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T cell metabolism is central to cell proliferation, survival, differentiation, and aberrations
have been linked to the pathophysiology of systemic autoimmune diseases. Besides
glycolysis and fatty acid oxidation/synthesis, amino acid metabolism is also crucial in T cell
metabolism. It appears that each T cell subset favors a unique metabolic process and that
metabolic reprogramming changes cell fate. Here, we review the mechanisms whereby
amino acid transport and metabolism affects T cell activation, differentiation and function in
T cells in the prototype systemic autoimmune disease systemic lupus erythematosus.
New insights in amino acid handling by T cells should guide approaches to correct T cell
abnormalities and disease pathology.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by
autoantibody production, immune complex deposition, tissue inflammation and damage of
multiple organs (1). SLE can affect practically all organs, including skin, kidney, and central
nerve system (2–4). The etiology of SLE is multifactorial and includes contributions from genetic,
environmental, hormonal and epigenetic factors (2). These factors, acting serially or simultaneously,
lead to generalize breakdown of tolerance to self-antigens, which results in autoantibody production
and tissue inflammation (5). T cells have a vital role in the pathogenesis of SLE. Many subsets of T
cells, especially Th1, Th17, regulatory T (Treg) cells, and double-negative (CD4-CD8-) T cells, are
involved through distinct mechanisms in the development of organ inflammation in SLE (6). Since
helper T cells can activate B cells to secrete antibodies, which are also involved in the lupus
pathogenesis, T cells have earned claim as main therapeutic targets in patients with SLE (7).

Recent studies have shown that the differentiation and function of each T cell subset is controlled
by intracellular metabolic processes (8–10). Cell metabolism operates mainly through glycolysis,
fatty acid oxidation and amino acid metabolism including glutaminolysis (8–11). Amino acids are
classified as essential (leucine, isoleucine, lysine, histidine, valine, threonine, phenylalanine,
tryptophan, and methionine), conditionally essential (glutamine, arginine, cysteine, glycine,
proline, and tyrosine), or non-essential (alanine, glutamate, serine, asparagine, and aspartate)
(12). Essential amino acids cannot be synthesized within the body and must be supplied through
dietary intake. Amino acid metabolism is used in many processes that are involved in cell
proliferation, growth and cell function. Furthermore, amino acids are also critical for the
biosynthesis of nucleotides (13). It has been documented that some amino acids such as leucine,
methionine, glutamine, arginine, and alanine, are more essential than other amino acids during T
cell activation and expansion or in determining distinct T cell fates (14, 15). The importance of
glycolysis, and fatty acid oxidation/synthesis in lupus T cells has been extensively reviewed
org February 2021 | Volume 12 | Article 6238441

https://www.frontiersin.org/articles/10.3389/fimmu.2021.623844/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:m-kono@hokudai.ac.jp
mailto:nyoshida@bidmc.harvard.edu
mailto:gtsokos@bidmc.harvard.edu
https://doi.org/10.3389/fimmu.2021.623844
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.623844
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.623844&domain=pdf&date_stamp=2021-02-22


Kono et al. Amino Acid Metabolism in Lupus
elsewhere (8–10, 16–18). Here we summarize amino acid
metabolism in mice and people with SLE with a focus on T cells.
AMINO ACID TRANSPORTERS

Amino acid transporters are important in transporting amino
acids from the environment into the cell (19). T-cell receptor
(TCR) stimulation triggers dramatic metabolic changes
including increased glycolysis, pentose phosphate pathway
activity, and glutaminolysis (19, 20). SLC7A5, known as large
neutral amino acid transporter 1 (LAT-1), is a transporter
dedicated to the transport of essential amino acids (21).
SLC3A2, also known as CD98, is a transmembrane protein,
which chaperones amino-acid transporters, including SLC7A5
SLC7A6, SLC7A7, SLC7A8, SLC7A10, and SLC7A11 (12), and
enables them to execute their function. The LAT-1/CD98
heterodimer transports large hydrophobic amino acids,
including the seven essential amino acids leucine, isoleucine,
histidine, valine, phenylalanine, tryptophan, and methionine.
Notably, the expression of LAT-1 and CD98 in T cells is
induced after activation (19). Slc7a5-/- CD4+ T cells cannot
respond to antigen, undergo clonal expansion or effector cell
Frontiers in Immunology | www.frontiersin.org 2
differentiation. Although Slc7a5-/- CD4+ T cells do not
differentiate into Th1 and Th17 cells, differentiation into iTreg
is not affected (22). LAT-1 deletion or inhibition blocks the
expansion of IL-17 secreting gd and CD4+ T cells in both human
cells and imiquimod (a TLR7 agonist)-induced lupus and
psoriasis-like animal models (Figure 1). The heterodimer
comprising CD98 and SLC7A7 transports among other amino
acids lysine, arginine, methionine, leucine, alanine, and cysteine
(12). Interestingly, whole-exome sequencing in patients with
childhood-onset SLE identified a SLC7A7 mutation to be
linked to disease expression (23).

