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Circadian rhythms produce a biological measure of the time of day. In plants, circadian 
regulation forms an essential adaptation to the fluctuating environment. Most of our 
knowledge of the molecular aspects of circadian regulation in plants is derived from 
laboratory experiments that are performed under controlled conditions. However, 
it is emerging that the circadian clock has complex roles in the coordination of the 
transcriptome under natural conditions, in both naturally occurring populations of plants 
and in crop species. In this review, we consider recent insights into circadian regulation 
under natural conditions. We examine how circadian regulation is integrated with the acute 
responses of plants to the daily and seasonally fluctuating environment that also presents 
environmental stresses, in order to coordinate the transcriptome and dynamically adapt 
plants to their continuously changing environment.

Keywords: circadian rhythms, plant sciences, transcriptomics, environmental signaling, signal integration, 
phenology, Arabidopsis

INTRODUCTION
The Earth rotates on its axis approximately every 24 h. This causes daily cycles in a variety of 
environmental conditions, such as the presence, spectrum and direction of light, ambient temperature, 
relative humidity, and the activity of herbivores. Furthermore, the axial tilt of the Earth causes 
seasonal changes in the photoperiod and other environmental parameters. The daily environmental 
cycles appear to have driven the evolution of circadian rhythms. Circadian rhythms are biological 
cycles that have a period of about 24 h and persist in the absence of external cues. A key feature of 
circadian rhythms is that they define the daily phase of biological processes, and therefore organize 
the daily timing of the transcriptome so that cellular processes occur at appropriate times of day and 
in a coordinated manner (Harmer et al., 2000). Circadian regulation increases the performance and 
fitness of higher plants, including crops (Green et al., 2002; Dodd et al., 2005; Turner et al., 2005; 
Graf et al., 2010; Izawa et al., 2011; Müller et al., 2015).

The molecular functioning of plant circadian rhythms and the circadian organization of the 
transcriptome has been investigated predominantly under laboratory conditions. However, circadian 
rhythms are thought to have evolved as an adaptation to naturally fluctuating environments, and 
an understanding of their importance for ecosystems and field-grown crops requires knowledge 
of circadian regulation under natural conditions. Here, we explore the recent expansion of 
understanding of molecular and cellular aspects of circadian regulation under natural conditions, 
with a focus on the regulation of the transcriptome.
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Features of Circadian Rhythms
The circadian system in plants is often considered to include 
several conceptual components. First, input or entrainment 
pathways adjust the phase of the circadian oscillator to match 
the phase of the environment by changing the circadian phase 
in response to specific environmental cues known as zeitgebers. 
Second, the circadian oscillator is a molecular network that 
produces an estimate of the time of day that, in plants, consists 
of an interconnected network of genes and proteins arranged 
in feedback loops. Third, output mechanisms communicate the 
measure of the time of day generated by the circadian oscillator to 
clock-controlled processes in the cell. Finally, signaling pathways 
that entrain the circadian clock and others that participate in 
environmental responses are, themselves, circadian regulated 
so that the magnitude of their response to a defined stimulus 
depends upon the time of day. This aspect of circadian regulation 
is known as the circadian “gating” of signal transduction (Hotta 
et al., 2007). Next, we summarize key features of circadian 
regulation in Arabidopsis thaliana, and the reader is referred 
to other review articles for greater depth (Nagel and Kay, 2012; 
Hsu and Harmer, 2014; Huang and Nusinow, 2016; Millar, 
2016). There are differences in circadian clock architecture 
between Arabidopsis and crop species, which are summarized in 
a number of excellent articles (Song et al., 2010; Bendix et al., 
2015; Nakamichi, 2015). Key differences between Arabidopsis 
and crops for consideration include effects of polyploidy, genome 
duplication and hybrid vigor (Ermolaeva et al., 2003; Ni et al., 
2009; Hotta et al., 2013; Liu et al., 2014), allelic diversity (Xie 
et al., 2015), and species- and variety-specific alterations in the 
relationship between the circadian clock and control of flowering 
time (Turner et al., 2005; Cockram et al., 2007; Song et al., 2015).

