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Abstract
Multiplexing samples in sequencing experiments is a common approach to maximize infor-

mation yield while minimizing cost. In most cases the number of samples that are multi-

plexed is determined by financial consideration or experimental convenience, with limited

understanding on the effects on the experimental results. Here we set to examine the im-

pact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic

modification. We performed peak detection analyses to determine the effects of multiplex-

ing. These include false discovery rates, size, position and statistical significance of peak

detection, and changes in gene annotation. We found that, for histone marker H3K4me3,

one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and

still detect over 90% of all peaks found when using a full lane for sample (~181 million

reads). Furthermore, there are no variations introduced by indexing or lane batch effects

and importantly there is no significant reduction in the number of genes with neighboring

H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model

IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological

signal.

Introduction
Knowledge of protein-DNA interactions contributes to the understanding of gene expression
regulation, and consequently, understanding of biological processes and disease states. The
technique of chromatin immunoprecipitation followed by massively parallel sequencing
(ChIP-seq) is commonly used for genome-wide identification of protein-DNA interaction sites
(e.g. transcription factors), and epigenetic modifications (e.g. histone and DNA modifications)
[1, 2]. In contrast to its micro-array predecessor ChIP-ChIP, the ChIP-seq assay provides unbi-
ased genome-wide survey of all protein-DNA interactions and higher genomic resolution of
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binding site positions. In recent years ChIP-seq has become the primary method for surveying
protein-DNA interactions however, it remains a challenging technique to master in part be-
cause of vast differences in efficiency of DNA capture. Despite increasing experience and
knowledge about the technique [3] there has been no systematic detailed analysis of the impact
of sequencing depth on the results of ChIP-seq experiments.

Currently, a single lane on an Illumina HiSeq2500 using v3 chemistry, can typically produce
upwards of 150 million (M) single-end reads, often exceeding the sequencing depth needed for
many experiments. Combining multiple samples into a single lane, multiplexing, is an econom-
ical and efficient way to maximize information content and control cost. The main challenge in
designing these experiments is to optimize the multiplexing such that sample coverage is below
the saturation point where additional reads do not provide additional information and yet cov-
erage is sufficient to capture the meaningful biological signal. These considerations are highly
dependent on the number of binding sites, the quality of the IP procedure and the amount of
captured DNA. To improve the accuracy of detecting true IP events most ChIP-seq experi-
ments also sequence the total DNA before IP enrichment, so called “input” sample, in order to
control for non-specific chromatin that is purified in the IP.

In this study we aimed to characterize the effect of multiplexing ChIP and input samples on
the accuracy and number of binding events identified. We selected histone 3-lysine 4 tri-meth-
ylation (H3K4me3) as a model histone modification since antibodies that recognize this modi-
fication are commercially available and perform well across multiple protocols and labs. ChIP
was performed in OCI-LY7 diffuse B-cell lymphoma cells. We evaluated several experimental
and computational parameters. Experimentally, to test the effects of barcode indexing, we de-
vised a multiplexing titration scheme starting from one full lane (1-plex) of ChIP and one lane
of input samples up to 7 IP samples and one input (8-plex) in a single lane (Fig 1). The remain-
der of the flow cell contained two lanes of two ChIPs and two inputs (4-plex), one lane of 5
ChIPs and one input (6-plex). This allows for various comparisons between multiplexed and
non-multiplexed ChIP as well as different combinations of ChIP and input. Computationally,
we evaluated: i) the overlap of the detected peaks with the full lane sequencing, ii) false discov-
ery rates, iii) p-value distributions of detected peaks, iv) genomic coordinates and apex posi-
tions of the identified peaks, and v) changes in genomic annotation. We found that when using
a highly specific antibody, one can reduce the sequencing coverage down to ~21M reads and
retain over 90% of the peaks identified in the non-multiplexed sample (~181M reads) with
very little variability or loss of annotated genes.

