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ABSTRACT

Comprehensive genomic analyses of cancers have
revealed substantial intrapatient molecular hetero-
geneities that may explain some instances of drug
resistance and treatment failures. Examination of
the clonal composition of an individual tumor and
its evolution through disease progression and treat-
ment may enable identification of precise thera-
peutic targets for drug design. Multi-region and
single-cell sequencing are powerful tools that can
be used to capture intratumor heterogeneity. Here,
we present a database we’ve named CancerTracer
(http://cailab.labshare.cn/cancertracer): a manually
curated database designed to track and characterize
the evolutionary trajectories of tumor growth in indi-
vidual patients. We collected over 6000 tumor sam-
ples from 1548 patients corresponding to 45 differ-
ent types of cancer. Patient-specific tumor phyloge-
netic trees were constructed based on somatic mu-
tations or copy number alterations identified in mul-
tiple biopsies. Using the structured heterogeneity
data, researchers can identify common driver events
shared by all tumor regions, and the heterogeneous
somatic events present in different regions of a tumor
of interest. The database can also be used to investi-
gate the phylogenetic relationships between primary
and metastatic tumors. It is our hope that Cancer-
Tracer will significantly improve our understanding
of the evolutionary histories of tumors, and may fa-
cilitate the identification of predictive biomarkers for
personalized cancer therapies.

INTRODUCTION

Over the past few years, advances in next-generation se-
quencing and molecular diagnostics have significantly in-
creased our understanding of the heterogeneities and evo-
lutions of mutations within individual tumors (1–3). The
process of conversion from a normal to a malignant cell
is known to occur through the sequential accumulation of
alterations in oncogenes and tumor suppressor genes (4,5).
Over the course of tumor initiation and progression, cancers
continue to evolve and may ultimately give rise to heteroge-
neous mixtures of tumor cells with distinct molecular signa-
tures (6,7). Tumor heterogeneity has been found in virtually
all types of cancer, and can be broadly divided into interpa-
tient and intrapatient heterogeneity. Interpatient tumor het-
erogeneity, which results from patient-specific factors, has
long been known about, and has been extensively studied
(2,8). Intrapatient tumor heterogeneity refers to heterogene-
ity among the tumor cells of an individual tumor or patient.
This heterogeneity may manifest as spatial heterogeneity,
which reflects the uneven distribution of genetically diverse
tumor subclones across and within disease sites, or as tem-
poral heterogeneity, which presents as differences that de-
velop within a single tumor over time (9–15). Tumor hetero-
geneity at an individual patient level has important clinical
implications (16,17). Accumulating evidence suggests that
the presence of low-frequency subclones harboring resis-
tance mutations may contribute to treatment failure (18,19).
Furthermore, small sub clones undetectable within the pri-
mary tumor at the time of diagnosis may later become re-
sponsible for local or distant metastases in the same patient.
Therefore, understanding intrapatient tumor heterogeneity
is essential for predicting therapeutic responses, and for de-
veloping effective therapies.
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Multi-region sequencing and single-cell sequencing are
emerging technologies that can effectively capture intratu-
mor heterogeneity. Multi-region sequencing can be used to
sample different spatial regions within a single tumor, in or-
der to elucidate the complex clonal architectures of cancers
(20–22). The clonal and subclonal compositions of individ-
ual tumors can be deduced by studying multiple biopsies
from the same tumor. This information can then be used to
construct distance-based phylogenetic trees that reveal the
evolutionary trajectories of different subclones in each pa-
tient. Clonal mutations representing early or initiating ge-
netic events are depicted on the trunk of a tumor’s phylo-
genetic tree, whereas subclonal mutations reflecting later or
progression events, are shown on the branches. The value
of multi-region sequencing for phylogenetic reconstruction
was first demonstrated in renal cancer, and, more recently,
in a number of other cancer types (9,12,23–26). Single-cell
sequencing is another innovative and informative technol-
ogy that facilitates the discovery of clonal versus subclonal
alterations in tumors, at even higher levels of resolution (27–
30).

