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Abstract

Background: High-throughput short read sequencing is revolutionizing genomics and systems biology research by
enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction
are crucial to many short read sequencing applications including de novo genome sequencing, genome
resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting
the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of
genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide
differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly
applied to genomes with low repeat content and this remains a challenging problem for genomes with high
repeat content.

Results: We develop a statistical model and a computational method for error detection and correction in the
presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed
frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate
the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We
demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the
common assumption of uniformly distributed errors within a read, and provide a framework to model position-
dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error
correction in genomes with high repeat content. Availability: The software is implemented in C++ and is freely
available under GNU GPL3 license and Boost Software V1.0 license at “http://aluru-sun.ece.iastate.edu/doku.php?
id=redeem”.

Conclusions: We introduce a statistical framework to model sequencing errors in next-generation reads, which led
to promising results in detecting and correcting errors for genomes with high repeat content.

Background
High throughput next generation sequencing has revolu-
tionized genomics, making it possible to sequence new
genomes or resequence individual genomes at a mani-
fold cheaper cost and in an order of magnitude less
time than earlier Sanger sequencing. With this technol-
ogy, ambitious genome sequencing projects target many
organisms rather than a few, and large scale studies of

sequence variation become feasible [1]. Many next-
geneneration sequencing technologies have been devel-
oped, including systems currently in wide use, such as
the Illumina Genome Analyzer (earlier known as Solexa)
and Applied Biosystems SOLiD, as well as more recent
and new offerings from companies such as Complete
Genomics and Pacific Biosciences [2]. Many next-
generation sequencing systems produce short reads,
e.g., the widely used Illumina Genome Analyzer systems
typically produce 35-150bp reads. Short read technologies
have been widely adopted for both genome sequencing
and resequencing applications; hence, development of
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high quality short read assemblers (e.g., [3-7]) and short
read mapping tools that map reads to a reference genome
[8,9] are important.
Short reads of novel genomes are typically assembled

using de Bruijn graphs that represent observed kmers as
nodes and length (k – 1) overlaps as edges. In the
absence of errors, the size of such a graph is bounded
by the length of the genome, but can be as high as 4k in
the presence of errors. In the mapping process, a read
with sequencing errors may map to multiple locations,
or sometimes nowhere at all. Thus, error removal or
correction is necessary to keep the size of the graph
manageable [7,10] and simplify non-repetitive read map-
ping [11].
Many approaches have been proposed to identify and

sometimes correct sequencing errors in next-generation
sequencing data. More recent ones include SAP (Spec-
tral Alignment Problem)-based methods [4,10], SHREC
[12] and Reptile [13]. SAP-based methods identify any
kmer occurring less than a constant, user-specified fre-
quency threshold to be erroneous. Chin et al. [14] have
shown that an optimum threshold can be derived analy-
tically, assuming the genome to be a random sequence
and that errors are independently and uniformly distrib-
uted in the reads. SHREC, a suffix trie based method,
classifies any substring that occurs less often than an
analytically calculated threshold to contain errors based
on the same assumptions as in [14]. An erroneous base,
identified as an infrequent branch of the suffix trie, is
corrected to one of its siblings when applicable. Reptile
explores read decompositions and makes corrections to
any substring whenever an unambiguous choice can be
made. In contrast to the previous two approaches, erro-
neous substrings are inferred based on assessing their
frequencies relative to the frequencies of the alternative
(error free) substrings. This accommodates under-
sampled genomic regions. All of these methods are
mainly suitable for genomes with a low degree of repeti-
tive sequences.
Repeats in genomes can lead to mishandling of errors

in many ways. Nearly identical repeats can easily be mis-
taken to be sequencing errors. Even when errors are
rare, an erroneous kmer may appear at a moderate fre-
quency if it has few nucleotide differences from one or
more valid kmers that have a high frequency of occur-
rence in the genome. The problem of detecting and cor-
recting sequencing errors among reads in the presence
of repeats has so far not been adequately addressed.
Nevertheless, repeats are widely prevalent, even in some
viral genomes such as N. meningitidis. Other genomes,
like those of plants, are known for their high repeat
content; for instance, an estimated 65-80% of the maize
genome is spanned by repeats, which makes the assem-
bly, mapping and error detection and correction tasks