Results
To systematically test the effects of multiplexing libraries on the information yield, we per-
formed one preparative ChIP using the highly optimized and specific antibody to trimethylated
lysine 4 on histone H3 (H3K4me3)—this histone mark is enriched in the transcriptional start
sites of genes– 13 independent libraries were made, 5 from input and 8 from the immunopre-
cipitated material, and sequenced according to the titration scheme described in Fig 1. Follow-
ing read mapping and peak identification, there are several comparisons that can be made
using this scheme. Throughout the comparisons, the libraries sequenced as 1-plex (Fig 1,
1-plex lane) are used as the reference set. Experiments are labeled as either chip or input with
their index, so ChIP with 6th index (from Illumina TruSeq kit) is called chip-6 and input with
4th index is called input-4. Peaks identified by contrasting chip-6 with input-4 are labeled as
chip-6::input-4. First, we can compare moderately multiplexed ChIP experiments to data gen-
erated from whole lane ChIP and whole lane of input. This allows examining the effect of mul-
tiplexing and barcode indexing on peak identification. For example, we can compare peaks
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identified from ~43M reads (4-plex) of chip-4::input12 with peaks identified from ~21M reads
(8-plex) of chip-4::input12 or chip-5::input12. Second, we can compare peaks derived from dif-
ferent combinations of ChIP and input samples from both inter- and intra-lane (see S1 Table
for all ChIP/input combinations). For example, there are two 4-plex lanes with 2 ChIPs and 2
inputs, we can compare peaks identified for different combinations of ChIP and input samples
such as chip-6::input-4, or chip-6::input-5, chip-6::input-6 and chip-6::input-12. Furthermore,
we can test the effect of different amounts of input on peak identification. We can compare
peaks identified from ~43M reads of ChIP and either the same number of reads of input or
double the number of reads from combined input. As an example, chip-6::input-4 (single
input), with chip-6::input-4+input-5 (combined inputs).

An average of 216 million single 50bp reads per lane for 6 lanes were generated with greater
than 92% of the reads passing filter and greater than 96% of the bases having a quality score
above Q30 (mean quality score Q37.8). As a first step, to determine whether there was sequenc-
ing consistency across the differently multiplexed libraries, we evaluated the number of reads
generated by each library and the number of duplicated (identical) reads. Multiplexed libraries
yielded an average of 26.4% more total reads and 45.1% less duplicated reads suggesting there
is read saturation in libraries sequenced at 1-plex (Table 1). This contributes to an increase in
the number of usable reads–the fraction of uniquely mapped reads–in the multiplexed samples
(Fig 2A).

Fig 1. ChIP-seq multiplexing sequencing scheme. The ChIP-seq multiplexing titration scheme consists of: one whole lane of ChIP sample (1-plex), one
whole lane of input sample (1-plex), two lanes with 4 samples (4-plex) of 2 ChIP and 2 input samples in each lane, one lane with 6 samples (6-plex) of 1 input
and 5 ChIP samples, and one lane with 8 samples (8-plex) of 1 input and 7 ChIP samples. Sample labels correspond to sample type and llumina TruSeq
indexed used (e.g. ChIP-5 is IP library with index number 5)

doi:10.1371/journal.pone.0129350.g001
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Table 1. Read counts and proportions.

Reads x106

(multiplex
factor)

Label Total reads %
Pass
filter

% of > =
Q30 Bases
(PF)

Mean
quality
score (PF)

Mapped
reads

Clonal Usable
reads

Usable/
Mapped
(%)

Usable/
Total reads
(%)

~181 (1) ChIP-
2

180,919,574 94.21 97.14 38.2 141,334,233 52,600,090 88,734,143 62.8 49

Input-
2

186,914,799 90.72 96.07 37.76 142,235,243 54,102,709 88,132,534 62 47.2

~43 (4) ChIP-
6

65,994,330 90.88 95.57 37.55 50,506,894 7,509,321 42,997,573 85.1 65.2

ChIP-
12

44,766,472 91.57 95.7 37.6 35,070,086 4,863,613 30,206,473 86.1 67.5

Input-
4

82,954,090 90.66 95.75 37.61 60,722,599 13,471,137 47,251,462 77.8 57

Input
5

58,158,842 91.54 95.95 37.69 44,471,553 5,855,499 38,616,054 86.8 66.4

~43 (4) ChIP-
4

78,851,924 92.98 96.34 37.86 60,667,164 9,997,778 50,669,386 83.5 64.3

ChIP-
5

53,074,973 93.54 96.52 37.94 41,493,467 5,275,151 36,218,316 87.3 68.2

Input-
6

46,404,486 93.16 96.66 38.01 35,457,222 3,961,293 31,495,929 88.8 67.9

Input-
12

43,262,826 93.5 96.72 38.04 33,989,221 7,191,470 26,797,751 78.8 61.9

~31 (6) ChIP-
2

31,186,192 93.07 96.31 37.84 24,279,056 2,518,570 21,760,486 89.6 69.8

ChIP-
4

48,602,375 92.8 96.3 37.84 37,383,166 4,198,375 33,184,791 88.8 68.3

ChIP-
5

37,480,885 93.13 96.47 37.91 29,241,485 2,786,055 26,455,430 90.5 70.6

ChIP-
7

44,486,053 92.8 96.32 37.85 34,242,835 4,966,694 29,276,141 85.5 65.8

ChIP-
12

31,695,051 93.15 96.45 37.91 24,989,189 2,628,874 22,360,315 89.5 70.5

Input-
6

33,223,876 92.96 96.62 37.98 25,361,883 2,144,548 23,217,335 91.5 69.9

~21 (8) ChIP-
1

27,745,182 92.91 96.31 37.84 21,283,791 3,568,944 17,714,847 83.2 63.8

ChIP-
2

23,401,070 93.32 96.28 37.83 18,249,468 1,494,474 16,754,994 91.8 71.6

ChIP-
3

24,674,925 92.57 95.95 37.68 18,778,438 2,416,530 16,361,908 87.1 66.3

ChIP-
4

36,312,228 92.95 96.26 37.83 27,965,673 2,472,080 25,493,593 91.2 70.2

ChIP-
5

28,530,578 93.22 96.42 37.9 22,268,041 1,692,055 20,575,986 92.4 72.1

ChIP-
6

35,095,024 92.88 96.29 37.84 27,104,039 2,432,794 24,671,245 91 70.3

ChIP-
7

32,766,925 92.9 96.27 37.83 25,245,427 2,846,520 22,398,907 88.7 68.4

Input-
12

21,184,781 93.4 96.65 38.01 16,638,484 1,949,311 14,689,173 88.3 69.3

The table displays the total number of reads sequenced, percent of reads that passed filter, percent of bases above quality score Q30, the mean quality

score, number of mapped reads, number of reads considered clonal, number of usable reads, the proportion of mapped reads considered usable, and the

proportion of total reads considered usable, grouped by multiplexing level.

doi:10.1371/journal.pone.0129350.t001
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A common and useful approach to assess the general quality of a ChIP-seq experiment is to
visualize the mapped reads of some known sites at specific genomic location. We examined the
coverage along the HoxA region (Chromosome 7: 27,132,000–27,139,000) and found that read
coverage is consistent across all multiplexing levels with decreasing coverage as multiplexing is
increased (Fig 2B).

Impact of multiplexing on Peak Detection and Peak Characteristics
Sequencing depth for peak detection was within the range for sufficient ChIP signal strength
(>20Mmapped reads) defined in the guidelines by The ENCODE and modENCODE consor-
tia [3]. Peaks were identified using default parameters of ChIPseeqer [4]. Using the peaks de-
tected from the full IP (the reference set; 1-plex; ~181M reads) and input lanes, we compared
the peaks detected from the multiplexed ChIPs (4-plex ~43M reads, 6-plex ~31M reads, and
8-plex ~21M reads). To determine the effect of reduced sequence coverage on peak discovery
we counted the total number of peaks identified for each multiplexing level by the ChIPseeqer
peak detection algorithm. For our initial approach, we averaged the number of peaks for each
sample of each multiplexing level. As expected, reduced coverage as result of increasing the
multiplexing factor results in fewer detected peaks. Compared to 1-plex, when using ~43M
reads there were 1.9% fewer peaks, and when using ~21M reads there were 7.3% fewer peaks
(Fig 3A), as well as reduction in the average peak width, 23.3% shorter width at ~43M reads
and 38.6% shorter width at ~21M reads (Fig 3B). Since peak-calling algorithms can have very
different models we repeated this analysis using MACS2 (an updated version of MACS;

Fig 2. Mapped reads summary. A) Unique mapped reads are considered to be the fraction of mapped reads after duplicate reads are removed. Multiplexed
libraries yield proportionally more unique mapped reads per lane. B) Genome view of sequence coverage along the HoxA region (chr7: 27,132,000–
27,139,000) showing consistent coverage across all multiplex levels with decreasing coverage as multiplexing increases.

doi:10.1371/journal.pone.0129350.g002
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Fig 3. Peak detection and false discovery rate. As expected the number of peaks and their width are reduced as coverage is reduced. A) The mean
number of peaks identified for each sample by multiplex level. B) The mean peak width of identified peaks for each sample by multiplex level. C) The false
discovery rate (FDR) for each sample was computed by contrasting the input to the IP samples: ~181 million (M) reads (blue), ~43M reads (green), ~43M
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https://github.com/taoliu/MACS) [5]. When running MACS2 with parameter values estimated
to be analogous to ChIPseeqer, MACS2 tended to call a greater number of peaks with shorter
widths with the same trend of reduction in number or width as multiplexing increases (S1 and
S2 Figs).