Rapid advances in DNA sequencing technologies have
resulted in the accumulation of tumor genomic data at an
unprecedented speed. A number of excellent resources on
cancer genomics and mutations are available. The Cancer
Genome Atlas (TCGA) (31) and the International Can-
cer Genome Consortium (ICGC) (32), for example, pro-
vide comprehensive sets of genomic data and complete clin-
ical information of patients. Several web resources focus on
curating and annotating mutations and variants, such as
the Catalogue Of Somatic Mutations In Cancer (COSMIC)
(33), ClinVar (34), OncoBase (35), BioMuta and BioX-
press (36), IntOGen (37), and PreMedKB (38). SEECan-
cer is a database that aims to provide information on can-
cer evolutionary stage-specific somatic events and their tem-
poral orders (39). These resources have greatly facilitated
the discoveries of novel cancer-associated genes and have
greatly advanced the field of cancer genomics. However,
none of the existing tumor genome repositories provide
well-documented phylogenies and ‘road-maps’ of each tu-
mor, since these programs were not designed to address
the heterogeneity component of cancer. Generally, these
databases use platforms that characterize tumors in bulk,
giving results that average across all tumor clones. There-
fore, a resource for systematically tracking and annotating
the evolution of individual cancer genomes over space and
time is necessary in order to decipher the extent and pattern
of tumor heterogeneity at the single-patient level.

To address this gap, we developed CancerTracer, a man-
ually curated database to track and characterize the evolu-
tionary trajectories of tumor growths in patients. Patient-
specific phylogenetic trees were constructed based on avail-
able alteration data. Somatic mutations and Copy Number
Alterations (CNAs) were included in the database, as two
principal factors driving heterogeneity in cancer. Currently,
the database contains over 6000 tumor samples from 1548
patients across 45 different cancer types. We hope that this
elaborate database will serve as a unique resource for re-
searchers in a broad range of cancer-related fields to explore
and understand intrapatient tumor heterogeneity.

DATA COLLECTION AND PROCESSING

Data collection

CancerTracer aims to provide a comprehensive resource for
documenting tumor heterogeneities in individual patients.
In order to retrieve articles that are suitable for inclusion
in our database, we first searched the PubMed database
using a set of topically relevant keywords, including: ‘in-
tratumor heterogeneity’, ‘spatial heterogeneity’, ‘temporal
heterogeneity’, ‘genomic heterogeneity’, ‘primary hetero-
geneity’, ‘metastasis heterogeneity’, ‘multi-region sequenc-
ing’ and ‘single cell sequencing’. Each retrieved article was
assessed independently by two investigators for inclusion
or exclusion. The citation-tracking capability of Google
Scholar was applied to highly relevant publications in or-
der to broaden the search. Of the >1000 articles retrieved
as potentially relevant, 145 were identified as eligible for our
subsequent data curation process. These studies were classi-
fied into two categories according to sampling strategies: (i)
intratumor heterogeneity studies––sampling of multiple re-
gions within a single primary lesion (which can itself be fur-
ther divided into spatial and temporal types) and (ii) inter-
tumor heterogeneity studies––sampling of primary tumors
as well as either single or multiple metastatic sites. Somatic
mutations and CNAs were manually extracted from tables,
figures, texts and supplementary materials of the qualified
articles. Clinical data of the patients, sampling sites and in-
formation on phylogenetic trees was also collected if avail-
able. All data were integrated and organized at the patient
level. The final data were confirmed by at least two indepen-
dent experts.

Intratumor heterogeneity data annotation

Intratumor heterogeneity can manifest as spatial and tem-
poral patterns of genetic diversity. Spatial separation of sub-
clones within an individual tumor is usually investigated by
multi-region sequencing. We collected data on somatic mu-
tations and CNAs from publications, to add to the Can-
cerTracer database. According to the original descriptions
in the literature, these genomic alterations were classified
into three categories: (i) trunk mutations, present in all in-
tratumoral regions; (ii) branch mutations, shared by some
regions but not all and (iii) private mutations, observed in
only one region. This type of data is frequently used to con-
struct phylogenetic trees, which can intuitively present phy-
logenetic relationships of the tumor regions (20–22) (Fig-
ure 1). These trees are usually rooted at the germline DNA
sequence, determined by sequencing of DNA from normal
tissues or patient blood samples. Trunk and branch lengths
are proportional to the number of nonsynonymous muta-
tions acquired. We adapted and redrew the original phylo-
genetic trees, if available, for the database. In about 75% of
publications, the authors provided scale bars on the den-
drograms or indicated the total numbers of trunk, branch
and private mutations in the main text. We present this in-
formation in the figure of phylogenetic tree. In some cases,
driver genes or CNAs that contributed to the evolution were
indicated in the branches or trunk, and we also kept this in-
formation in the redrawn dendrograms. Some studies pro-
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Figure 1. Schematic representation of tumor clonal evolution and the construction of phylogenetic tree. Distinct subclones are designated with distinct
colors. In the phylogenetic tree, the trunk and branch lengths are proportional to the number of alterations acquired.