difficult. Although packages like FreClu [11] and
Recount [15] could be potentially adapted to consider
repeats, they are specifically designed for transcriptome
data and correct read counts rather than identify and
correct erroneous bases within reads. Moreover, insuffi-
cient replication of full length reads in genomic data
prevents these methods from accurately estimating
model parameters.
In this paper, we address the problem of identifying

and correcting sequencing errors in short reads from
genomes with different levels of repetition, particularly
for reads produced by the widely used Illumina Genome
Analyzer platform. Similar to existing approaches, we
decompose the input reads into kmer substrings and
count the number of times Yl each kmer xl occurs in
the reads. However, instead of inferring erroneous
kmers based on these observed occurrence frequencies
[10,12], we developed a maximum likelihood estimate of
the expected number Tl of attempts to read xl, including
both attempts that resulted in error-free reads and erro-
neous reads. In addition, we propose a new method to
choose the threshold, which can be used to identify
erroneous kmers as those xl’s for which Tl’s are lower
than the threshold. We demonstrate that using estimates
of read attempts enables more accurate detection of
sequencing errors than using observed frequencies for a
wide choice of thresholds. We further develop an error
correction method to transform erroneous bases in each
read to the correct ones and compare the results with
SHREC [12] and Reptile [13], two of the most recent
error correction methods. The results demonstrate sig-
nificant improvement in error correction capabilities for
genomes with high repeat content. The proposed
method is made available through the software package
REDEEM (Read Error DEtection and Correction via
Expectation Maximization) at “http://aluru-sun.ece.ias-
tate.edu/doku.php?id=redeem”.

Methods
Let G denote the reference genome to be sequenced,
and let R = {r1, r2,…, rN} be the collection of resulting
short reads. For simplicity, we assume each read has a

fixed length L. The sequence coverage is C
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G
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where |G| is the genome length. Define the k-spectrum
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the probability that a random k-length fragment in the
genome is kmer xl. Occurrence frequency al, or equiva-
lently sl, is unobserved, but of paramount interest. Indeed,
if we knew sl = 0, but observed Yl > 0, then we would
know each observed instance of xl contains at least one
misread base. Under the assumption that errors are rare, it
makes sense to label kmers xl with Yl <M as errors, where
M is chosen such that P(Yl <M | sl > 0) is reasonably
small. Since sl is unknown, the threshold M is set ad hoc,
based on training or simulated data [10], or analytical
calculations [12,14] assuming the genome to be a random
sequence and errors to be distributed uniformly in the
reads. In practice, these assumptions do not hold true.
Moreover, the problem of misread kmers contributing to
the observed frequencies Yl (see Fig. 1) is exacerbated in
repetitious genomes where kmers with high genomic
occurrence may result in generation of the same misread
multiple times [10].
We will develop a model that estimates the expected

number of attempts Tl to read each kmer xl. The
threshold is then applied to each estimated Tl instead of
the corresponding observed Yl. The model we propose
is similar to that of RECOUNT [15] used to correct
next generation short read counts. Both models derive
from a method originally meant to detect sequencing
errors in SAGE libraries [16]. Our model differs from
the previous models in that it works with kmers rather
than full reads, since there is insufficient replication of
full length reads in genomic data (as compared to tran-
scriptome data). In addition, instead of assuming the
misread bases to be drawn from {A, C, G, T} with equal
probability, we propose a parametric error model that
can be trained from the reads produced by the control
lane (e.g.using the Illumina Genome Analyzer) in the
same experiment. This strategy has already proven to be
useful in several pioneering works [11,17]. In addition,
we will show that the model is somewhat robust to
incorrect assumptions in the underlying error model.

A further step is to modify erroneous bases to their true
forms in each read. This task has rarely been attempted
previously for repetitive regions. We propose a method
that utilizes transition probabilities and the contexual
information of individual reads to achieve this goal. Like
others, we ignore insertion and deletion errors assuming
they are rarely produced by next-generation sequencing
technology, which is true for reads from the Illumina
Genome Analyzer [18].