To assess the relative confidence in the sets of peaks called for each experiment we comput-
ed an empirical false discovery rate (FDR) by inverting the peak calling procedure such that
ChIP peaks where used as background for calling significant peaks from input reads. In this
scheme, any peaks that pass the statistical threshold for significance are considered false calls as
they are enriched in the input samples over the IP samples. We applied this procedure using
different ratios of input and ChIP libraries. FDR for some experiments (FDR> = 0.45%) ap-
pear to be related particularly to Input-4 suggesting these rates are an artifact of the library.
Overall, empirical FDR results from 1-plex or more multiplexed libraries with equal fractions
of input or double input, was< = 0.43% (Fig 3C).

Initially we compared the number of peaks and average peak widths to see if there were any
critical differences. To understand in greater detail the variability of called peaks for each lane
fraction, we examined the distributions of three peak characteristics: peak p-values, peak apex
position, and peak widths. The p-values distributions show an overall shift towards reduced
significance (higher p-values) as multiplexing increases (Fig 4A and S3 Fig) due to reduction in
sequence coverage. While there is a significant overlap among peaks identified from multi-
plexed libraries with those identified from the non-multiplexed library we were interested to
what extent the positions (genomic coordinates) of the overlapping peaks have shifted. Com-
paring the peak apex positions of peaks identified from 1-plex, most peaks, 88.1–85.1% (differ-
ences increase as multiplexing increases), were within the mean median peak size (751bp),
suggesting little difference in peak positions (Fig 4B and S4 Fig). Libraries sequenced at higher
multiplexing show more variability in peak apex position, possibly due to less data supporting
a peak for detection. Finally, for each multiplex level we also examined the peak width distribu-
tion of identified peaks and found marginal reduction in peak width across multiplexed

reads chip-2x input (red), ~31M reads (orange), ~21M reads (salmon). FDR for some experiments related to Input-4 are close to >0.45% suggesting these
rates are an artifact of the library. Overall, experiments either 1-plex or multiplexed, with equal fractions of IP and input or double input, the FDR is < = 0.43%.

doi:10.1371/journal.pone.0129350.g003

Fig 4. Peak characteristics. A) P-values for detected peaks shift towards reduced significance as multiplexing increases. B) The difference in peak apex
position of peaks detected in multiplexed libraries to peak apex positions of peaks detected in the non-multiplexed library shows consistent difference across
all multiplexed levels while increasing variability as multiplexing increases. C) Peak width distributions show a marginal reduction across multiplex levels.

doi:10.1371/journal.pone.0129350.g004
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libraries (Fig 4C and S5 Fig). Taken together these results indicate that while the number of sig-
nificant peaks identified is reduced due to multiplexing there is very little effect on the unifor-
mity and positional coverage of H3K4me3.

Impact of multiplexing on variability of peak detection and gene
annotation
To evaluate the variability in peak detection we compared the peaks detected in each of the
multiplexed samples to those identified by the 1-plex sample as well as comparing the peaks
detected for each sample to each other sample for the same multiplex factor. The percent over-
lap is the number of overlapping peaks divided by the total number of peaks in the sample
dataset. For example, given sample datasets X and Y, the percent overlap of X is the defined
simply as |x \ y| / |x|–number of overlapping peaks between X and Y divided by the total peaks
in X where overlap is defined as minimal 1 base overlap.

Fig 5A shows the pairwise comparison of overlapping peaks of each sample to the 1-plex
sample per multiplexing level. The mean overlap per multiplexing level is generally above 92%
for all multiplexing levels and as expected the percent of overlapping peaks decreases as multi-
plexing increases. A similar trend of increased multiplexing and slight decrease in percent over-
lap is seen in pairwise comparisons among all samples, but the mean overlap by multiplexing
level is above 96% (Fig 5B).