Mechanisms of Circadian Regulation  
in Plants
Entrainment is the process whereby the phase of the circadian 
oscillator is adjusted to match the daily phase of the environment. 
This is crucial to allow the oscillator to provide a faithful biological 
estimate of the time of day. In Arabidopsis, entrainment occurs in 
response to light, temperature, and metabolic cues (Somers et al., 
1998; Salomé and McClung, 2005; Kim et al., 2007; Haydon et al., 
2013). The entrainment mechanism involves the phytochrome, 
cryptochrome, and other LOV-domain photoreceptors such 
as ZEITLUPE (ZTL) (Somers et al., 1998; Kim et al., 2007), 
temperature responses mediated by PRR7, PRR9, and ELF3 
(Salomé and McClung, 2005; Thines and Harmon, 2010), and 
metabolite signaling by sugar-sensing protein kinases such as 
SNF1-RELATED PROTEIN KINASE1.1 (KIN10/AKIN10/
SnRK1.1) and also PHYTOCHROME INTERACTING FACTOR 
(PIF) proteins (Haydon et al., 2013; Shin et al., 2017; Shor et al., 
2017; Frank et al., 2018). Entrainment in Arabidopsis generally 
takes the form of parametric entrainment, whereby the pace of 
the oscillator is transiently accelerated or decelerated in order to 
adjust the circadian phase (Covington et al., 2001; Michael et al., 
2003; Rémi et al., 2010). This contrasts nonparametric entrainment, 
which involves an instantaneous reset of the circadian phase. Effects 
upon the circadian oscillator of factors such as relative humidity 

(Mwimba et al., 2018), phytohormones (Hanano et al., 2006) and 
ROS (Lai et al., 2012) might allow these factors to entrain the 
circadian oscillator, although whether they are genuinely zeitgebers 
would benefit from further assessment by formal approaches such 
as the construction of phase response curves.

The circadian oscillator is formed from transcription/
translation loops that are connected primarily by repressive 
feedback (Hsu and Harmer, 2014), augmented by post-
translational and epigenetic mechanisms. Over 20 circadian 
clock-related genes have been identified in Arabidopsis, 
with homologs of these present in other plants including 
crops. CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and 
LATE ELONGATED HYPOCOTYL (LHY) are MYB-like 
transcription factors forming part of a core feedback loop 
within the circadian oscillator (Schaffer et al., 1998; Wang and 
Tobin, 1998). CCA1 and LHY transcript abundance peaks in 
the morning and decreases throughout the day. CCA1 and LHY 
repress the expression of the evening-phased TIMING OF CAB 
EXPRESSION1 (TOC1) by binding to its promoter (Harmer 
et al., 2000; Lu et al., 2009; Yakir et al., 2009). Inversely, TOC1 
regulates CCA1 and LHY (Alabadı́ et al., 2001) by binding to 
their promoters to repress their expression (Gendron et al., 2012; 
Huang et al., 2012). CCA1 and LHY also repress other evening-
phased genes, including GIGANTEA (GI), LUXa ARRHYTHMO 
(LUX), BROTHER OF LUX ARRHYTHMO (BOA), EARLY 
FLOWERING3 (ELF3), and ELF4 (Dai et al., 2011; Lau et al., 
2011; Lu et al., 2012; Nagel and Kay, 2012). Furthermore, CCA1 
and LHY appear to repress day-phased PRR9 and PRR7 in a time 
of day-dependent manner (Kamioka et al., 2016; Adams et al., 
2018). PRR9 reaches peak abundance after dawn, followed by 
PRR7, and these act as CCA1 and LHY repressors along with 
their homolog PRR5. Furthermore, PRR-family proteins repress 
transcription of the morning-phased REVEILLE8 (RVE8), which 
is within the same protein family as CCA1 and LHY (Rawat 
et al., 2009; Nakamichi et al., 2010; Farinas and Mas, 2011; 
Nakamichi et al., 2012; Farré and Liu, 2013). In contrast to the 
morning RVE8 transcript peak, RVE8 protein levels peak during 
the afternoon and RVE8 appears to positively regulate hundreds 
of evening-phased genes by binding to evening element (EE) 
promoter motifs to induce their transcription (Rawat et al., 2011; 
Hsu et al., 2013). RVE4 and RVE6 are close homologs to RVE8 
that might function redundantly with RVE8 (Hsu et al., 2013). 
A further component of the circadian oscillator is the evening 
complex (EC), incorporating LUX, ELF3, and ELF4. Within this, 
ELF3 and ELF4 negatively regulate the morning gene PRR9 and 
induce CCA1 expression by interacting with BOA (Dai et al., 
2011; Dixon et al., 2011; Helfer et al., 2011; Nusinow et al., 2011; 
Herrero et al., 2012).

Circadian-regulated cis elements within gene promoters 
appear to couple the circadian oscillator with the rhythmic 
regulation of the transcriptome. Therefore, in addition to 
forming parts of the circadian oscillator, circadian oscillator 
components are positioned within output pathways to provide 
transcriptional regulation of circadian-regulated genes. There 
is a rich set of circadian-regulated cis elements within the 
promoters of the Arabidopsis genome, and these confer distinct 
circadian phases to distinct subsets of transcripts (Harmer et al., 
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2000; Covington and Harmer, 2007). For example, the circadian 
oscillator components CCA1 and LHY are thought to bind to 
the promoters of at least 439 (CCA1) and 722 genes (LHY), 
respectively (Nagel et al., 2015; Kamioka et al., 2016; Adams 
et al., 2018). Similarly, interaction between circadian oscillator 
components and other signaling proteins, such as the PIF 
proteins involved in environmental signaling, can change their 
promoter-binding activity and allow the integration of circadian 
and environmental cues (Martín et al., 2018).

environmental Differences Between 
Laboratory and Field Conditions will 
Impact Circadian Regulation
Laboratory investigations of plant circadian rhythms commonly 
involve the entrainment of plants to square-wave light/dark 
cycles in the presence of uniform temperature conditions (Figure 
1A). The plants are transferred subsequently to constant light 
and temperature conditions for investigation of the rhythmic 
process under question (Figure 1B). Under permissive constant 
conditions, the circadian-regulated process will “free run” and 
its characteristics (e.g., circadian period, phase, damping) can 
be evaluated and quantified (Figure 1B). Plants can be exposed 
to a variety of other types of entrainment conditions, such as 
temperature fluctuations, which are usually also imposed with 
square-wave patterns. For this analysis, it is common to discard 
data collected during the first 24 h of constant conditions because 
this often includes transient responses to the final dawn that 
are not representative of the subsequent free-running rhythm 
(Figure 1B) (Dodd et al., 2014).

These structured environmental conditions are important 
for investigating the architecture and function of the circadian 
oscillator, and the downstream circadian regulation of 
transcription, metabolism, development, and physiology. 
However, plants growing under natural conditions are unlikely 
to experience conditions of continuous light, darkness, constant 
temperature or square-wave light/dark cycles (Figures 2A–E). 
There are also differences in environmental conditions caused 
by the weather, which are superimposed on the 24-h cycle. For 

example, the temperature can differ between successive days 
(e.g., Figures 2B, E). Therefore, understanding the contribution 
of the circadian oscillator to temporal structures in plants 
growing under natural conditions requires knowledge of the 
functioning of the circadian oscillator under either controlled 
conditions that fluctuate in a manner more representative 
of natural environments, or under naturally occurring field 
conditions (Figures 2B–E). Key differences between commonly 
used laboratory conditions (Figure 2A) and those experienced 
by plants in nature include gradual changes in irradiance at 
dawn and dusk, unpredictable changes in light and temperature 
conditions due to the weather (Figures 2A, B). There are also 
progressive seasonal changes in photoperiod, irradiance, 
and temperature (Figures 2B–E). While there have been 
comparisons of differences between plants grown in growth 
chambers and field conditions (Limpens et al., 2012; Poorter 
et al., 2016), these studies have not considered the impacts upon 
circadian regulation of these differences. Because a number of 
environmental parameters that differ between chamber and field 
conditions are key entrainment cues for the clock, there are likely 
to be fascinating differences in circadian function under field 
conditions that add depth to our understanding of plant circadian 
regulation. Here, we focus on the interactions between circadian 
and abiotic environmental cues that regulate the transcriptome 
under natural conditions.

effects of Light Conditions in Natural 
environments Upon Plant Circadian 
Regulation
Plants in natural environments experience fluctuating light 
levels during the course of the day due to changes in cloud cover 
and shading by neighbouring plants (Figures 2B–E). These 
fluctuations affect the intensity as well as the wavelengths of light 
that are incident upon plants. This is likely to alter entrainment, 
because increases in light intensity shorten the circadian period in 
Arabidopsis (Somers et al., 1998). Both red and blue light provide 
entraining inputs to the circadian clock (Millar et al., 1995; Somers 
et al., 1998). In Arabidopsis, red light is sensed by the phytochromes 