Error model
The simplest error model posits that sequencing errors
occur independently at all sites with constant probability
pe. Let pe(xm,xl) be the probability that xm is misread as
xl. This model produces symmetric misread probabilities:

p x x p x x p
p
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where d(·, ·) denotes the Hamming distance between
two kmers. It is known, however, that short read tech-
nology produces errors with distinct patterns [18]. As a
first approximation, we assume that errors strike sites in
the kmer independently, but with varying probabilities.
For example, we observe in dataset preparation section
that errors cluster in the 3′ portion of reads and, conse-
quently, kmers. Let qi(a,b) be the probability that
nucleotide a at position i of a kmer is (mis)read as
nucleotide b, with ∑b qi(a, b) = 1. Then, the misread
probability is

p x x q x xe m l i mi li
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k
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These misread probabilities are no longer symmetric,
and can be arranged into a 4k × 4k matrix Pe, where
non-zero entries in the lth row identify all possible ways
to (mis) read kmer xl.

AAA

CAA

TAA

AAG

AAT

AAC

AGA

CAA misread as AAAAAA misread as AAT
with probability pe(AAA,AAT ). with probability pe(CAA,AAA).

Figure 1 A kmer neighborhood. The neighborhood of trimer AAA is the collection of trimers in R3 that have a nonvanishing chance of being
misread as AAA, in this case trimers with at most one substitution.
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We now discuss some ways to reduce and simplify the
calculations. We observe substitution errors are relatively
rare, so misread kmers generally contain far fewer than k
errors. Thus, when considering possible origins of a mis-
read kmer, we can safely restrict our attention to kmers
within some Hamming distance dmax from the current
kmer. Capping the maximum distance between kmers at
dmax induces a sparse Pe, whose entries are normalized
by dividing each row by the corresponding row sum.
Finally, we ignore kmers that are not observed in the data
(i.e. Ym = 0 or, equivalently, xm ∉ Rk), so the (incomplete)
neighborhood of kmer xl, denoted by Nl

dmax , is given as
{xm Î Rk : d(xl,xm) ≤ dmax}. Failure to include unobserved
kmers could bias estimation of al by ignoring kmers actu-
ally present in G and capable of contributing to Yl. How-
ever, the bias cannot be large since am must be small,
otherwise Ym would not be zero.
After considering errors and applying the simplifica-

tions, the counts Yl follow a Multinomial distribution
Y = (Y1,…,Y|Rk|) ~ Multinomial(N(L – k + 1),p),
but unobserved kmers are ignored and the probability

vector p = (p1,p2 …,pl …,p|Rk|) depends on the kmer
neighborhood. Specifically,

p s p x xl m e m l

x Nm l
d
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where s = (s1,…,s|Rk|) is restricted to the set of
observed kmers Rk. It becomes clear that when xl is sur-
rounded by highly repetitious xm with large sm, then Yl

may exceed threshold M because of high misread occur-
rence with probability smpe(xm,xl). Thus, when errors
combine with repeats, it is more appropriate to apply a
threshold to estimates of the parameters sl than
observed Yl.
The observed log likelihood, l(s |Y), involves a mixture

over the neighborhood (Fig. 1) of kmers that could be
(mis) read as kmer xl,
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This setup lends itself to maximum likelihood estima-
tion via the EM algorithm [19]. The update equations
are adapted from [16] using a different error model and
are given as follows:
The expectations of hidden data Ylm obtained in the E

step are
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Notice the estimated expected number of attempts to
read kmer xl is Tl = ŝlN(L – k + 1), directly proportional
to ŝl and sitting on the same scale as Yl. In fact, by
observing the E step is unchanged and the log likeli-
hoood l(s |Y) is computed up to an additive constant
when sl is replaced with Tl, we use the EM algorithm to
compute Tl directly. For inference, we apply the thresh-
old to estimates T = (T1,…,T|Rk|) rather than ŝ, to more
easily compare our method with thresholding on Y. The
algorithm is initialized by setting Tl =Yl and iterating
until the log likelihood converges.