Overlap of genes annotated from detected peaks
We performed gene-level annotation of the peaks detected by ChIPseeqer with ChIPseeqerAn-
notate [4] on samples of all multiplexing levels and compared the pairwise overlap of annotated
genes. Using the 1-plex sample as the reference for the number of genes annotated, we comput-
ed what percent of genes were annotated in each multiplexing level. In general, more than 90%
of the genes annotated at 1-plex were also present in each multiplexing level (Fig 5C). As in
other measures, the multiplexed gene sets overlap with full lane data gradually decreases from
95% to 90% as multiplexing increases. Intra-lane variability also indicates consistent gene set
identification among replicated datasets of equal multiplexing degree (Fig 5D). We observe
similar results when using MACS2 for peak detection (S6 and S7 Figs).

Next, we sought to characterize the impact of multiplexing on gene annotation and more
specifically delineate the ChIP-seq characteristics for those annotated genes that are lost due to
multiplexing. Explicitly, we identified the peaks missing from each multiplexing level relative
to the 1-plex sample and examined the characteristics of those peaks (peak’s p-values and de-
tection scores) in the 1-plex data. Generally, peaks that are dropped from detection by multi-
plexing are in the lower quartiles of the p-value and score distributions (Fig 6A and 6B),
suggesting these peaks were weakly supported by the data and likely contained high fraction of
fortuitous binding events.

Lane fraction simulation
At the experimental level, in our model system, data obtained from a library sequenced at
~21M reads is comparable to the same library sequenced at ~181M reads. We sought to ob-
serve this in silico and ran a simulation to examine the effect of multiplexing ChIP-seq samples
on gene annotation and compiled it with our experimental data. Multiplexing was simulated
by downsampling the 1-plex data in 10% increments from 90% to 10% in 5 replicates. Then we
performed the same peak detection, annotation, and percent recovery as we performed for the
experimental data. We see a strong agreement among the experimental and simulated data
(Fig 6C). The experimental 4-plex (~43M reads) samples fell between the 20% and 30%
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Fig 5. Overlap of detected peaks and gene annotation overlap acrossmultiplex levels. A) The percent overlap of peaks for each sample to 1-plex
across multiplex levels. As multiplexing increases there is a shift towards decreasing overlap. However, the overlap of peaks called frommultiplexed samples
with peaks identified in the non-multiplexed sample is generally above 92%. B) The percent overlap of each sample pairwise across multiplexed libraries.
Overlap among peaks called from samples with similar coverage is generally above 94%. There is a similar trend, as in A, that as multiplexing increases
overlaps start to decrease. C) The overlap of gene annotations of peaks called from each multiplexed sample compared to peaks from the non-multiplexed
sample. Generally, as multiplexing increases more than 90% of the genes annotated in 1-plex are present in the gene annotations of multiplexed libraries. D)
The percent of overlap of gene annotations pairwise for each sample.

doi:10.1371/journal.pone.0129350.g005
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Fig 6. Characteristics of peaks lost due to reduced coverage and gene anntations of peaks from simulated reduced coverage. A) P-value
distributions of peaks from gene annotations absent frommultiplexed libraries showing the genes lost due to multiplexing having less significant peak p-
values and appearing in the lower quartile of the 1-plex distribution. B) Peak width distributions of genes absent frommultiplexed libraries showing that genes
lost due to multiplexing having shorter peak widths and appearing in the lower quartile of the 1-plex distribution. C) Multiplexing was simulated by
downsampling the non-multiplexed sample data in 10% increments from 90% to 10% in 5 replicates. There is strong agreement among the experimental and
simulated data showing a gradual decrease in the number of gene annotated peaks as multiplexing increases and multiplexing to ~18M reads (currently 10%
of a lane) can recover 88% of gene annotated peaks.