Alanine is also important in T cell activation. It is transported
through SLC38A1 in CD4+ T cells and TCR stimulation induces
its expression (12). Alanine deprivation impairs naïve and
memory T cell activations, but it does not affect T cell effector
functions (24). Although alanine can be made from pyruvate by a
single transamination, extracellular alanine is used mainly for
protein synthesis (12, 24).

Glutamine is the most abundant amino acid in the serum (25,
26). T cell stimulation promotes a rapid increase of glutamine
uptake and activated T cells need more glutamine than naïve T
cells (27). SLC1A5, known as alanine-serine-cysteine transporter
2 (ASCT2), is a transporter of neutral amino acids including
glutamine (28). Although Slc1a5-/- CD4+ T cells do not affect
FIGURE 1 | Amino acid transporters and metabolism in lupus T cells. Amino acid acquisition is crucial for cell function. Amino acid transporters play central roles in
acquiring amino acids from the external environment. Some amino acids (e.g. leucine, methionine, glutamine, arginine, and alanine) are more essential than other
amino acids in during T cell activation and expansion, or in determining different T cell fates in autoimmune diseases. Red arrows or letters indicate “enhance or
active”, whereas blue arrows indicate “inhibit or inactivate”. ASCT2, alanine-serine-cysteine transporter 2; CaMK4, calcium/calmodulin–dependent protein kinase IV;
CAT, cationic amino acid transporters; CREM, cAMP response element modulator; EAE, experimental autoimmune encephalomyelitis; ETC, electron transport chain;
ICER, inducible cAMP early repressor; LAT-1, large neutral amino acid transporter 1; mTORC, mammalian target of rapamycin complex; OXPHOS, oxidative
phosphorylation; PKM2, pyruvate kinase muscle isozyme 2; ROS, reactive oxygen species; SLE, systemic lupus erythematosus; TCA cycle, tricarboxylic acid cycle.
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TCR-mediated activation, deletion of Slc1a5 impaired Th1 and
Th17 cell differentiation (Figure 1) (27).

Arginine is transported through cationic amino acid
transporters (CAT) (29), which are shared by lysine and
ornithine. Elevation of arginine levels induces metabolic changes
including a shift from glycolysis to oxidative phosphorylation in
activated T cells and promotes the generation of central memory-
like cells (30). Arginine and the transporter CAT-1 (SLC7A1) are
also requisite for human T cell survival (31).

These findings demonstrate distinct roles for amino acid
transporters in TCR/CD3-mediated T cell stimulation,
differentiation, and function and indicate that manipulation of
these transporters could serve therapeutic approaches for
autoimmune diseases including SLE (Figure 1). Because
several other amino acid transporters have not been studied
carefully in T cells, further research is needed.
AMINO ACID SENSORS

Although multiple mechanisms are involved in sensing amino
acids within the intracellular space, it has been well established
that the presence or absence of amino acids is sensed by distinct
signaling pathways which involve the mechanistic target of
rapamycin (mTOR) or the general control nonderepressible 2
(GCN2) (32, 33).