Error detection and correction
Error detection, in practice, requires a method to choose
a threshold M that minimizes the number of wrong
decisions when classifying kmers as erroneous or not.
We discuss a model-free method for estimating the
threshold M in the Appendix, but no results presented
in this paper use estimated thresholds.
To correct errors, consider each of the nucleotides in

a read r. Each nucleotide appears in at least one and up
to k kmers. Suppose the nucleotide at position 1 ≤ i ≤ L
of the read appears at position 1 ≤ t ≤ k of kmer xl. The
probability that the true nucleotide at position t was b
prior to possible misread is

p b
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where estimates Tm are substituted for the unknown
am. Since multiple overlapping kmers provide non-inde-
pendent information about the base at position i, we
average across available t to obtain distribution pi(b). If
argmaxbpi(b) ≠ r[i : i], then we declare nucleotide r[i : i]
misread and correct it to argmaxbpi(b). To limit compu-
tations, we apply this method to reads likely to contain
at least one erroneous kmer, as identified with a liberal
threshold M.

Results and discussion
Dataset preparation
In order to test our model, we compiled various simu-
lated and real datasets (Table 1). The datasets are classi-
fied into the following types (Table 1, column 2). Type
1 are simulated Illumina reads from (a) synthetically
constructed genomes embedded with various types of
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non-overlapping repeats, and (b) previously sequenced
genomes known to be rich in repeats. Type 2 are actual
Illumina reads from a previously sequenced genome
with a low degree of repetition.
Reference genome preparation
The reference genomes of type 1(a) were initially gener-
ated using the nucleotide distribution of a piece of B73
maize genome (A: 28% C:23% G: 22% T: 27%). Then,
repeat regions of different lengths and multiplicities
(Table 1, column 6) derived from the same nucleotide
distribution were embedded at random locations in
these reference genomes. The reference genome N.
meningitidis (NC_013016) of D4 is known to be a small,
repeat rich, viral genome. The maize genome is known
to contain up to 80% repeats and only the relatively
unique regions have been fully assembled. Hence, we
concatenated the first 20 contigs from Chromosome 1
of the B73 assembly, and removed all non-ACGT char-
acters to form the reference genome of D5.
Short read preparation
The simulated Illumina reads (type 1) were produced by
first estimating an error distribution from a real Illu-
mina short read dataset, then simulating uniformly dis-
tributed reads of the reference genomes with these error
rates. We used the RMAP software [9] to map Illumina
data (Sequence Read Archive ID: SRX000429) to the
reference genome E. coli str. K-12 allowing up to three
mismatches. We were able to map 98.5% of reads; this
percent is increased to 99.1% by allowing up to ten mis-
matches. However, allowing more mismatches increases
the chance of a mismapped read since reads are only
36bp, and typically, mapping software can work at full
sensitivity for up to two mismatches. Unmapped reads
were discarded, and all remaining reads were assumed
correctly mapped. By comparing the mapped reads to
the reference genome, we estimated L 4 × 4 misread
probability matrices M = (M1,M2,…,ML), where L is the
read length and each entry (a, b) (a, b Î {A, C, G, T})
in misread probability matrix Mi (1 ≤ i ≤ L) is the prob-
ability a nucleotide a on the reference genome is (mis)
read as b at position i in the read. This is calculated as
the total number of times a is read to be b at position i

among all mapped reads, divided by the number of
times the corresponding position of the reference gen-
ome is a. Finally, we simulated Illumina sequencing to
generate N reads by applying M to N uniformly distrib-
uted L-substrings in the reference genome.
Rationale
Simulated data are essential because highly repetitive
genomic regions, for which our error model is designed,
are often masked prior to assembly. Even when assem-
bly can be done, accurate mapping of sequenced reads
back to the assembly is difficult when genomes are repe-
titive [20]. Under these conditions, only simulation can
provide unambiguous error information. Type 1(a) data-
sets were prepared such that they emulate repeat con-
tent ranging from a microbial genome with low repeats
to a highly repetitive plant genome. However, to inject
reality wherever possible, the reference genomes of Type
1(b) were selected from the previous assemblies. Lastly,
the type 2 dataset demonstrated the applicability of our
model to real, although non-repetitive, real read data.