FIGURe 1 | Generalized structure for execution of an experiment to investigate properties of a circadian rhythm under laboratory conditions. The plant is  
(A) entrained to a square-wave light/dark (or warm/cold) cycle and subsequently (B) transferred to constant conditions where the circadian-regulated feature of 
the plant will free-run. Analysis of the resultant rhythm (B) with a variety of quantitative tools can be used to extract information about the circadian period, phase, 
and amplitude. Data collected during the first 24 h of constant conditions is not considered to be a true circadian cycle, and these data are often discarded prior to 
quantitative analysis of free-running rhythms.
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phyA-E, while blue light is sensed by the cryptochromes cry1 and 
cry2. However, because plants are normally exposed to white 
light, combined information from these and other photoreceptors 
will influence the circadian oscillator (Oakenfull and Davis, 
2017). In the laboratory, continuous far red light causes a shorter 
circadian period, so it is possible that under natural conditions 
the ratio of red to far red light (R:FR), which is altered by shade, 
the threat of shade, and the angle of incident light, will influence 
circadian regulation (Wenden et al., 2011). However, there is little 
information concerning the effect of R:FR more representative of 
natural environments upon the circadian oscillator. In addition 
to the phototransduction pathways that act upon the circadian 
oscillator through the photoreceptors, photosynthetic light 
harvesting leads to the production of photosynthetic sugars and 
reactive oxygen species (ROS). Photosynthetic sugars can entrain 
the circadian oscillator (Haydon et al., 2013; Frank et al., 2018) and 
there is evidence that ROS can adjust circadian oscillator function 
(Lai et al., 2012), so a fascinating area for future investigation 
would be to identify the relevance of these mechanisms that couple 
metabolism with circadian regulation under natural conditions.

Under square-wave environmental fluctuations, the transition 
from dark to light and vice versa is instantaneous, while under 
natural conditions plants experience a gradual increase and 
decrease in light intensity at dawn and dusk, respectively 
(Figure 1). A comparison of plant growth under square-wave and 
naturally fluctuating light environments identified that plants 
grown under fluctuating light have thinner leaves, decreased 
light absorption by leaves, and a decrease in carbon assimilation 
compared with plants grown under square-wave light/dark cycles 
(Vialet-Chabrand et al., 2017). In sugar beet, a gradual increase 
in light intensity caused more efficient carbon flow within plants 
compared with sudden transitions between light and dark (Fondy 
et al., 1989). These differences in physiology could potentially 
reflect effects of altered transcriptome dynamics between plants 
grown under natural and laboratory conditions of light.

effects of Temperature Conditions 
in Natural environments Upon Plant 
Circadian Regulation
Under natural conditions, in addition to the day/night 
temperature changes, there are temperature fluctuations 
during and between days depending on the weather conditions 
and season. Experiments with field-grown rice suggest that FIGURe 2 | Continued

FIGURe 2 | Examples of differences in environmental parameters that will 
impact circadian rhythms of plants in growth chamber and field conditions. 
(A) Typical entrainment program used in the laboratory to study rhythmic 
processes, characterized by a 12-h light/12-h dark square-wave cycle of 
illumination combined with constant temperature conditions. (B–e) Light and 
temperature conditions in a naturally-fluctuating environment, monitored for 
24 h during four cardinal points of the year. In this case, the environment is 
characterized by gradual daily changes in light and temperature conditions, 
seasonal differences in the temperature and light environment, and short-
term variations caused by altering weather conditions. Data were collected 
during 2018–2019 at a field site equipped with a meteorological station, 
Taka-cho, Nishiwaki, Hyogo Prefecture, Japan (35° 05’ N, 134° 54’ E) 
(Kudoh et al., 2018; Nagano et al., 2019).
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the circadian clock is robust to fluctuating environments, 
although the accumulation of individual transcripts is affected 
by temperature (Matsuzaki et al., 2015). The circadian period 
is relatively robust to temperature fluctuations within a specific 
range, typically between 12°C and 27°C, which is known as 
temperature compensation of the circadian clock (Gould et al., 
2006). Laboratory studies have identified that PRR7, PRR9, an 
interaction between GI and CCA1/LHY, and FLC have roles 
in temperature compensation (Salomé and McClung, 2005; 
Edwards et al., 2006; Gould et al., 2006; Salomé et al., 2010). 
QTL analysis has also suggested that ZTL and GI contribute 
to this response (Edwards et al., 2005). Modeling suggests 
that blue light signaling might participate in temperature 
compensation through the cryptochrome photoreceptors 
(Gould et al., 2013). Formal quantification of temperature 
compensation within the circadian oscillator requires analysis 
of the properties of circadian rhythms under free-running 
conditions. However, plants under field conditions experience 
a greater range of varying environmental parameters in 
comparison to the very structured environmental conditions 
used to study temperature compensation in the laboratory. It is 
possible that responses of the circadian oscillator to the range 
of environmental parameters presented by field conditions 
provides an opportunity to investigate the environmental 
parameter space within which circadian rhythms remain 
temperature compensated.