mTOR activity is regulated by amino acid availability, energy
levels, and growth factors (34). In mammalian cells mTOR forms
two distinct complexes: the mTORC complex 1 (mTORC1) and
mTORC2. In fact, mTORC1 senses various stress signals,
including the accumulation of amino acids such as leucine,
isoleucine, kynurenine, and glutamine (35, 36). Glutamine
activates mTORC1 via its metabolic product a-ketoglutarate
which is generated during glutaminolysis (37). Inhibition of the
first enzyme of glutaminolysis, glutaminase 1, reduces the activity
of mTORC1 under Th17-polarized conditions (38). mTORC
activity is enhanced in Th17 cells and IL-4-producing double
negative T cells resulting in the proinflammatory profile recorded
in patients with SLE (39). During Th17 cell differentiation, mTOR
is required for the induction of hypoxia-inducible factor 1a
(HIF1a) which enhances glycolysis (40). In Th1 and Th17 cells,
mTORC1 activity, and glycolysis are increased compared with
Tregs and Tfh cells (40, 41). Sirolimus, a mTOR inhibitor, was
reported to improve disease activity in patients with refractory
SLE in a single-arm, open-label, phase I/II trial (42), and other
non-randomized controlled studies have reported that sirolimus
is efficacious in patients with SLE (Table 1) (43). Sirolimus
normalized Th17/Treg balance and TCR-induced Ca2+ fluxing
in patients with SLE (44, 45). Besides the effect on T cells,
inhibition of mTOR in plasmacytoid dendritic cells reduced the
production of type I interferons (58) and B cell stimulating factor
BAFF-mediated B cell activation (59, 60). These results indicate
that sirolimus can modify T, B, and plasmacytoid dendritic cell
function (46). Further randomized controlled trials are needed to
prove the efficacy and record the side effects of sirolimus in
patients with SLE (47).
Frontiers in Immunology | www.frontiersin.org 3
GCN2, a serine/threonine-protein kinase, also senses amino
acid starvation by detecting uncharged transfer RNA (33, 61). It
plays a vital role in the control of amino acid metabolism as a
response to nutrient deprivation. Gcn2 deficiency significantly
inhibits in vitro differentiation of Th9 cells but not Th1, Th2, and
Treg cells in mouse model, and it ameliorated allergic airway
inflammation in mice (62). On the other hand, myeloid cell
deletion of Gcn2 in lupus-prone mice resulted in increased
immune cell activation, humoral autoimmunity, renal
pathology, and mortality (63). These results suggest that
therapeutic inhibition of GCN2 should not be considered to
treat SLE.
GLUTAMINE METABOLISM

Glutaminolysis has a vital role in energy production in
proliferating cells including T cells. Because of the
indispensable roles of glutaminolysis in the generation of pro-
inflammatory effector T cells Th1 and Th17 cells, enzymes
involved in glutaminolysis have been studied extensively.

Glutaminase, in charge of converting glutamine to glutamate,
promotes Th17 cells through distinct mechanisms (38, 49).
Glutaminase expression is controlled by the transcription
factor inducible cAMP early repressor (ICER)/cAMP response
element modulator (CREM) (38), which is known to be
overexpressed in T cells both from patients with SLE or MRL/
lpr lupus-prone mice (64, 65). The glutaminase 1 inhibitor Bis-2-
(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES)
reduces Th17 cell differentiation and disease activity in animals
subjected to experimental autoimmune encephalomyelitis (EAE)
(38). BPTES also ameliorates disease activity in MRL/lpr mice
(50). Glutamate oxaloacetate transaminase 1 (GOT1), which
converts glutamate to a-ketoglutarate, an intermediate of the
TCA cycle, also contributes to enhance Th17 cell differentiation
through epigenetic processes (51). Selective inhibition of GOT1
with aminooxy acetic acid (AOA) treatment or short hairpin
RNA (shRNA) si lencing markedly decreased Th17
differentiation of murine T cells (51). Systemic AOA treatment
or adoptive transfer of Got1 knockdown Th17-polarized T cells
ameliorated EAE (51). Furthermore, inhibition of glutaminolysis
with the glutamine analog 6-Diazo-5-oxo-L-norleucine (DON)
reduces the frequency of Tfh cells, exogenous antigen-specific
germinal center responses, and the production of dsDNA
antibody in lupus-prone B6.Sle1.Sle2.Sle3 mice after T cell-
dependent immunization (52).
BRANCHED-CHAIN AMINO ACID
METABOLISM

The branched-chain amino acids (BCAAs) include leucine,
isoleucine, and valine. As the most abundant of essential amino
acids, BCAAs are not only the substrates for synthesis of
nitrogenous compounds, but they also serve as signaling
molecules regulating the metabolism of glucose, lipid, and
February 2021 | Volume 12 | Article 623844
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protein synthesis, intestinal health, and immunity through special
signaling networks, especially the phosphoinositide 3-kinase/
protein kinase B/mTOR (PI3K/AKT/mTOR) signal pathway.
The leucine antagonist N-acetyl-leucine amide (NALA) inhibits
mTORC1 activity and T cells function, impairs IL-2 and IFNg
production in in vitroTh1 polarizedmurine T cells (66). Leucine is
also essential for Treg cell function. Leucine promotes mTORC1
activity in Treg cells via the small G proteins RagA/B and Rheb1/2
to drive their suppressive activity by inducing the expression of
inducible T cell costimulator (ICOS) and CTLA4. Mice bearing
RagA-RagB- or Rheb1-Rheb2-deficient Treg cells developed a
Scurfy-like autoimmune disease and have reduced effector Treg
cell accumulation and function (48).

Unlike most other essential amino acids, BCAAs catabolism is
initially catalyzed either by transamination by branched-chain
amino acid aminotransferases (BCAT) or decarboxylation by
branched-chain a-keto acid dehydrogenase enzyme complex
(BCKDC). After these reactions BCAA metabolites are further
converted to acetyl-CoA and succinyl-CoA and participate in the
TCA cycle (67). In CD4+ T cells, BCAT negatively regulates
mTOR and glycolysis. Activated T cells from cytosolic branched
chain aminotransferase (BCATc)-deficient mice show increased
mTORC1 activation compared to T cells from control mice.
Furthermore, T cells from Bcatc-/- mice display higher rates of
glycolysis (68). In another study, the oral administration of a
leucine analogue, ERG240, selectively inhibited the activity of
BCAT1, reduced the severity of collagen-induced arthritis in
mice, and crescentic glomerulonephritis in rats (69).
Frontiers in Immunology | www.frontiersin.org 4
SERINE METABOLISM

Serine is used in proliferating cells for protein synthesis as well as
the synthesis of other amino acids, such as glycine and cysteine
(70). Serine-derived glycine is used in nucleotide synthesis.
Moreover, serine is also a precursor for the synthesis of lipids,
such as phosphatidylserine and sphingolipids, which have central
roles in apoptotic cell clearance and immune cell activation,
respectively (71, 72). A key molecule which is associated with
serine is the M2 isoform of pyruvate kinase (PKM2) because it
ligates and allosterically activates its activity (73). Even in the
absence of exogenous serine, PKM2 expression contributes to
endogenous serine synthesis and to the maintenance of
mTORC1 activity (74).

Upon T cell activation, upregulated enzymes of the serine,
glycine, one-carbon (SGOC) metabolic network, increase
processing of serine into one-carbon metabolism. Extracellular
serine is required for optimal T cell proliferation both in vitro
and in vivo. Shortage of dietary serine impairs pathogen-driven
expansion of T cells in vivo. Serine supplies glycine and one-
carbon units for de novo nucleotide biosynthesis in proliferating
T cells, and one-carbon units from formate can rescue T cells
from serine deprivation (75).

We previously reported that calcium/calmodulin–dependent
protein kinase IV (CaMK4) binds to PKM2 and promotes
pyruvate kinase activity. Activated PKM2 is requisite for the
Th1 and Th17 differentiation (76). Because inhibition of CaMK4
ameliorates pathogenesis of SLE though a Th17 cell manner (77,
TABLE 1 | Tentative therapeutic targets identified in studies of amino acid metabolism in T cells.

Therapeutic target Therapy Effect on T cells Effects on lupus References

Amino acid transporters
LAT-1(SLC7A5)/CD98(SLC3A2) JPH203 Cannot respond to antigen, undergo clonal expansion or

effector differentiation
Unknown (12, 19,

21, 22)
(Transporter for Leu, Ile, His, Val, Phe, Trp,
Met, and Tyr)

Reduces Th1 and Th17 cell differentiation

ASCT2(SLC1A5) V-9302 Reduces Th1 and Th17 cell differentiation Unknown (27, 28)
(Transporter for Gln, Ala, Ser, Cys, Asp, and
Thy)

GPNA

CAT-1 (SLC7A1) NEM Requisite for T cell survival Unknown (29, 30)
(Transporter for Arg, Lys, and Orn)

Amino acid sensors
mTOR signaling Sirolimus* Inhibits Th17 cell differentiation Reduces disease activity

(mouse and human)
(39–48)

Promotes Treg cell differentiation
Amino acid metabolism
Glutamine metabolism
Glutaminase 1 BPTES Reduces disease activity (38, 49, 50)

CB-839,
968

Reduces Th17 cell differentiation Improve kidney disease
(mouse)

GOT1 AOA Reduces Th17 cell differentiation Unknown (51)
Glutaminolysis DON Reduces the frequency of Tfh cells Reduces dsDNA antibody

production
(mouse)

(52)

Cysteine metabolism NAC* Inhibits mTOR activity Reduces disease activity (53–57)
Improve kidney disease
(mouse and human)
Fe
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LAT-1, large neutral amino acid transporter 1; ASCT2, alanine-serine-cysteine transporter 2; CAT, cationic amino acid transporters; mTORC, mammalian target of rapamycin complex;
GPNA, L-g-glutamyl-p-nitroanilide; NEM, N-ethylmaleimide; GOT-1, glutamate oxaloacetate transaminase 1; AOA, (aminooxy)acetic acid; DON, 6-Diazo-5-oxo-L-norleucine; NAC, N-
acetyl cysteine; Leu, leucine; Ile, isoleucine; His, histidine; Val, valine; Phe, phenylalanine; Trp, tryptophan; Met, methionine; Tyr, tyrosine, Gln, glutamine; Ala, alanine, Ser, serine; Cys,
cysteine; Asp, asparagine, Thr, threonine; Arg, arginine Lys; lysine, Orn, Ornithine. *; Clinical trials of these therapies are ongoing.
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78), the serine/PKM2 metabolism axis represents a hub of
abnormal T cells in autoimmunity and needs further attention.

Serine also supports mitochondrial metabolism. In Jurkat cells,
the catabolic enzyme serine hydroxymethyltransferase (SHMT2) is
required formitochondrial and respiratory activity (79). It has been
also shown that SHMT2 promotes inflammatory cytokine
signaling, including that of type I interferons, by interacting with
the deubiquitylating BRCC36 isopeptidase complex (BRISC) (80).
Since it has been recently shown that an inactive form of SHMT2
dimerhas the capacity tobindand inhibit BRISC (80), control of the
SHMT2-BRISC interaction may represent a new target to control
autoimmune diseases.
GLUTATHIONE/CYSTEINE METABOLISM

Glutathione is made from three amino acids: cysteine, glutamate,
and glycine. Glutathione is important in the antioxidant defense,
nutrient metabolism, and regulation of cellular events including
gene expression, DNA and protein synthesis, cell proliferation
and apoptosis, signal transduction, cytokine production and
protein glutathionylation (81). Glutathione reduces
intracellular reactive oxygen species (ROS) levels and inhibits
Th17 cell differentiation (49, 82). Glutathione is reported to be
decreased in the peripheral blood of patients with SLE (83).
Glutathione regulates the elevation of mitochondrial
transmembrane potential, which in turn activates mTOR in T
cells from patients with SLE (53, 84). To date, N-acetylcysteine
(NAC) has been used to correct glutathione levels because NAC
is the cell-permeable precursor of cysteine which is the rate-
limiting constituent of de novo reduced glutathione (53–55).
Administration of NAC improves lupus disease activity and
ameliorates organ damage mainly by blocking the mTOR
pathway in T cells in humans and mice with SLE (56, 57).

Because cysteine contains sulfur, cysteine supports sulfur-
dependent metabolism. As discussed above, cysteine is a key
amino acid for glutathione function, as it supplies the sulfur
necessary for the formation of the disulfide bridge in the
glutathione disulfide (13), but its roles extend beyond
glutathione synthesis. In humans, naïve T cells express none or
very low levels of cystine and cysteine transporters. Thus, early T
cells activation does not require cystine and cysteine. However,
upon activation, T cells rapidly upregulate the expression of
cystine and cysteine transporters and display dependency on
exogenous supply of cystine/cysteine for their proliferation (85).
METABOLISM OF OTHER AMINO ACIDS

Tryptophan, an essential amino acid used for the biosynthesis of
crucial compounds, including 5-hydroxytryptamine (5-HT,
serotonin) and kynurenine, is important in T cell function.
Indoleamine-2,3-dioxygenase 1 (IDO-1) catabolizes tryptophan
to kynurenine and T cells require tryptophan for proliferation
and activation (13). Accordingly, IDO-1 inhibits T cell activation
Frontiers in Immunology | www.frontiersin.org 5
and Treg cell differentiation of human and murine T cells (86–
89). The dysbiotic gut microbiota of lupus-prone mice which is
characterized by altered distribution of tryptophan metabolites
in the feces of the mice, including an increase in kynurenine
levels, has been linked to the production of autoantibodies and
autoimmune pathology (90). Low dietary tryptophan prevents
disease activity of the lupus-prone mice, whereas high dietary
tryptophan has the opposite effect (90).

Methionine can affect the epigenetic reprogramming in CD4+

T cells (91). Activated T cells transport methionine via SLC7A5
(92). Methionine serves as the major substrate for the
biosynthesis of S-adenosyl-L-methionine (SAM) (91, 93). SAM
functions as a substrate for epigenetic modifications. Methionine
restriction reduces histone H3K4 methylation at promoter
regions of genes associated with Th17 cell proliferation and
cytokine production in murine T cells (91).
CONCLUSIONS

During the last decade great progress has been achieved in the
field of immunometabolism. It has now been established that T
cell metabolism controls the fate and function of T cells. Amino
acids are also crucial in T cell survival, function and
differentiation. Besides glycolysis, amino acid metabolism is
also involved in the pathogenesis in SLE and by inference to
other autoimmune diseases. Although 2-deoxy-d-glucose
monotherapy has partial efficacy in improving disease in
lupus-prone mice, when combined with metformin, a
mitochondrial electron transport chain complex I inhibitor, it
leads to normalization of T cell metabolism and reversal of
disease activity (94). These results revealed that monotherapy
targeting only glycolysis is not sufficient to treat lupus-prone
mice. Thus, the focus of research on T cell metabolism in lupus is
expanding our understanding of amino acid metabolism.

Although many reports have shown that some metabolic
pathways involving amino acids including glutamine, tryptophan,
and cysteine can serve as therapeutic targets in lupus-prone mice,
the tentative therapeutic targeting of metabolic pathways of other
amino acids remains unclear. Sirolimus and NAC are undergoing
rigorous clinical trials in patientswith SLE (42, 43, 80) and theymay
end up serving as significant entries in the list of available
therapeutic tools for these patients. There are though several
challenges to overcome in order to exploit additional amino acid-
related treatment targets. Although many studies using mouse
models have revealed potential therapeutic targets in amino acid
metabolism, further insights are needed from the ex vivo study of
immune cells from patients with SLE. Such studies should be
followed by properly designed clinical trials in patients with SLE
and probably other autoimmune diseases. As all drugs display
invariably side effects, cell/tissue targeted delivery should be
considered (73, 95, 96).

In this brief review we presented evidence that amino acids are
important in T cell function and aberrant metabolismmay be linked
to autoimmunity and related pathology. It appears that their central
role in the control of the immune response is underwritten by being
February 2021 | Volume 12 | Article 623844

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kono et al. Amino Acid Metabolism in Lupus
indispensable for the generation of building blocks needed for cell
proliferation, the generation of energy by controlling metabolic
pathways, the control of epigenetic pathways, the production of
phospholipids and the control of oxidative stress.

Amino acids and products of metabolic processes dictate the
effector function of T cells and determine whether they will serve as
regulators, instigators of inflammation or effectors of cytotoxicity.
Alterations of the levels of metabolites within immune cells can be
achieved by simply changing their levels in the environment or
modulating the activity of transporters and intracellular metabolic
enzymes. Drugs altering metabolism or supplementation of amino
acids or metabolites or their precursors may prove of great value as
modulators of T cell functions in the treatment and well-being of
patients with autoimmune disease.
Frontiers in Immunology | www.frontiersin.org 6
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