doi:10.1371/journal.pone.0129350.g006
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simulated multiplex factors, 6-plex (~31M reads) samples fell between 15% and 20% simulated
multiplex factors, and the 8-plex (~21M reads) samples fell between the 10% and 15% simulat-
ed multiplex factors. Importantly, 88% of the annotated genes identified from ~181M reads
(1-plex) were identified when multiplexing to ~18M reads (10% of a lane). In order to deter-
mine if these trends are specific to H3K4me3 and our cell lines, we collected publically available
data for two other histone marks and a transcription factor. We compared our results for
H3K4me3 in OCI-LY7 cells to the gene annotations of peaks called by ChIPseeqer on collected
data for the same histone mark (H3K4me3) and two other histone marks (H3K27ac and
H3K4me1) fromMOLM1 cells [6], and to gene annotations of peaks on collected data for a
transcription factor BCL6 from primary CXCR5hi CD4 T cells [7]. Data for ~43, ~31, and ~21
million reads were simulated by downsampling, as the initial data from these samples had suffi-
cient reads yet were not originally sequenced with varying levels of coverage. Compared to
OCI-LY7 H3K4me3, MOLM1 H3K4me3 and H3K27ac displayed similar results in recovery of
gene annotations, 87.9% and 81.5% at ~21M reads, respectively, whereas MOLM1 H3K4me1
recovered just 14% of gene annotations at ~21M reads. Transcription factor BCL6 also showed
a large decrease in gene annotations at ~21M reads with 24.7% for replicate 1 and 19.3% for
replicate 2. Overall, the trend of the gene annotation analysis is consistent with our H3K4me3
results showing reduced recovery of peak's gene annotations as multiplexing increases, howev-
er, the impact on gene annotations depends on the factor analyzed (S8 and S9 Figs).

Methods

Chromatin Immunoprecipitation
Diffuse large B-cell lymphoma (DLBCL) cell line OCI-Ly7 (ACC688 Deutsche Sammlung von
Mikroorganismen und Zellkulturen Braunschweig, Germany) was grown in medium contain-
ing 90% Iscove's, 10% fetal calf serum and supplemented with penicillin G and streptomycin.
Immunoprecipitation using anti-histone H3 trimethyl K4 (ab8580, Abcam, Cambridge, MA)
was performed in crosslinked sonicated extracts. Cells were grown at 1–1.5 million per ml and
protein and DNA were cross-linked for a 10 minute treatment with 1% Formaldehyde
(Thermo Scientific, Rockford, IL) and harvested. 100x106 cells were lysed by flash freezing in
liquid N2 and stored at -80°C. Chromatin shearing was performed using a Covaris S220 sonica-
tor (Covaris, Woburn, MA) using the following conditions: 1 ml tubes with approximately 30
million cells in buffer containing 0.1% SDS (Covaris Buffer D3) were sonicated using peak in-
tensity power of 140, duty factor of 5.0 and 200 cycles per burst, for 18 minutes. Extent of
shearing was monitored with a 1% agarose gel and confirmed by separation on an 2100 High
sensitivity Bioanalyzer chip (Agilent Technologies, Santa Clara, CA) at the completion of the
immunoprecipitation. Immunoprecipitation was carried out at 4°C with overnight incubation
using 97.5x106 cell equivalents of chromatin and 15ug of antibody. Immunoprecipitates were
captured with Protein A Dynabeads (Novex Life Technologies, Grand Island, NY), washed,
and resuspended in buffer containing 100ug of RNAse A and 20ug of PCR grade Proteinase K
(Qiagen, Germantown, Maryland). Crosslinks were reversed by incubation at 65°C in the pres-
ence of 1% SDS and 0.3M NaCl. Chromatin was then subjected to phenol:chloroform extrac-
tion followed by purification using a PCR purification kit (Qiagen, Germantown, Maryland).
Quantitative real time PCR (qRT-PCR) on positive housekeeping genes was performed on
both input and eluted chromatin, to validate the ChIP efficacy.

Library preparation and Sequencing
Libraries compatible with Illumina TruSeq adapter sequencing (Illumina Inc, San Diego, CA)
were made as follows: 10 ng of either immunoprecipitated or input DNA were end-repaired
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using 3 units of T4 DNA polymerase, 1 unit of Klenow DNA polymerase and 10 units of T4
DNA polymerase with 30 minutes incubation at 20°C; A-tailing was performed with 5 units of
Klenow fragment and 10mM dATP (New England Biolabs, Ipswich, MA) for 30 minutes at
37°C. 2 ul of 1uM of annealed Illumina TruSeq adapters (Integrated DNA Technologies, Coral-
ville, IA) were used in an overnight ligation at 4°C with 2000 units of T4 DNA Ligase. To ac-
count for the migration pattern of Y-forked Illumina adaptors, ligated products from 250–
350bp were size selected in a 1% agarose gel. After purification, the PCR reaction was carried
out with 300uM dNTP, 200uM of primers and 1 unit of Phusion High-Fidelity DNA Polymer-
ase (Thermo Scientific, Rockford, IL). Initial denaturation of 94°Cx5 min, was followed by
18 cycles of 94°Cx20secs, 60°Cx30secs, 72°Cx30secs, with a final extension/elongation step
of 72°Cx5min. PCR product was cleaned by the use of SPRI beads as per manufacturer’s rec-
ommendation (Beckman Coulter, Indianapolis, IN). Final product was resuspended in 20 ul
of TrisEDTA. Final yields were quantified in a Qubit 2.0 Fluorometer (Life Technologies,
Grand Island, NY) and quality of the library was assessed on a DNA1000 Bioanalyzer chip
(Agilent Technologies, Santa Clara, CA). Libraries were normalized to 2nM and loaded on an
Illumina HiSeq 2500 at 6pM, per manufacturer’s recommended protocol for 50bp single-read
runs. Illumina’s CASAVA 1.8.2 software was used to perform image capture, base calling and
demultiplexing.

ChIP-seq Quality Control
Variations in the quality and reproducibility of a ChIP experiment can be caused by a number
of factors during sample preparation. Among them are DNA-protein cross-linking conditions,
size of the sheared chromatin, antibody specificity, and quality of the library generated for se-
quencing [3, 8, 9]. In the experiments performed for this study we applied the following quality
control steps: i) Cells were grown at log phase before crosslinking and fresh, methanol-free
formaldehyde was used, ii) Sheared chromatin was evaluated using an Agilent 2100 Bioanaly-
zer High Sensitivity chip. The amount of DNA present at the size range required for library
prep (130bp-230bp) was> 10% of the total sheared sample in order to obtain libraries that re-
sult in accurate representation of the original ChIP material, iii) Antibody used as per EN-
CODE project guidelines [3], Anti-Histone H3 (trimethyl K4)–Abcam ChIP Grade(ab8580)
characterized by Abcam. iv) Success of ChIP was verified by using quantitative real time PCR
(qRT-PCR) on positive control sites from housekeeping genes. We obtained a ratio of>10 in
ChIP over IP enrichment, v) Libraries were evaluated for a) yields of 200ng-300ng final materi-
al, b) quality of library by size range of 250bp-350bp excluding presence of adaptors or primer
dimers, and c) qRT-PCR, as in step iv, for housekeeping genes, and vi) After sequencing, dupli-
cation rates were estimated using FastQC[10], rates obtained were less than 40% duplicated
reads. Note that this measure depends on the abundance of the histone modification and can
vary depending on genomic representation present in the ChIP.

Computational Analysis
Illumina’s CASAVA 1.8.2 was used to generate fastq files from basecalls and Elandv2 aligner
was used to align the sequenced reads to the human genome hg19 build using default
alignment parameters.

Peak identification was performed using ChIPseeqer [4] with the read length set to 50bp
and default values for all other parameters (for example, peak significance value threshold
10−15 and ChIP peaks need to be at least 2 fold higher than input peaks). Gene annotation was
performed with ChIPseeqerAnnotate (a ChIPseeqer tool) and peaks were assigned to genes if
their genomic locations are within 1kb of transcriptional start site, or transcriptional end site.
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Additional custom analysis scripts were written in R (version 2.15.2[11]), including Biocon-
ductor [12] packages: Genomic Ranges [13], beeswarm[14], Rsamtools[15], and ggbio[16],
were used to perform the analysis.

Discussion
We performed a systematic analysis of the dependency between sequence depths and the
amount and characteristics of the detected peaks in ChIP-seq experiments with the goal of
identifying the optimal multiplexing scheme that maximizes the number of samples with mini-
mal loss of biological information. There was little variation in total numbers of reads and qual-
ity scores among sequencing replicates indicating overall consistency in sequencing quality
(although biological and library preparation variation can be more substantial) and multi-
plexed libraries yielded more usable reads proportionally, possibly due to decreased amount of
redundant reads.

There was little variation in number of peaks discovered for each lane fraction across the
variously multiplexed libraries (mean peak number = 15690 +/- 3% (492)), low false discovery
rate,<1%, and consistent peak characteristics (peak widths, p-values, and apex positions). A
high percentage (>90%) of peaks from multiplexed libraries overlapped with the reference set
of peaks (peaks identified from 1-plex library). Together, these results demonstrate high sensi-
tivity and reproducibility for detecting peaks in these data.

Gene-level annotation of the peaks revealed>90% overlap of the annotated genes across
each multiplex level. However, as multiplexing increased there was a slight decrease in gene an-
notation overlap from ~97% for ~43M reads to ~92% for ~21M reads. Examining the proper-
ties of the annotated peaks that were lost due to multiplexing showed that the majority of those
had weak evidence for the H3K4me3 marker in the ~181M read dataset. Simulation analysis of
lane fractions from 90%-10% was consistent with experimental data and at simulated ~18M
reads,>88% of the genes may still be detected in the data.

Sequencing a single library per lane yields greater coverage and depth than ChIP-ChIP
[5,17,18], but also exceeds the needs of most experiments. Multiplexing ChIP-seq experiments
is economical alternative to maximize the information yield from ChIP-seq experiments with
minimal loss of biological signal. Our results indicate that sequencing 7 IP samples and one
input sample (8-plex) on a single HiSeq2500 lane (~21M reads per sample using V3 chemistry)
can still yield>90% of the information gained from a non-multiplexed sample of ~181M
reads. We emphasize that these experiments were performed with highly specific antibody in
optimized conditions against a well-defined histone modification. We examined additional
datasets from other histone markers and transcription factor ChIP-seq experiments and found
comparable results to those reported here. However, results may vary significantly when ChIP
is performed with less specific antibodies. Nonetheless, this study provides a useful guide for
designing future experiments for optimal and economical use of ChIP-seq assays.

Supporting Information
S1 Fig. Peak detection by MACS2. The mean number of peaks identified for each sample by
multiplex level as number of reads.
(PDF)

S2 Fig. MACS2 peak size. The mean peak width of identified peaks for each sample by multi-
plex level as number of reads.
(PDF)

Impact of Multiplexed ChIP-Seq on Peak Detection

PLOS ONE | DOI:10.1371/journal.pone.0129350 June 11, 2015 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129350.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129350.s002


S3 Fig. Empirical cumulative distribution function (CDF) of peak p-value distributions.
(PDF)

S4 Fig. Empirical cumulative distribution function (CDF) of difference in peak apex posi-
tion from 1-plex.
(PDF)

S5 Fig. Empirical cumulative distribution function (CDF) of peak width distributions.
(PDF)

S6 Fig. Gene annotation recovery of peaks detected by ChIPseeqer and MACS2 on experi-
mental data by multiplexing level as number of reads.MACS2 parameters were estimated to
be most similar to the parameters used for ChIPseeqer. Gene annotations of peaks called with
MACS2 show a trend consistent with ChIPseeqer, but fewer gene annotations were detected by
MACS2.
(PDF)

S7 Fig. Comparison of overlap of unique gene annotations on peaks called by ChIPseeqer
and MACS2. Fewer unique gene annotations were detected by MACS2 but there was a high
degree of overlap (mean percent overlap = 95.8% +/- 4.7%).
(PDF)

S8 Fig. Gene annotation recovery for different histone marks by multiplexing level as num-
ber of reads.We compared our results for OCI-LY7 H3K4me3 to the gene annotations of peaks
called by ChIPseeqer on collected data for the same histone mark (H3K4me3) and two other his-
tone marks (H3K27ac and H3K4me1) from a different cell line, MOLM1 [6]. Data for ~43, ~31,
and ~21 million reads was simulated since these experiments were performed at ~205M reads
for H3K27ac/H3K4me3 and ~197M reads for H3K4me1. For all datasets, the overall trend is
consistent with H3K4me1 showing reduced recovery of peak's gene annotations.
(PDF)

S9 Fig. Gene annotation recovery for or a transcription factor by multiplexing level as
number of reads.We compared our results to the gene annotations of peaks on collected data
for a transcription factor, BCL6. Data for ~43, ~31, and ~21 million reads was simulated since
these experiments were performed at ~105M reads for BCL6 rep 1 and ~89M reads for BCL6
rep 2 [7]. The overall trend for the BCL6 data is consistent with our H3K4me3 experimental
data with both replicates of BCL6 showing reduced recovery of peak's gene annotations.
(PDF)

S1 Table. Intra-lane and inter-lane ChIP/input combinations for peak calling and compari-
sons.
(PDF)
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