The difference in temperature between day and night can 
also act as an entrainment cue. The circadian clock can be 
entrained by temperature fluctuations as small as 4°C (Gould 
et al., 2006). Daily temperature fluctuations with a warmer 
day and cooler night (e.g., cycles of 12 h at 31°C, 12 h at 20°C, 
known as thermocycles) can drive daily oscillations of 12% and 
8% of genes in rice and poplar under constant light, respectively 
(Filichkin et al., 2011). Although many laboratory experiments 
investigating circadian rhythms do not incorporate day/night 
temperature fluctuations, such a difference can affect circadian 
regulation (Mizuno et al., 2014) and be essential for some 
aspects of plant performance. For example, a 1°C increase in the 
temperature during the night can decrease rice grain yield by 
10% (Peng et al., 2004). Furthermore, warm night temperatures 
disrupt rhythmically expressed genes, particularly those genes 
driven by thermocyles (Desai et al., 2019), which has impacts 
upon productivity.

Interactions Between Abiotic Stress 
Responses and Circadian Regulation 
will Shape the Transcriptome Under 
Natural Conditions
Responses to low temperature and circadian regulation are linked 
intrinsically. The C-REPEAT/DRE BINDING FACTOR (CBF) 
proteins are major regulators of cold acclimation (Thomashow 
et al., 2001). CBF1, 2, and 3 transcripts undergo circadian 
regulation in Arabidopsis under ambient temperature conditions, 
with transcript abundance peaking 4 h after subjective dawn 
(Harmer et al., 2000; Fowler et al., 2005). The circadian clock has 
two main effects on the CBF pathway; not only is there circadian 

regulation of basal CBF transcript accumulation under ambient 
temperatures, but there is also circadian gating of cold-induced 
accumulation of CBF transcripts. In this context, low temperature 
treatment causes greater CBF transcript accumulation 4 h after 
subjective dawn compared with other times of day (Fowler et al., 
2005). CCA1 and LHY positively regulate the CBF-pathway 
because circadian cycling of CBF genes is absent from the cca1 
lhy double mutants, which also have reduced freezing tolerance 
(Dong et al., 2011). Interestingly, a low red/far-red ratio of light 
causes greater CBF transcript accumulation in Arabidopsis in 
a manner that depends upon the time of day, suggesting that 
light quality might influence cold acclimation in a circadian-
dependent manner (Franklin and Whitelam, 2007). There is also 
a seasonal dimension to this circadian regulation, with plants 
grown under short days at ambient temperatures having greater 
daily amplitudes of the rhythm of CBF transcript abundance 
(Lee and Thomashow, 2012). This is thought to increase 
freezing tolerance of plants grown under short photoperiods 
compared with long photoperiods (Lee and Thomashow, 2012). 
Furthermore, under long day conditions the CBF pathway is 
negatively regulated by PIF4, PIF7 and PHYB (Kidokoro et al., 
2009; Lee and Thomashow, 2012). This suggests that fluctuating 
light and temperature, as well as photoperiod, will also impact 
the involvement of the circadian oscillator in the transcriptomic 
responses of plants to abiotic stress.

Cold acclimation responses differ between plants acclimated 
at constant temperatures under laboratory conditions 
compared with the variable temperature conditions in natural 
environments. For example, cold acclimation of plants in the 
field arises from multiple peaks of CBF gene expression that 
are concurrent with temperature decreases during the night 
(Hiraki et al., 2018). This contrasts the single peak of CBF 
expression during the daytime reported in plants acclimated 
at a constant temperature of 2°C in a growth chamber (Hiraki 
et al., 2018). The single or double peaks of CBF expression 
correlate with multiple Ca2+ signals induced by fluctuating 
temperatures, which is consistent with the notion that Ca2+ 
signals integrate temperature fluctuations into specific 
signatures that inform the expression of cold-induced genes 
(Kiegle et al., 2000; Hiraki et al., 2018). Photoperiod and light 
intensity also inform daily oscillations of cytosolic free calcium 
([Ca2+]cyt) within the plant (Love et al., 2004). It is possible 
that under natural conditions, convergence between [Ca2+]cyt 
signals induced by light, temperature, circadian regulation, and 
other perturbations produce specific transcriptional dynamics 
within the circadian oscillator that have downstream effects 
upon the transcriptome.

