-g in SLE

Satisfactory outcomes were observed after the application of

anti-IFN-g in a mouse lupus model (Table 1). Ozmen et al.

found that treating NZB/W mice with soluble murine IFN-g
receptors inhibited the onset of glomerulonephritis (123).

Werwitzke et al. treated lupus-prone NZB/NZW F1 mice with

recombinant soluble Fc gamma receptor II (CD32), and found

that it inhibited chronic murine lupus pathologyin vivo (128).

Lawson et al. performed intramuscular injection of a cDNA

plasmid encoding IFN-gR/Fc into MRL-Fas(lpr) lupus mice, and

found that lupus development and progression could be delayed,

even if the treatment was initiated at a late stage (126). Besides,

in (NZB)/(NZW)F1 mice, a favorable effect was observed in the

treatment of lupus nephritis using an IFN-g monoclonal

antibody in vivo (122). Furthermore, lack of IFN-RII protects

MRL/lpr mice from developing severe autoimmune-related

lymphadenopathy, autoantibodies, and kidney disease (127).

Deletion of the IFN-g receptor prevents autoantibody

production and glomerulonephritis in lupus-prone (NZB x

NZW) F1 mice (124). Additionally, Schrott et al. found that

chronic soluble IFN-g receptor treatment attenuated behavioral

abnormalities in autoimmune mice (125). Human clinical trials

targeting IFN-g have yielded some results (Table 1). AMG 811 is
Frontiers in Immunology 06
a fully human (IgG1) anti-IFN-g antibody. In patients with mild

to moderate SLE, a single dose of AMG 811 was well tolerated

and could normalize IFN-regulated gene expression, resulting in

a dose-dependent decrease in serum CXCL-10 levels (14, 129).

AMG 811 treatment led to changes in IFN-g-associated
biomarkers and was well tolerated, but no significant clinical

benefit was observed in patients with discoid lupus

erythematosus (DLE) (130). Encouragingly positive phase Ib

trials have shown the efficacy of blocking the IFN-g pathway to

treat extrarenal lupus (131). Collectively, these findings suggest

that IFN-g is a central cytokine in LN, and further studies of LN

should examine IFN-g inhibition given the acceptable safety

profile of its direct blockade.
7 JAK inhibitors that block
IFN-g in SLE

Janus kinases (JAKs) are intracellular non-receptor tyrosine

kinases that play key roles in the signaling pathways of many

cytokines. This also provides a basis for the application of JAK

inhibitors in the treatment of SLE. Both type I and type II

interferon conduct signal transduction through the JAK-STAT

signaling pathway (132), and there are many overlaps
TABLE 1 Therapy effect of targeting IFN-g on SLE.

Years Experimental
Model

Experimental
Agent

Results Ref.

1987 (NZB)/(NZW)F1
mice

IFN-g monoclonal
antibody

a favorable effect was observed in the in vivo treatment of lupus nephritis (122)

1995 NZB/W mice soluble interferon-g
receptors

inhibit the onset of glomerulonephritis (123)

1998 (NZB x NZW) F1
mice

Deletion of the IFN-g
receptor

prevents autoantibody production and glomerulonephritis (124)

1998 NZB x NZW F1
hybrid (B/W)
mice

soluble interferon-
gamma receptor

attenuated behavioral abnormalities in autoimmune mice (125)

2000 MRL-Fas(lpr)
mice

cDNA plasmid encoding
IFN-gR/Fc

lupus development and progression could be delayed (126)

2004 MRL/lpr mice Lack of IFN-RII protects from developing severe autoimmune-related lymphadenopathy, autoantibodies, and kidney
disease

(127)

2008 NZB/NZW F1
mice

recombinant soluble Fc
gamma receptor II

inhibit chronic murine lupus pathology (128)

2015 Human SLE
(Phase I studies)

AMG 811 is a fully
human (IgG1) anti-IFN-
g antibody

resulting in a dose-related reduction in serum CXCL-10 levels and was well tolerated (14)

2015 Human SLE
(Phase I studies)

AMG 811 is a fully
human (IgG1) anti-IFN-
g antibody

normalizes interferon-regulated gene expression and serum CXCL10 levels in patients with SLE (129)

2017 Human DLE
(Phase I studies)

AMG 811 is a fully
human (IgG1) anti-IFN-
g antibody

led to changes in IFNg-associated biomarkers and was well tolerated, but no significant clinical benefit
was observed

(130)

2017 Human SLE
(Phase Ib studies)

AMG 811 is a fully
human (IgG1) anti-IFN-
g antibody

demonstrated favourable pharmacokinetics and acceptable safety profile but no evidence of clinical
impact. IFN-g-associated biomarkers decreased with AMG 811; effects were less pronounced and not
sustained in LN subjects.

(131)
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downstream of both. Therefore, blocking the JAK pathway has

both therapeutic effects on both type I IFN and type II IFN

mediated disease processes. Studies have found that JAKs

inhibitors can inhibit the IFN signaling in human DCs, reduce

CD80/CD86 expression and T cell stimulation ability (133), and

reduce the production of various inflammatory cytokines

including IFN-g (134) in SLE mice. It can also restore the

balance of naive CD4+ T cells and effector/memory cell

populations in SLE mice (135). Besides, evidence from a lupus

model suggests that tofacitinib (a JAK inhibitor) reduces levels of

anti-dsDNA and proteinuria, and relieve symptom of nephritis

and rash (136, 137). Moreover, in clinical studies, JAKs

inhibitors were also found to significantly improve the signs

and symptoms of active SLE, with a high remission rate of 67%

for arthritis or rash in SLE patients (138, 139).
8 Conclusion

There are genetic features of IFN-g in SLE, especially in the

initial and active stages of the disease, suggesting that IFN-g
plays an important role in the pathogenesis of SLE. IFN-g is an
important contributor to immune regulation in the body, which

may be one of the roles that cannot be ignored in the

pathogenesis of SLE. Moreover, current animal studies support

the feasibility of targeted IFN-g therapy in SLE; however, no

obvious effect of targeted IFN therapy has been found in human

clinical trials, although some of the inflammatory indicators

showed significant changes compared with those in the placebo

group. Whereas, these trials are designed to focus more on drug

safety than efficacy. It is worth noting that due to the important

role of IFN-g in the response to infection with some viruses, such

as herpesvirus and Salmonella, during targeted IFN-g therapy
Frontiers in Immunology 07
also needs to be examined in more extensive population

experiments. Nevertheless, the pathogenic role of IFN-g in SLE

is of interest and treatment target IFN-g is more promising.
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