Error detection and correction results
Our model accommodates sequencing errors via the
misread probabilities pe(xm, xl) between any two kmers
xm and xl. To calculate pe(xm,xl), we need to specify the
position specific misread probabilities, qi(a, b), 1 ≤ i ≤ k,
a, b Î {A, C, G, T}, for each position of a kmer. Ideally,
we would set qi(·, ·) to match the errors in the current
dataset inferred from reads in the control lane [11,17].
When such information is not available, we can rely on
information derived from other read data generated on
the same platform. In the worst case, we can use the
simple error model of Eq. (1), which only requires speci-
fication of the average error rate pe.
Based on these choices, we tested our datasets using

four types of sequencing error (misread) distributions:
tIED, wIED, tUED, and wUED (defined below). Our
simulation procedure introduced errors according to the
misread probability matrices M estimated from dataset
SRX000429, so the true error distribution, tIED, was
obtained by estimating qi(·, ·) from the same dataset
SRX000429. The estimation procedure is similar to the

Table 1 Experimental datasets

Dataset Type Reference genome Genome length Repeats Repeat Types (length, multiplicity) C Number of reads

D1 1(a) - 1M 20% (1000, 200) 80x 2.2M

D2 1(a) - 1M 50% (500, 400), (1500, 200) 80x 2.2M

D3 1(a) - 1M 80% (500, 400), (1500, 200) 80x 2.2M

(3000, 100)

D4 1(b) N. meningitidis 2.1M - - 80x 4.8M

D5 1(b) Maize 418K - - 80x 0.92M

D6 2 E. coli 4.6M - - 160x 20.7M

‘-’ denotes the information that is not quantified; K: thousand; M: million.
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one used for estimating M (defined in the previous sec-
tion), except each read is decomposed into L – k + 1
kmers and the count of each type of misread nucleotide
at each kmer position is determined. (Note, the same
nucleotide contributes counts in up to k distinct kmers.)
Since, the estimated qi(·, ·) represent fewer parameters
than M, qi(·, ·) only approximates the true misread prob-
ability matrices M, which themselves only approximate
true read errors. The wrong Illumina error distribution,
wIED, is the situation encountered when Illumina data
are only available from a different experiment (and often
different lab). To emulate this case, we derived a second
set of error probabilities qi(·, ·) from Illumina reads of
Acinetobacter sp. ADP1 (Short Read Archive acc.
SRX001814, 17.7M reads of 36bp length). The error rates
differ at kmer position i = 11 (Table 2) and others (not
shown) in the E. coli and A. sp. ADP1 short read datasets,
demonstrating that wIED is indeed the wrong error
distribution. Finally, in the absence of detailed error infor-
mation, we can use the uniform error distribution with
constant error probability pe. When the average error rate
pe = 0.006 is estimated from dataset SRX000429, the error
distribution is the true uniform error distribution (tUED).
When the error rate is overestimated at pe = 0.02, above
the published rate of 0.01–0.015 [21], it is the wrong
uniform error distribution, wUED.
The same measures as in [14] are used for evaluation,

where a false positive (FP) denotes an error free kmer
has been considered as erroneous and a false negative
(FN) denotes an unidentified erroneous kmer. Table 3
reports the minimum number of wrong predictions
(WPs), FP+FN, achieved by applying optimum thresh-
olds on observed Y , used by existing methods, or by
applying thresholds on the estimated number of
attempts to read T, used in our method. The results of
our method are shown for the four types of error distri-
butions in columns tIED, wIED, tUED, and wUED.
Bolded entries indicate where lower minima were
achieved with our method compared to the standard
method. Given the true error distribution, our method
committed over 95% fewer WPs for all datasets except
D6, where our method still managed 7% fewer WPs.
Interestingly, using the wrong Illumina error distribution
(column wIED) achieved at least 33% fewer WPs in all

repetitive genomes except D4, where our wIED method
performed about on par with applying the threshold on
Y . The minimum WPs achieved by the true uniform
error model tUED are two- to three-fold smaller than
the corresponding values in column Y . However, using
elevated error rate pe = 0.02 led to higher minimum
WPs, except in dataset D3, the most highly repetitive
simulated genome.
Even though we presented a method to choose the