vided detailed information on gene variations such as sub-
stitution, insertion, deletion and duplication. We converted
such data into a uniform format to facilitate the compari-
son of data from different studies. In order to allow users
to access the potential medical values of genes of interest,
we downloaded the drug-gene annotation and therapeutic
targets annotation from the DGIdb (40) and the project
Score database (41), respectively. CCLE (42), GDSC (43),
CellMiner (44) and NCI-60 (45) contain drug resistance
data. We provide links to these websites where appropri-
ate. To systematically annotate the functional impact of so-
matic mutations in proteins, we employed ANNOVAR (46)
and PolyPhen2 (47) to perform the analysis. About 88.78%
mutations were successfully annotated by ANNOVAR or
PolyPhen2, and 84.62% of non-synonymous point muta-
tions were annotated by SIFT and/or PolyPhen2. A small
number of mutations were not able to be annotated due to
the following possible reasons: (i) some publications did not
provide genome assembly of mutations; (ii) irregular muta-
tion descriptions; (iii) some studies did not provide details
of gene mutations. We also provided predictions of disease-
causing potential of variants from several in silico tools,
such as MutationTaster (48) and FATHMM (49). A recent
study identified 299 common driver genes in cancer (50),
and we marked these genes in the gene information page.
CaPSSA (51) and KM Plotter (52) were used to assess the
effect of genes on survival. CaPSSA enables evaluation of
cancer biomarker genes for patient stratification and sur-
vival analysis based on mutation and expression data. KM
Plotter is a web application, developed for meta-analysis-
based biomarker assessment. Longitudinal tumor sampling
before and after therapy was also often carried out to as-
sess treatment-induced molecular changes. In such cases,
the phylogenetic trees illustrated the temporal acquisitions
of driver events that represented valuable information rele-
vant to treatment outcome.

Intertumor heterogeneity data annotation

Substantial intertumor heterogeneity between primary tu-
mors and metastases has been reported in many studies uti-

lizing high-throughput sequencing data (53–57). In these
cases, metastatic tumors tend to evolve under new microen-
vironmental pressures, and present different genomic alter-
ations than those found in the primary tumor. For stud-
ies that investigated genetic differences between primary tu-
mors and multiple metastatic sites in the same patient, data
curation was similar to that of intratumor heterogeneity
data processing. We collected somatic genomic alterations
and classified them into trunk (present in all metastases and
primary lesions), branch (shared by some samples but not
all) and private (only detected in one sample) alterations.
The primary and metastatic tumor-specific mutations or
copy number changes were used to construct phylogenetic
trees. The trunks were usually rooted by germline DNA se-
quences that did not have somatic mutations. Trunk and
branch lengths were proportional to the numbers of non-
synonymous mutations. The organ-specific branches within
each dendrogram represent the degree of clonal diversity be-
tween primary and metastasis tumors. This type of phyloge-
netic tree may help facilitate a deeper understanding of the
phylogenetic relationships between primary and metastatic
neoplasms, as well as identify founder mutations and pro-
cesses that are relevant to metastatic progression.

Database architecture and data visualization

CancerTracer runs on a linux-based Apache web server us-
ing MySQL as the back-end database. The web interface
was developed using HTML5, PHP, CSS and JavaScript.
The website has been tested thoroughly to ensure function-
ality across various operating systems and web browsers
such as Google Chrome, Safari, Firefox, Opera, and Mi-
crosoft Edge. The data visualization was performed using
the R programming language, Metascape (58), and the gg-
plot2 R package (59). Metascape is an online tool that can
be used to perform gene annotation and enrichment analy-
sis (58). The analysis results returned by Metascape were re-
constructed and integrated into CancerTracer. In most en-
richment analyses, P-values were used for statistical signif-
icance evaluation. This is to avoid missing interesting en-
riched terms and valuable information, since a false discov-
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Figure 2. Statistics on the data contents of CancerTracer. (A) Distribution of patients across tumor types. (B) The most frequently altered genes and their
regional distributions.

ery rate adjustment procedure may produce conservative P-
values and declare very few terms as significant. For enrich-
ment network visualization, Metascape employed a heuris-
tic algorithm to select the most informative terms from the
obtained GO clusters. The top 20 clusters were sampled and
up to 10 GO terms with lowest P-values within each clus-
ter were selected. Pairwise similarities between any two en-
riched terms were calculated based on a Kappa-test score.
All terms pairs with Kappa similarity >0.3 were connected
and visualized by Cytoscape (60).

DATABASE CONTENT AND USAGE

Data summary

The current version of CancerTracer contains genomic al-
teration data profiled from over 6000 tumor samples rep-
resenting 1548 individual patients. These datasets were cu-
rated from 145 publicly available studies across 45 cancer
types. Additional information of the 145 articles can be
found in Supplementary Table S1. Lung cancer accounts
for the largest proportion of patients (18.7%) in our dataset,
followed by colorectal cancer (17.3%), glioma (13.0%),
esophageal cancer (11.2%) and breast cancer (8.7%) (Fig-
ure 2A). The most commonly mutated gene in all can-
cers is TP53, which has nearly 1000 alteration entries in
the database. The top 10 most frequently altered genes are
shown in Figure 2B. For each gene, we counted the number
of mutations identified as trunk, branch, or private. Most
genes appeared as both trunk and private mutations in dif-
ferent samples. The data thus indicated that tumors repre-
sent a complex dynamic ecological system, and the roles of
trunk or private mutations are influenced by many microen-
vironmental factors surrounding each tumor.

Web design and interface

The CancerTracer website features a user-friendly inter-
face for exploring and visualizing tumor heterogeneity
data within patients. The main functional pages include
‘Browse’, ‘Intratumor’, ‘Intertumor’, ‘Download’ and ‘Tu-

torial’. The ‘Browse’ page is the main entry point to ex-
plore the datasets, while ‘Intratumor’ and ‘Intertumor’ are
two query options to retrieve specific types of data from the
database. The ‘Download’ page provides links to download
the complete datasets of CancerTracer, and instructions on
how to use the online interface can be found on the ‘Tuto-
rial’ page.

The ‘Browse’ page provides an overview of all data in-
cluded in the database, and data can be browsed by cancer
types or gene/event. When clicking a specific cancer type, all
related entries are shown in a table (Figure 3A). The most
frequently mutated genes in this tumor type are presented in
a histogram at the bottom of the page. Clicking on the pa-
tient ID will open a new page that displays sample informa-
tion and data analysis results. In the new page, the ‘Patient
Details’ field shows basic clinical information of the patient
(Figure 3B). The ‘Supported Literature’ field describes the
source from which the data was extracted, such as PubMed
ID, table/figure number, etc. Users can thus easily trace the
data back to the original literature. If available, the techni-
cal details of raw data processing were also provided, such
as sequencing platforms and bioinformatics tools applied.
We also curated the information of tumor purity, patient
prognosis, and treatment strategies from publications. Some
studies provide information on the exact points of sampling.
Since sampling strategies may influence the sensitivity and
accuracy of clonality analysis, we adapted and illustrated
this information in a schematic diagram (Figure 3C). Each
patient-specific phylogenetic tree reveals the spatial compo-
sition or the evolutionary trajectory of all identified sub-
clones (Figure 3D). Driver genes with possible functional
mutations are usually mapped along the phylogenetic trees.
To facilitate the assessment of tumor heterogeneity in all pa-
tients in a study, a heatmap is generated to show the regional
distribution of all cancer gene mutations (Figure 3E). Al-
tered genes are listed at the bottom of the heatmap, and pa-
tient IDs are shown on the right. The status of each gene in
each patient is color-coded. ‘Gene Lists Analysis’ field pro-
vides the results of a functional enrichment analysis based
on trunk gene lists of a specific study. Since trunk mutations
are shared by every region of an individual tumor, the anal-
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Figure 3. An example of data browse page. (A) The interface for data browsing. Cancer types and gene/event can be selected from the list box, and the
related entries are displayed in the table. (B) Clinical information of the patient, and the resource from which the data was extracted. The data generation
platform and data processing pipeline are also presented. (C) The schematic diagram of sampling points. (D) The phylogenetic tree with possible driver
events shown next to the trunk or branches. The trunk, branches and leaves of the tree are plotted in black, blue and red, respectively. (E) The heatmap
shows the regional distribution of gene mutations in different patients. (F) The heatmap of the top gene ontology enrichment clusters. (G) The Circos plot
shows the overlaps among trunk gene lists of different patients. Each gene is assigned to one spot on the arc of the corresponding patients. Genes shared
among multiple gene lists are linked through curves. (H) The enrichment network visualization shows the relationship of a series of representative terms.
Annotation of terms is color-coded. (I) The result page shows the mutational landscape of all patients in the cancer type. The data of selected patient is
highlighted. The most frequently mutated genes are represented in the histogram.

ysis of truncal mutations can provide common results. This
analysis was performed by an online tool called MetaScape
(58), and its results were used to reconstruct parts of each
patient’s diagram using the R language. The heatmap of the
top Gene Ontology (GO) enrichment clusters is included
to help facilitate the identification of key processes or path-
ways that are common to all patients (Figure 3F). The Cir-
cos plot (61) intuitively shows the overlaps among multiple
trunk gene lists, and the functional overlaps of genes that
share the same ontology term (Figure 3G). Furthermore,
a series of representative terms from the full cluster were
selected and converted into a network layout (Figure 3H).
When clicking on the graph, a new page containing an in-
teractive network will appear. User can click on nodes to
explore GO terms of interest, and get related gene list.

The complete list of mutated genes identified in the pa-
tient, and their distribution levels, can be viewed by clicking

on the ‘Mutation Details’ link in the table of retrieved en-
tries. The result page displays the mutational landscape of
all patients with the specific cancer type, and the record of
the selected patient will be highlighted (Figure 3I).

Evolutionary events query

The data in CancerTracer can be split into two concep-
tual categories: intratumor and intertumor heterogeneity.
We developed query interfaces for these two data types,
respectively. Intratumor heterogeneity data can be queried
by cancer type or gene/event (Figure 4A). In the interface
of query by cancer type, we provide another option to se-
lect data heterogeneity type, including spatial and tempo-
ral heterogeneity, which represent different sampling strate-
gies. For researchers only focused on known cancer genes,
the ‘Cancer Gene Census’ (cancer-related genes annotated
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Figure 4. Examples of intratumor heterogeneity data query. (A) The interface and related parameters for intratumor heterogeneity data query. (B) The
results of query by cancer type. The table presents patient-level result. (C) The results of query by Gene/Event. The table provides detailed information about
the queried gene/event and links to other sources. Several filter options are provided above the table. The histogram represents the regional distribution of
all mutations in the queried gene/event across different cancer types.

in the COSMIC database) (33) option in the ‘Gene Type’
selection box can be selected, instead of ‘All’. The result
page presents data at the patient level, and provides lists of
affected genes and links to individual patient data (Figure
4B). The retrieved data can be downloaded as an Excel file
by clicking on the ‘Download’ button.

In the query by ‘Gene/Event’ interface, users can select
different mutation levels, including trunk, branch and pri-
vate, which may indicate the time of occurrence of the muta-
tion during tumor evolution (Figure 4A). The ‘Gene/Event’
input box suggests plausible gene or event names, and sup-
ports auto-completion. In the result page, a table is dis-
played that lists related information on the queried gene,
including cancer type, links to patient-level data, gene vari-
ations, and version of reference-genome assembly, etc. (Fig-
ure 4C). The variations associated with amino acid changes
were normalized to the standard format and linked to the
COSMIC database for details. We also provide systematic
annotation on the curated somatic mutations by ANNO-
VAR. The annotations from SIFT, PolyPhen2, etc., as well
as protein change, were displayed in the table. The results
can be sorted by columns and be downloaded for offline
analysis. To allow users to access the potential medical value
of genes of interest, we further provide links for each muta-
tion or gene to PreMedKB (38), DGIdb (40) and KM Plot-
ter (52), if available. The regional distribution of all gene
mutations in different cancer types is illustrated in the his-
togram below the table.

Intertumor heterogeneity data can also be queried by
cancer type or gene/event. The difference is that the options
of heterogeneity type are classified as primary-metastasis
or primary-multimetastasis. In this case, the data can be
used to investigate phylogenetic relationships between pri-
mary and metastatic tumors. In the ‘Intertumor Hetero-

geneity’ and ‘Intratumor Heterogeneity’ pages, we provide
interfaces to display summary of gene mutations. This func-
tion allows users to investigate metastasis specific mutations
and mutations that appear both in primary and metastasis
samples.

Case study

To exhibit the utility and potential application of Cancer-
Tracer, we used EGFR as an example to query its muta-
tion states in lung cancer (Supplementary Figure S1). In
‘Intratumor Heterogeneity’ page, we selected lung cancer
and EGFR to perform the query, and found that EGFR:
p.L858R mutations, which are major selection markers
for EGFR tyrosine kinase inhibitors (TKIs) therapy, were
usually presented as trunk or branch mutations. How-
ever, EGFR: p.T790M mutations, which cause resistance
to first and second generations EGFR TKIs, were found as
trunk or branch mutations in two patients (p107 P012 and
p109 p4–6992). The patient p107 P012 had both p.L858R
(as branch) and p.T790M (as trunk) mutations, which may
suggest higher EGFR activity and weak response to first
and second generations TKIs. These results may also sug-
gest that p.T790M mutation occurred early in disease pro-
gression of this patient. Thus, CancerTracer allows users to
investigate the distribution of specific mutations of interest,
and to deduce the time of occurrence of the mutation during
tumor evolution.

Data access

To enable users to perform further metadata analysis, the
entire contents of CancerTracer can be downloaded on the
‘Download’ page without login or registration. The full
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dataset was split into sample level data and publication in-
formation, and can be downloaded as tab-delimited files.
The dataset was also organized by intra- or intertumor het-
erogeneity and gene type to provide users with flexible data
choices. The emerging studies utilizing spatial and longi-
tudinal sampling strategies provide in-depth understanding
of tumor evolution during progression and treatment. The
continuously growing data is a valuable resource and we will
update our database several times per year.

DISCUSSION

To date, an increasing number of studies have highlighted
the fact that single biopsies may not be able to provide ad-
equate reflections of the clonal compositions of whole tu-
mors (9,29,62). Molecular and genetic heterogeneity within
a single tumor, as well as between different sites of neoplasia
in a single patient, confound our ability to design and select
effective therapies to curtail treatment resistance. We devel-
oped CancerTracer to help researchers gain a deeper insight
into the extent of tumor heterogeneity and how it evolves
over the course of the disease. This manually curated plat-
form brings together clinical and genomic alteration data
concerning tumor heterogeneity, to allow users to quickly
explore the spatial compositions and the evolutionary tra-
jectories of tumor subclones.

The study of tumor evolution over space and time can
facilitate the identification of truncal and branched driver
mutations. An example of such a study is the TRACERx
(TRAcking non-small cell lung Cancer Evolution through
therapy (Rx)), which attempts to map cancer subclones over
time and to understand the impact of intratumor hetero-
geneity on therapeutic outcomes (63). Clonally dominant or
truncal driver mutations could be evaluated in order to find
the most effective drug targets for certain tumors. However,
the roles of driver and passenger mutations are constrained
by spatial and temporal contexts - somatic events can act
as drivers at one stage of tumorigenesis, and as passengers
at another stage, and vice-versa, in some cases. Moreover,
a driver mutation might give way to a passenger mutation
when the tumor is under selection pressure from a course of
treatment (14,64–66). The matter is complicated even fur-
ther by the fact that the extent and patterns of heterogene-
ity vary within histological tumor subtypes and between tu-
mors of different tissue types. Therefore, further exploration
of large-scale tumor heterogeneity data is necessary in or-
der to reveal the molecular mechanisms driving intrapatient
heterogeneity. We will therefore commit to continuously up-
dating and expanding our data content to meet the growing
requirements of the research community.

It is important to note that besides genetic alterations,
epigenetic changes also play significant roles in shaping the
clonal architectures and heterogeneities of many tumors.
Epigenetic clonality can reflect the potential of the tumor
to respond to changing environments during progression
and therapy. Furthermore, an increasing number of stud-
ies have demonstrated that epigenetics provides a comple-
mentary paradigm to the analysis of genetic mutations in
tumorigenesis (67–69). The degree and patterns of hetero-
geneity may be influenced by the interplay of the genome
and epigenome in each tumor cell, and thus the integrative

analysis of both data types will facilitate a clearer under-
standing of the mechanisms driving tumor heterogeneity.
However, despite the importance of intratumor epigenetic
heterogeneity, it has rarely been examined and has only been
described in several tumor types, including brain tumors
(70), prostate cancer (71) and hepatocellular cancer (72).
Although the current version of CancerTracer focuses pri-
marily on genetic heterogeneity, data on epigenetic hetero-
geneity will be added to the database once enough data is
collected.

Recent progress in single-cell genome sequencing has en-
abled characterization of both somatic mutations and copy
number alterations in a single tumor cell. It is a powerful
tool to explore genetic and functional heterogeneity, and
to detect rare subpopulations. Compared to single-cell se-
quencing, multi-region sequencing may be insufficient for
precise detection of subclonal CNAs and low-frequency
mutations. One recent single-cell sequencing study detected
CNAs that were not detected in the multi-region sequenc-
ing (73). It indicated that a detailed genetic variation of
the tumor may be better uncovered by single-cell sequenc-
ing. However, for single-cell sequencing, a large number of
cells are usually required to be sequenced in order to ob-
tain meaningful results, which is costly and has its limita-
tions in clinical applications. Furthermore, single-cell RNA
sequencing (scRNA-seq) can also be used to assess tumor
heterogeneity (74). It allows researchers to investigate the
diversity of transcriptional profiles present in an individ-
ual tumor, and to explore multiple cell states with distinct
transcriptional profiles. Many scRNA-seq studies have re-
vealed new insights into tumor-related mechanism in de-
tail. For example, tumor microenvironment was found to be
consisted of fibroblasts, T cells, macrophages, etc., besides
malignant cells (75). Puram et al. revealed tumor subpopu-
lation with partial epithelial-to-mesenchymal transition in
head and neck carcinoma, which may be used to predict
tumor invasion and metastasis (76). In the future, we plan
to integrate scRNA-seq data into CancerTracer. Given that
scRNA-seq provides another type of data, we will develop
new pages and visualization tools to present this type of tu-
mor heterogeneity data.

Several limitations due to tumor purity need to be no-
ticed. Solid tumor samples typically contain normal cell
contamination. A recent study reported that the proportion
of private mutations in a given biopsy was positively corre-
lated with its purity (77). Private mutations are less likely to
be identified in biopsies of relatively low purity. Thus, large
variability in tumor purity between biopsies from the same
patient may cause the overestimation of intratumor het-
erogeneity. Furthermore, in most publications, the authors
did not provide information on tumor purity. The included
studies used different methods to assess tumor purity. Some
studies evaluated tumor purity based on histopathological
slides, while others applied computational methods for pu-
rity speculation. These limitations pose considerable chal-
lenges for downstream data integration, and increase the
risk of inaccurate inferences.

In summary, the extent of intrapatient tumor heterogene-
ity is a complex issue that researchers are only beginning
to understand. To the best of our knowledge, CancerTracer
is the first database dedicated to exploring, integrating and
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mining tumor heterogeneity data at an individual patient
level. To overcome the challenges of tumor heterogeneity,
collaborations between computational biologists, cancer bi-
ologists, technology developers, and clinicians are required.
We hope that our database will substantially contribute to
this research field.
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