When investigating molecular aspects of plant abiotic stress 
responses using laboratory experiments, control experimental 
conditions are necessary but might lead to artefacts in the 
interpretation of transcriptomic responses to the environment 
under natural conditions. For example, in the context of low 
temperature responses, plants in the laboratory are not usually 
exposed to daily fluctuating temperatures before exposure to 
cold. Furthermore, cold temperature treatments are usually 
applied rapidly, with plants transferred from ambient to 
cold temperatures within a matter of minutes, whereas this 
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is unlikely to occur under natural conditions (e.g., Figure 
2E). Under natural conditions these previous environmental 
fluctuations, combined with longer term epigenetic storage of 
environmental information (Aikawa et al., 2010), might modify 
the transcriptomic response to current environments such that 
interpretations of transcriptional responses from laboratory 
conditions might not translate directly into transcriptomic 
responses under natural conditions.

Contribution of Alternative Splicing to the 
Rhythmic Transcriptome Under Natural 
Conditions
An essential mechanism of transcriptome and proteome 
regulation in plants is alternative splicing (AS). This is the 
process whereby more than one transcript can be generated 
from a single precursor mRNA (pre-mRNA) through the use 
of alternative splice sites in response to developmental cues, 
environmental cues, and stresses (Reddy et al., 2013). These 
alternative transcripts can contain premature termination 
codons (PTCs) that cause targeting by the nonsense-mediated 
decay (NMD) pathway, therefore regulating the amount of 
coding mRNA present (Hug et al., 2016). AS can also produce 
proteins with altered length or domain arrangements, impacting 
their function or stability, so expanding the proteome diversity 
(Syed et al., 2012). It is thought that approximately 61% of intron-
containing genes undergo AS in Arabidopsis (Marquez et al., 
2012). AS occurs extensively across core genes of the circadian 
oscillator (Romanowski and Yanovsky, 2015), with mutations 
in AS genes leading to improper processing of clock genes. For 
example, a mutation in the STIPL1 and PRMT5 genes, which 
participate in the regulation of AS, alters the accumulation of 
circadian clock transcripts due to less efficient splicing of PRR9 
and causing a longer circadian period (Sanchez et al., 2010; 
Jones et al., 2012).

Recent analysis of the Arabidopsis transcriptome highlights 
a massive and rapid differential AS in response to cold 
temperature exposure, including a substantial proportion of 
circadian clock associated genes (Calixto et al., 2018). Splicing 
patterns of CCA1 transcripts alter in response to biotic and 
abiotic cues such as pathogen exposure, cold and high light, 
causing the accumulation of the long intron-retaining CCA1 
isoform as well as a phase delay (Filichkin et al., 2010; Filichkin 
et al., 2015). Upon transfer to 4°C, the abundance of functional 
Arabidopsis LHY protein was reduced due to retention of the 
first intron in the LHY 5’-UTR, resulting in NMD (James et al., 
2012a). AS of the myb-domain transcription factor RVE8 as well 
as barley orthologs of LHY and PRR7 also occurs in response 
to low temperature (James et al., 2012b; Calixto et al., 2016). 
Furthermore, a recent study showed that in sugarcane under 
field conditions, AS events of clock genes relates closely to 
temperature fluctuations, with splice forms expressed more 
highly at low temperatures (Dantas et al., 2019a).

There is also evidence that AS might contribute to the 
temperature compensation of circadian regulation (James et al., 
2012a; James et al., 2012b). In Arabidopsis, the spliceosomal 
assembly factor GEMIN2 attenuates the effects of temperature 

on circadian period by regulating AS events. Due to differences 
in the splicing of clock genes in GEMIN2 mutants exposed to low 
temperatures for 24 h (Schlaen et al., 2015), it has been suggested 
that AS acts to continuously adjust the circadian clock in 
fluctuating temperatures under natural conditions (Dantas et al., 
2019a). This means that a natural environment with fluctuating 
light and temperature conditions may drive alterations in AS that 
lead to distinct transcriptome and proteome profiles depending 
on the environmental conditions.

Circadian Regulation of the Transcriptome 
in Crops Under Natural Conditions
An important aim of plant sciences research is to contribute 
to the development of the next generation of crop varieties 
through breeding, genetic modification, and gene editing. The 
incredibly pervasive influence of circadian regulation upon 
plant metabolism and physiology means that the circadian 
oscillator affects traits of agricultural importance, with a 
large number of oscillator components being identified as 
important determinants of agricultural traits (Bendix et al., 
2015; Nakamichi, 2015). Translation of laboratory research 
concerning circadian rhythms into information of agricultural 
benefit requires an understanding of circadian regulation 
in crops under both artificial and natural environments. 
Understanding circadian regulation in crops provides 
opportunities to alter the latitudinal range of cultivation 
(Müller et al., 2015; Nakamichi, 2015), intercept developmental 
and signaling processes including photoperiodism (Turner et 
al., 2005; Nakamichi, 2015) and stress responses (Fowler et al., 
2005; Bieniawska et al., 2008; Nakamichi et al., 2009; Seo et 
al., 2012; Nakamichi et al., 2016), manipulate plant defences or 
pollination biology (Roden and Ingle, 2009; Goodspeed et al., 
2012; Yon et al., 2017a; Yon et al., 2017b), and fuse chemical 
biology and circadian biology to develop and optimize 
agrochemical use (Belbin et al., 2019; Uehara et al., 2019). 
On the other hand, plant breeding that causes inadvertent 
alterations in circadian clock function could have deleterious 
consequences for crop performance.

Daily programs of transcriptional regulation have been 
investigated in several crop species growing under natural 
conditions; particularly rice, sugarcane, and pineapple (Izawa 
et al., 2011; Nagano et al., 2012; Matsuzaki et al., 2015; Ming 
et al., 2015; Dantas et al., 2019a; Dantas et al., 2019b). Fewer 
studies have directly tested roles for circadian clock components 
in crops under field conditions. In one study, field-grown rice 
plants harboring a null mutation of GIGANTEA were found 
to have altered flowering time, stomatal conductance, fertility 
and grain weight compared with the background line, with the 
GIGANTEA mutation altering the expression patterns of about 
75% of the transcriptome (Izawa et al., 2011). Furthermore, 
under field conditions this GIGANTEA mutant has altered 
accumulation of transcripts associated with GA and auxin 
signaling, and potential alterations in ABA and jasmonate 
signaling (Itoh and Izawa, 2011). When considered as a whole, 
the circadian oscillator of field-grown rice appears to be 
relatively robust to environmental fluctuations, even though 
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individual genes have transient responses to environmental 
changes (Matsuzaki et al., 2015).

Tobacco is another important crop where roles for 
circadian clock genes have been investigated in wild relatives. 
Manipulations of the circadian oscillator of a wild tobacco 
species (Nicotiana attenuata) have provided insights into roles 
for circadian regulation under naturally fluctuating conditions, 
with a focus upon ecology and ecophysiology. For example, 
antisense-mediated misexpression of NaLHY and NaTOC1 
identified potential roles for the circadian oscillator gating 
photosynthetic responses to light under field conditions (Joo 
et al., 2017). The N. attenuata circadian oscillator also appears 
to contribute to the rate of flower opening and flower angle 
(Yon et al., 2016). Although circadian regulation modified 
flower selection by moths under laboratory conditions (Yon 
et al., 2016), these findings did not extrapolate with statistical 
significance to field conditions (Yon et al., 2017b). This illustrates 
how roles for circadian regulation can differ between field and 
laboratory conditions, and the need to extrapolate cautiously 
from the laboratory to field.

The major seed crop sunflower also gains benefits from 
circadian regulation. Sunflower plants track the sun such 
that they point eastwards around dawn and west at dusk 
(Vandenbrink et al., 2014). Disruption of this solar tracking 
in pot-grown plants in the field, by rotating pots daily so that 
the plant orientation was incorrect, reduced biomass and leaf 
area compared with correctly orientated controls (Atamian 
et  al., 2016). In addition, correctly orientated sunflower heads 
received more pollinator visits than incorrectly orientated 
sunflowers. This is in part due to greater solar warming of 
the flower heads of correctly orientated plants (Atamian 
et al., 2016). It will be fascinating in future to identify which 
sunflower homologs of circadian oscillator components drive 
the differential growth response that underlies this mechanism 
(Atamian et al., 2016).

Quantitative genetics is providing valuable insights into 
the relationship between circadian regulation and phenotypic 
characteristics under laboratory and field conditions. For 
example, laboratory experiments have demonstrated that allelic 
variation in GIGANTEA leads to variations in the circadian 
period in B. rapa (Xie et al., 2015). In addition, experiments 
using a recombinant inbred line population of B. rapa 
revealed a correlation between circadian regulation, stomatal 
conductance, and CO2 assimilation, but not with reporters for 
water use efficiency (Edwards et al., 2012). This could suggest that 
circadian regulation does not contribute to drought responses 
associated with gas exchange traits (Edwards et al., 2012), 
although we note that water use efficiency under well-watered 
conditions is not necessarily an indicator of drought tolerance 
(Blum, 2009). In a separate study, the QTL that determine 
characteristics of circadian regulation (e.g., period and phase) 
were investigated in a RIL population of Arabidopsis (Rubin 
et al., 2019). Seedlings of the RIL population were entrained 
under field conditions at several times of year, and circadian 
rhythms were subsequently investigated in the laboratory using 
bioluminescence imaging. Intriguingly, this identified that 
the QTL determining the circadian phase differed between 

each season of entrainment (Rubin et al., 2019). While these 
population genetics studies did not investigate the dynamics 
of the entire transcriptome under field conditions, in future, it 
could be informative to apply circadian transcriptome analysis 
protocols to RIL populations under natural or laboratory 
conditions to better understand the mechanistic relationship 
between QTLs identified, changes in circadian regulation, and 
physiological outcomes.