threshold value (see Appendix), it is not possible for any
method to guarantee the optimal threshold. Ideally, the
error detection methods should be relatively insensitive
to choice of threshold. To compare methods across
many thresholds, we plot log(FP + FN), with respect to
a wide range of thresholds (Fig. 2). The plot in every
case resembles a U-shape since many error kmers are
missed (FN) when the threshold is too low and many
correct kmers are declared errors (FP) when the thresh-
old is too high. Our method achieved fewer WPs for
datasets D1,D2,D3 and Maize with error distributions
tIED, wIED, and tUED at all thresholds. The improve-
ment in error detection increased with the degree of
repetition, seen in simulations D1 to D3 and also in
comparing N. meningitidinis and Maize. Our method
tended to flatten the bottom of the U-shape such that a
wider range of thresholds often beat even the minimum
error obtained under Y thresholding. In all datasets, our
method often shifted the U-shape leftward, such that for
very small thresholds, our WPs were far less than the Y
-based methods, regardless of the error distribution
used. As the threshold increases, WPs for all methods
eventually converge to the same constant, where all
kmers are considered erroneous. For moderately large
thresholds, our method sometimes resulted in higher
WPs, especially for the wrong error distribution wUED,
and sometimes wIED, and genomes with a low degree
of repeats.
REDEEM misclassified the fewest kmers when using

the “true” error model, but even in our simulations,
there was a mismatch between the simulated errors and

Table 2 Estimated error probabilities qi(·, ·), position
i = 11

E. coli str. K-12 substr. Acinetobacter sp. ADP1

×10–2 A C G T ×10–2 A C G T

A 98.96 0.63 0.18 0.23 A 96.18 2.53 0.19 1.10

C 0.15 99.60 0.10 0.15 C 0.20 99.32 0.08 0.40

G 0.05 0.17 99.25 0.53 G 0.12 0.30 97.60 1.98

T 0.05 0.19 0.18 99.58 T 0.09 0.18 0.13 99.60

Table 3 A comparison of minimum error rates

Data Minimum (FP + FN) Value

Y tIED wIED tUED wUED

D1 2212 18 984 1020 4648

D2 6392 23 1300 3150 6729

D3 6809 19 1300 2696 3124

D4 216 10 236 80 719

D5 552 14 373 297 1346

D6 14236 13275 13441 13671 18793

A comparison of the minimum number of wrong predictions achieved by
applying optimum thresholds to observed occurrences Y , and our model with
each of the error distributions tested. Bold numbers indicate that our model
outperforms.
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the estimated “true” error model. The position-specific
error probabilities used to compute kmer misread prob-
abilities are not the true error probabilities that vary by
position in the full length read. The difference is exacer-
bated as reads get longer relative to the kmer length.
Since it would be possible to compute misread probabil-
ities pe(xm, xl) using read-derived position probabilities,
this mismatch between kmer and read errors can be
eliminated with more sophisticated error models that
account for the position of each kmer in the read. Since

data to estimate the read error properties can be col-
lected in parallel on a known, control genome, we con-
tend that estimating the true error model is not an
undue burden in practical applications [11,17]. Quality
scores may also inform on errors [15] and could be
incorporated in the REDEEM error model.
As discussed previously, only simulated data with dif-

ferent degrees of repeats can be utilized to measure
error correction results for repeat-rich genomic regions
due to the fact that mapping short reads from such

Figure 2 Plots of log(FP + FN) vs. threshold for all datasets. In each plot, we compare the results by applying thresholds to Y and to T
estimated by our model using the tIED, wIED, tUED and wUED error distributions.
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regions uniquely to the reference genome, and the
assembly of genomes with high repeat content, remain
open problems. We compare our correction results with
SHREC [12] and Reptile [13] using datasets D1, D2 and
D3 with increasing degrees of repeat content. The
results are shown in Table 4. To be self-contained, we
reproduce the evaluation measures from [13]: A True
Positive (TP) is any erroneous base that is changed to
the true base, a False Positive (FP) is any true base chan-
ged wrongly, a True Negative (TN) is any true base left
unchanged, and a False Negative (FN) is any erroneous
base left unchanged. Sensitivity = TP / (TP + FN) and
Specificity = TN / (TN + FP). Gain = (TP - FP) / (TP +
FN) denotes the total percentage of erroneous bases
removed from the dataset post-correction.
REDEEM is designed to specifically target error cor-

rection for repeat-rich genomes. While both SHREC
and Reptile do not explicitly model the effect of
repeats, the variable length suffixes captured by
SHREC and different read decompositions explored by
Reptile can provide richer and more precise informa-
tion about errors. Currently, REDEEM does not utilize
all such information. Therefore, in genomes with low
repeat content, both SHREC and Reptile outperform.
However, as the repetition within the genome
increases, REDEEM significantly outperforms both
methods by accounting for the repetition in the kmer
neighborhood. Further experiments show that error
correction results are affected mainly by the percentage
of the length of the genome spanned by repeats, rather
than repeat types and lengths. This can serve as a
yardstick in deciding when to use REDEEM over con-
ventional error correction. It is also possible to com-
bine the features of a conventional error correction
method such as Reptile with the explicit modeling of
repeats as done in REDEEM to produce an error-cor-
rection method that is superior both when sampling
low repeat and highly-repetitive genomes.

All experiments were carried out on 3.16GHz Intel
Xeon Processors; run time and memory usage of all three
programs are shown in the last two columns in Table 4.
As expected, the run time of REDEEM is longer due to
the complexity of modeling repeats explicitly. The largest
simulation, D6, took 120 minutes and 9 GB. No error
detection/correction method except naÃ¯ve thresholding
on observed counts yet scales to practical next-genera-
tion applications, but REDEEM is at least comparable to
existing, non-repeat-aware methods.

Conclusions
There have been some attempts to formally characterize
repeats in genomes [22], but generally, the term “repeat”
is used loosely in the literature, with meaning varying by
context. In this paper, we consider kmer xl a repeat when
its genomic occurrence al is higher than what is expected
in a random genomic sequence. Because genomes are not
random, all genomes display some degree of repetition.
Perhaps such cryptic repetition explains why we can
achieve lower false prediction rates at optimal thresholds
even on genomes like E. coli, which according to the Ir
measure of [22] is only somewhat repetitive.
In summary, we have presented a new method that

improved error detection and correction when sampling
repeat-rich genomic regions using next-generation
sequencers. Important future work includes better mod-
els and algorithms to simultaneously estimate error para-
meters from the data, to consider variation in coverage
along the genome, to speed up computations, and to han-
dle larger datasets through better memory management.
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Appendix

The true expected number of attempts to read kmer xl,
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estimated Tl vary from these true values because of sampling and estimation
error. A histogram of estimated Tl (see Fig. 3 for the E. coli dataset) thus

reveals peaks corresponding to al = 0, al = 1, and al = 2. The constant
multiple is about 57, which can also be verified from Table 1. The kmers
with Tl near 0 have no occurrences in the genome. One approach to model
multi-modal distributions, such as that of Fig. 3, is to use a mixture model.
Then, erroneous kmers would be those derived from the mixture
component corresponding to the first mode. We propose mixture
distribution
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where the mixing probabilities π0,…,πG+1 sum to 1. The first component f(a,
b) of the mixture is a Gamma distribution, corresponding to the erroneous
kmers. The second through (G + 1)th components are a series of normal
distributions fitting the subsequent peaks for al = 1,2,…,G. The last
component is a uniform distribution over the observed range of Tl. We use
the uniform distribution to account for the few kmers with large al > G.
One particular parameterization of the normal components is justified as
follows. Under the assumption of reads distributed uniformly throughout the
genome, the true Tl are Poisson random variables, where the mean depends
on the identity of kmer xl and the error model. Rather than model the errors
again, we hypothesize these means are Gamma random deviates. Then, Tl
follows a Negative Binomial distribution [24], with means µg = gµp/(1 – p)

and variances  g g p p2 21= −/ ( ) when al = g Î {1,…,G}. Finally, by

the Central Limit Theorem, the Negative Binomial is well-approximated by
the Normal distribution with matching means and variances when the

coverage-related parameter
p
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is large.

We can obtain the maximum likelihood estimate of the parameter vector θ
= (π0,…,πG+1, a, b, µ,p) using another EM algorithm. