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Cadmium (Cd) is an industrial contaminant that poses severe threats to human and animal health.
Vitexin (VIT) is a polyphenolic flavonoid of characteristic pharmacological properties. We explored the
curative role of vitexin on Cd-induced mitochondrial-dysfunction in rat renal tissues. Twenty-four rats
were equally divided into four groups and designated as control, Cd, Cd + vitexin and vitexin treated
groups. The results showed that Cd exposure increased urea and creatinine levels while decreased crea-
tinine clearance. Cd reduced the activities of antioxidant enzymes, i.e., catalase (CAT), superoxide dismu-
tase (SOD), glutathione peroxidase (GPx) and glutathione content in the Cd exposed group. Cd exposure
significantly (p < 0.05) elevated the reactive oxygen species (ROS) and Thiobarbituric acid reactive sub-
stances (TBARS) levels in rat kidney. Cd also caused a significant (p < 0.05) reduction in the mitochondrial
TCA-cycle enzymes, including isocitrate dehydrogenase, succinate dehydrogenase, alpha-ketoglutarate
dehydrogenase, and malate-dehydrogenase activities. Besides, mitochondrial respiratory chain enzymes,
including NADH-dehydrogenase, coenzyme Q-cytochrome reductase, succinic-coenzyme Q, and cyto-
chrome c-oxidase activities were also decreased under Cd exposure. Cd exposure also damaged the mito-
chondrial membrane potential (MMP). However, VIT treatment potentially reduced the detrimental
effects of Cd in the kidney of rats. In conclusion, our study indicated that the VIT could attenuate the
Cd-induced renal toxicity in rats.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cadmium (Cd) is among the critically harmful environmental
pollutants that pose several threats to animal and human health
(Zhu et al., 2019). It is scientifically established as a highly toxic
metal with no known essential role in the biological systems (Dai
et al., 2016). It exists universally in nature and damages humans
and animals (Liu et al., 2019). Cd is one of the most harmful metals
throughout the world, and its exposure is a threat to approxi-
mately 10% of the world population with a higher mortality rate
(Moulis and Thévenod, 2010). Cd exposure permanent sources
are industrial applications such as a corrosive reagent, used in
Ni-Cd batteries, color pigments and phosphate fertilizer, and poly-
vinyl chloride (PVC) products (Genchi et al., 2020). An essential
route of Cd exposure in humans is rice consumption (Shi et al.,
2020). Therefore, Cd-contaminated food has become a severe and
constant threat to human health and food safety (Wang et al.,
2019). Once it enters the body, it causes adverse health issues such
as nephrotoxicity, hepatotoxicity, carcinogenesis, and ototoxicity
(Seif et al., 2019).

The kidney is one of the main targets of cadmium toxicity. Cd
ions impersonate as the essential metal ions like Zn, Mn, Fe, Cu,
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and Ca and cross the kidney’s cell membrane barriers using their
transport-pathways (Thévenod, 2018). In eukaryotic cells, mito-
chondria are the most critical organelles that mediate many bio-
logical functions and provide a vital energy source to cells
(Davila et al., 2018). Cd induces oxidative stress by excessive mito-
chondrial reactive oxygen species (ROS) production (Belyaeva
et al., 2006) and can directly affect renal mitochondria
(Thévenod, 2009). Cd damages the mitochondrial structure via ini-
tiating a shortage of cristae by reducing cristae numbers (Lee and
Thévenod, 2020).

Polyphenolic flavonoids have great concern nowadays due to
their distinctive pharmacological properties (Bakar et al., 2019;
Ijaz et al., 2020). Vitexin (apigenin-8-C-D-glucopyranoside) is a
bioactive flavonoid present in various plants such as bamboo
(Wang et al., 2012), fenugreek (Khole et al., 2014), and mung beans
(Hou et al., 2019). It possesses potential pharmacological proper-
ties such as anti-cancer, anti-inflammatory, neuroprotective,
antioxidant, and anti-hyperalgesic. However, vitexin’s possible
effect on Cd-induced mitochondrial toxicity has not been studied
to date and hold greater significance. Therefore, we planned this
research to elucidate the curative effect of vitexin on Cd-induced
toxicity in rats’ renal tissues.
2. Materials and methods

2.1. Animals

The current trial was conducted on adult male Sprague Dawley
rats (180–200 mg/kg). Rats were kept in the bioterium of the
University of Agriculture, Faisalabad. We maintained the standard
conditions (photoperiod 12 h light/dark; humidity 40–60%; tem-
perature 25 ± 1℃) and provided the tap water and standard food
chaw. Animals were treated in strict compliance with international
instructions for the use of experimental animals.

2.2. Experimental design

Twenty-four male rats were equally distributed into four
groups having six rats in each and treatment continued for 30 days.
Group A: Control group, provided with normal food and tap water.
Group B received 2 mg/kg BW dose of Cd injection i.p. daily. Group
C: Received Cd (2 mg/kg BW i.p.) and vitexin (30 mg/kg BW) orally.
Group D received vitexin at a dose of 30 mg/kg BW orally. The dose
of Cd was chosen according to the study conducted by El-Maraghy
et al. (2001) while dose of vitexin was selected according to Sun
et al. (2016). Animals were treated in compliance with the Euro-
pean Union of Animal Care and Experimentation (CEE Council
86/609) approved protocol. Retro-orbital venous plexus was used
to collect blood; serum was isolated from blood and stored at
4 �C. Rats were given anesthesia by diethylether before slaughter-
ing, and kidneys were removed, rinsed in normal saline and 10% w/
v homogenate was formed in PBS at neutral pH. Centrifugation was
carried out at 12,000 � g for 60 min at 4 �C. The Supernatant was
separated and stored at �20 ℃ until used in further analysis.

2.3. Isolation of kidney mitochondria

The process of Mingatto et al. (1996) was applied for the mito-
chondrial isolation from kidneys. The kidney tissues were blended
in the Medium-I (250 mM mannitol, 70 mM sucrose, 1 mM EDTA,
50 mMTris-HCl, 10 mM HEPES, 120 mMKCl and pH 7.4). We cen-
trifuged the homogenate for 5 min at 755 � g. The resultant homo-
genate was centrifuged again for 15 min at 13300 � g. The
medium-II (250 mM mannitol, 50 mM Tris-HCl, 10 mM HEPES,
70 mM sucrose, pH 7.4) was used in suspension of the resulting
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pellets cleaned two times using the same buffer by centrifuge for
15 min at 13,300 � g. The final mitochondrial pellets were sus-
pended again in the same media and then immediately used for
further analysis.

2.4. Assessment of kidney function marker

Concentrations of serum urea, creatinine and creatinine clear-
ance were assessed using laboratory procedures provided with
the Randox standard laboratory kits (Crumlin, Co. Antrim, UK).

2.5. Assessment of antioxidant enzymes activity, ROS and TBARS levels

The activity of CAT was assessed according to the procedure of
Aebi, 1984. The GPx and SOD activities were evaluated according to
Das et al. (2010) and Manna et al. (2009), respectively. GSH content
was assessed by following the procedure of Ellman, 1959. The reac-
tive oxygen species (ROS) level was assessed by employing ELISA
kits (Shanghai Enzyme-Linked Biotechnology Company. Ltd.,
Shanghai, China) following the guidelines provided with kit. Thio-
barbituric acid reactive substances (TBARS) level was assessed
according to Ohkawa et al. (1979) methodology.

2.6. Assessment of TCA-cycle enzymes

We applied the Bernt and Bergmeyer (1974) procedure to deter-
mine the activities of isocitrate dehydrogenase (ICDH). The process
of Reed and Mukherjee (1969) was followed to evaluate the a-
KGDH activity. Succinate-dehydrogenase (SDH) activity was
assessed via following the technique of Slater and Borner (1952).
Mehler et al. (1948) method was followed to determine Malate
dehydrogenase (MDH).

2.7. Analysis of respiratory chain complex activity in renal
mitochondria

Mitochondrial respiratory chain complexes activities were
assessed by using the standard kits manufactured by Suzhou
Comin Biotechnology LTD., China.

2.8. Assessment of mitochondrial membrane potential

The MMP was assessed by mitochondrial staining with a
cationic-fluorescent dye (Rhodamine 123). To incubate suspension
of mitochondria (0.5 mg protein ml�1), the tubes were slightly sha-
ken for 10 min at 37 0C with Rh 123 (1.5 lM). At emission (490 nm)
and excitation (535 nm) wavelength, the Elmer LS-50B Lumines-
cence fluorescence spectrophotometer was applied for the estima-
tion of fluorescence (Baracca et al. 2003).

2.9. Statistical analysis

The obtained values are shown as Mean ± SEM. To analyze the
mean variations in the experimental treatments, we used the
one-way analysis of variance (ANOVA) followed by the Tukey’s
multiple comparison test. All the statistical analyses were per-
formed in Minitab software and the significance level was set at
p < 0.05.

3. Results

3.1. Effect of vitexin on serum markers of kidney in Cd-exposed rats

Cd administration caused a significant (p < 0.05) increase in
serum urea and creatinine levels, however, a significant
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(p < 0.05) reduction in creatinine clearance was observed in Cd
administered rats (Table 1). Co-administration of vitexin with Cd
showed a remarkable reduction in urea and creatinine levels while
increasing the creatinine clearance compared to Cd-exposed rats.
The VIT-treated group displayed the average level of these renal
function markers in contrast to the control group. This showed
good efficacy of the vitexin in controlling the urea and creatinine
levels in kidney.

3.2. Effect of vitexin on oxidative stress and antioxidative capacity

Cd exposure significantly (p < 0.05) reduced the suite of antiox-
idant enzymes activities i.e., CAT, SOD, GPx and GSH content along
with increased ROS and TBARS levels in the renal tissues (Table 2).
Co-administration of VIT with Cd elevated the CAT, SOD, GPx activ-
ities and GSH content while remarkably (p < 0.05) reduced the ROS
and TBARS levels compared to Cd exposed rats. The VIT alone treat-
ment showed normal antioxidants activities, ROS and TBARS levels
as in the control group.

3.3. Effect of vitexin on the activities of renal mitochondrial respiratory
chain complexes

As sown in table 3, we observed a significant (p < 0.05) decline
in the activities of mitochondrial complexes (I-IV) upon exposure
to Cd when compared with control group. Co-treatment of VIT
with Cd significantly (p < 0.05) restored the mitochondrial respira-
tory chain complexes activities compared to Cd administered rats.
VIT alone treated group showed normal activities of mitochondrial
respiratory-chain complexes.

3.4. Effects of vitexin on activities of renal mitochondrial TCA cycle
enzymes

Table 4 presents that the Cd exposure significantly (p < 0.05)
reduced the TCA-cycle enzymes (a-KGDH, ICDH, SDH and MDH)
activities when compared with the control group. Co-
administration of VIT with Cd significantly (p < 0.05) reestablished
the TCA enzymes activities compared to Cd-treated rats. However,
the VIT alone treatment group did not exhibit any significant vari-
ations in the TCA enzyme activities in contrast to the control group.

3.5. Effect of the vitexin on mitochondrial membrane potential

Results displayed that rats Cd-administered rats showed a sub-
stantial (p < 0.05) depolarization of mitochondrial membrane
potential (DWm) when matched with the rats in control group
(Table 4). However, co-administration of VIT with Cd restored
the loss of DWm, in comparison to Cd exposed rats. VIT alone trea-
ted group showed an average mitochondrial membrane potential
as in the control group.

4. Discussion

Mitochondria are the hub of bioenergetic metabolism and the
largest ATP production generator (Lee et al., 2020). However, the
Table 1
Values having different superscripts in the same column are significantly different.

Groups Urea (mg/dL) Creatinine
(mg/dL)

Creatinine
Clearance (mg/dL)

Control 17.51 ± 0.61a 2.60 ± 0.15a 1.78 ± 0.12a

Cd 45.88 ± 1.57b 5.67 ± 0.31b 0.38 ± 0.03b

Cd + vitexin 24.97 ± 0.8c 3.37 ± 0.20a 1.06 ± 0.08c

Vitexin 17.46 ± 0.9a 2.48 ± 0.19a 1.82 ± 0.10a
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production of oxidative stress conditions and perturbation of the
mitochondrial respiratory chain is considered the primary factor
of mitochondrial damage (Khan et al., 2016). The ETC impairment
immensely damages the tissues and causes oxidative stress condi-
tions (Nita and Grzybowski, 2016). Such damages in the mitochon-
drial processes directly disturb ATP production (Zanellati et al.,
2015). Previous studies have shown that Cd disrupts the mitochon-
drial enzyme activities (Wang et al., 2004), induces mitochondrial
swelling, MMP collapse and inhibits respiration (Lee et al., 2020).
This experimental study is the first of its kind to explore vitexin’s
effect, which is usually used as a curative agent, on the mitochon-
drial dysfunction in Cd exposed rat’s kidneys.

The present research outcomes demonstrated that the serum
urea and creatinine levels were escalated; while the creatinine
clearance declined after Cd exposure. The urea and creatinine
levels are used as serum biochemical markers in kidney function
(Sahu et al., 2020). Urea is the waste product of protein metabo-
lism. Creatinine is a nitrogenous compound formed by creatine
and phosphocreatine during muscular metabolism and primarily
eliminated through glomerular filtration (Sepulveda, 2019). Kidney
damage lowers the renal glomerular filtration rate (GFR), resulting
in elevated serum urea and creatinine. The reduced GFR causes the
accumulation of xenobiotics, endogenous waste, and various toxi-
cants (Orr and Bridges, 2017). However, the Cd has been reported
to reduce the GFR, which is also witnessed by elevated serum urea
and creatinine (Poosa and Vanapatla, 2020). However, the treat-
ment with VIT showed a reduction in urea and creatinine levels,
with increased creatinine clearance, that could prevent Cd’s
nephrotoxic effect by increasing the GFR.

Our results stated that Cd treatment reduced the antioxidant
enzymes (CAT, SOD, GPx) activity and the GSH content; however,
it increased ROS and TBARS levels in the renal tissues. Antioxidants
are a central hub against an excessive amount of ROS (Latif et al.,
2020). SOD combines two oxygen radicals and converts them into
hydrogen peroxide. CAT is an important antioxidant enzyme that
helps GSH and GPx converts the H2O2 into oxygen and water
(Ighodaro and Akinloye, 2018). One of the critical mechanisms of
Cd-induced toxicity is oxidative stress (OS). Cd induces OS by dis-
turbing the production and elimination balance of ROS in cells and
tissues, which impair the protein and membranes (Akinyemi et al.,
2017). ROS generation and increased TBARS level are linked to Cd-
induced toxicity in the kidney, ultimately responsible for the
change in the defensive mechanism. Cd-exposure also stimulates
the maximum ROS level in rats by suppressing antioxidants such
as CAT, SOD, GSH, and GPx (Seif et al., 2019). The previous investi-
gations have shown a substantial increase in lipid peroxidation
after Cd exposure in rat kidney (Poosa and Vanapatla, 2020). How-
ever, the vitexin administration substantially decreased the ROS
and TBARS levels by restoring the antioxidant enzyme activities.

Our study indicated that Cd significantly reduced the TCA cycle
enzymes (a-KGDH, ICDH, MDH and SDH) activity. The mitochon-
dria are among the most critical subcellular organelles that pro-
duce energy and are susceptible to OS. Mitochondrial enzymes
(ICDH, aKGDH, SDH and MDH) trigger various substrates oxidation
by the TCA cycle that yielded reducing equivalents. The electron
transport chain (ETC) channels these reducing equivalents for
ATP production through oxidative phosphorylation
(Chandramohan et al., 2015). The investigation by Hu et al.
(2019) reported that Cd increased TCA cycle enzyme oxidation,
causing lower ATP production in rat lungs. However, the co-
treatment with VIT restored TCA cycle enzyme activities, poten-
tially by reducing the oxidative stress.

The present study indicated that Cd exposure reduced mito-
chondrial complexes (I-IV) activity of the ETC. Mitochondria is
the primary source and target of ROS (Li et al., 2012). The ETC con-
sists of various multimeric complexes (I-IV), located in the inner



Table 2
Values having different superscripts in the same column are significantly different.

Groups CAT (U/mg protein) SOD (U/mg protein) GSH (lM/g tissue) GPx (U/mg protein) TBARS (nm TBARS/min/mg tissue) ROS (U/g tissue)

Control 4.81 ± 0.22a 6.62 ± 0.19a 24.13 ± 0.84a 16.46 ± 0.63a 10.48 ± 0.41a 0.84 ± 0.15a

Cd 1.81 ± 0.37b 3.20 ± 0.14b 11.73 ± 0.51b 7.973 ± 0.25b 23.91 ± 0.78b 7.93 ± 0.66b

Cd + vitexin 4.22 ± 0.23a 4.93 ± 0.15c 19.66 ± 0.57c 13.17 ± 0.28c 14.5 ± 0.70c 1.55 ± 0.19c

Vitexin 4.83 ± 0.21a 6.56 ± 0.29a 24.74 ± 0.70a 16.77 ± 0.64a 10.20 ± 0.50a 0.81 ± 0.21a

Table 3
Values having different superscripts in the same column are significantly different.

Groups ICDH (units/min/mg of protein) a-KGDH (units/min/mg of protein) SDH (units/min/mg of protein) MDH (units/min/mg of protein)

Control 811.1 ± 13.5a 165.0 ± 3.10a 65.4 ± 2.73a 552.0 ± 15.6a

Cd 300.9 ± 12.7b 35.22 ± 1.51b 19.82 ± 1.20b 207.0 ± 9.51b

Cd + vitexin 661.3 ± 16.8c 93.81 ± 2.91c 51.79 ± 1.63c 430.5 ± 16.0c

Vitexin 820.2 ± 13.3 a 172.7 ± 2.60a 71.96 ± 2.07a 561.7 ± 9.41a

Table 4
Values having different superscripts in the same column are significantly different.

Groups Complex-I (NADH
dehydrogenase)

Complex-II (Succinate-
dehydrogenase)

Complex-III (Succinic-
coenzyme Q)

Complex-IV (Cytochrome c
oxidase)

MMP%

Control 34.13 ± 1.94a 88.2 ± 2.42a 0.92 ± 0.03a 259.1 ± 9.9a 89.4 ± 1.38a

Cd 18.47 ± 0.68b 29.3 ± 1.76b 0.19 ± 0.01b 106.3 ± 8.2b 38.1 ± 1.90b

Cd + vitexin 28.93 ± 1.13a 57.6 ± 1.84c 0.58 ± 0.02c 195.2 ± 4.94c 75.2 ± 1.57c

vitexin 34.37 ± 2.42a 89.5 ± 2.59a 0.9 ± 0.02a 256.8 ± 15.2a 85.6 ± 1.91a
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mitochondrial membrane from where electrons are transferred
from one complex to the next complex, which helps produce
energy (Letts and Sazanov, 2017). However, Cd may block various
mitochondrial proteins by inhibiting respiratory chain enzymes
(Wang et al., 2004). Cd damage the mitochondria by increasing
mitochondrial ROS (Belyaeva et al., 2006).

Furthermore, the Cd ions act like a xenobiotic that inhibits com-
plexes II and III activities in the ETC more than complexes I and IV.
The primary site of ROS induction appears to be complex III. Accu-
mulation of ROS disturbs the mitochondrial membrane potential
and may cause apoptosis (Chatterjee et al., 2008). However, our
investigation has demonstrated that the administration of VIT sub-
stantially reversed the activities of ETC complexes, which might be
linked to the declining production of ROS.

Our findings presented that Cd exposure significantly reduced
the mitochondrial membrane potential (DWm). The excessive pro-
duction of ROS may cause mitochondrial dysfunction, which
results in lower ATP formation (Zorov et al., 2014). Oxidative dam-
age has a deleterious effect on mitochondria. It stands up the mito-
chondrial membrane permeability, causing protons and ions
asymmetrical distribution on both sides of the membrane, leading
to mitochondrial membrane potential (DWm) reduction. The pre-
vious data by Lee et al. (2005) has shown that Cd exposure leads
to mitochondrial membrane potential (DWm) breakdown in iso-
lated renal mitochondria. However, our findings display that the
VIT can reverse the Cd-induced mitochondrial membrane potential
(DWm) loss.
5. Conclusion

Inconclusion, our experimental findings have demonstrated
that Cd exposure is one of the critical factors behind renal damage.
Our results also indicated that morin administration exhibited pro-
tective effects against CP-induced adverse effects on urea, crea-
tinine, creatinine clearance, antioxidant enzymes, ETC complexes,
and mitochondrial membrane potential. Therefore, the VIT could
maintain the standard renal functions by reducing ROS and TBARS
levels and protecting TCA cycle enzymes and ETC complexes. This
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ameliorative role may be attributed to the antioxidant potential of
the vitexin.
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