A key challenge for investigations of rhythmic transcriptional 
regulation in crop species under natural conditions is the 
complexity of some crop genomes, particularly due to 
polyploidy. While sequencing technologies combined with 
analytical tools such as HomeoRoq (Akama et al., 2014) can 
allow quantification of transcripts derived from distinct gene 
homeologs in polyploids, it is also the case that the level of 
replication and/or sampling frequency required for timecourse 
studies can be high. When combined with the sequencing depth 
that is required to distinguish gene homeologs, sequencing cost 
constraints might arise.

PeRSPeCTIveS
Naturally fluctuating conditions impose an extraordinarily 
complex set of modifications to the interactions between 
the circadian oscillator and its outputs (Figure 3). There are 
multiple positions within the circadian system where signals 
communicating environmental information will modify the 
functioning of the circadian system (Figure 3). This includes the 
entrainment mechanisms, direct effects of the environment upon 
the circadian oscillator, and circadian gating of environmental 
signaling and response pathways (Figure 3). There are also direct 
effects of environmental cues upon circadian-regulated transcripts 
that are downstream of the circadian clock, such that circadian 
and environmental inputs are integrated separately by the 
transcripts (Figure 3). Furthermore, cascades of transcriptional 
regulation having a hierarchical organization will provide 
multiple additional positions for the entry of environmental cues 
into the circadian-regulated transcriptional cascades (Figure 3). 
This will lead to a continuous and dynamic adjustment of both 
the circadian oscillator and its outputs (Webb et al., 2019) through 
the action of these multiple signal inputs, with this dynamic 
adjustment itself altering in response to a naturally fluctuating 
environment. We suggest that there is future scope to extend 
beyond the application of transcriptional analysis under field 
conditions to daily cycles of integrated “omics” measures such 
as epigenetic states, protein abundance, and post-translational 
modifications and fluctuations of key primary and secondary 
metabolites. Furthermore, additional investigation of mutants 
and gene-edited plants grown outdoors in the context of circadian 
regulation is likely to be exceedingly informative. Advances in 
growth chamber technology such as fully programmable solar 
simulation will allow systematic investigation of the contributions 
of specific complex environmental parameters to circadian 
regulation and its outputs, thereby helping to integrate our 
interpretations of results from field and laboratory experiments. 
An interesting challenge arising from such investigations in 
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naturally occurring plant populations is that the study species will 
occupy different developmental stages in distinct seasons, adding 
to the complexity of comparing circadian regulation between, for 
example, the rosette and cauline leaves of model brassica species. 
There is clear evidence that statistical modeling can help to 
unravel these complexities of daily and seasonal transcriptional 
programs under natural conditions (Aikawa et al., 2010; Nagano 
et al., 2012; Satake et al., 2013; Hepworth et al., 2018; Nagano 
et al., 2019). Such approaches could be invaluable to future plant 
sciences research as they have the potential to predict effects of 
future climates upon circadian function and resultant impacts 
upon crop and ecosystem performance.
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FIGURe 3 | Circadian-regulated processes receive multiple environmental inputs, leading to complex interactions between circadian regulation and environmental 
conditions upon the transcriptome under natural conditions. Diagram conceptualizes the circadian system as a core circadian oscillator that is entrained by 
environmental cues and that produces output timing signals that regulate the transcriptome through a transcription factor cascade. Bold-face text indicates 
potential sites of environmental modification of circadian regulation, with environmental cues acting upon both oscillator inputs, oscillator function, oscillator outputs, 
and upon the sensitivity of environmental signaling through the process of circadian gating. In this conceptual scheme, circadian oscillator components that are 
transcriptional regulators (red circles) also function as the initial output step from the circadian oscillator that regulates key downstream transcription factors. In 
Arabidopsis, this role is fulfilled by oscillator components such as CCA1, LHY, the PRR, GI, and the evening complex (Nakamichi et al., 2012; Liu et al., 2013; Nagel 
et al., 2015; Liu et al., 2016; Ezer et al., 2017; Adams et al., 2018; Nohales et al., 2019).
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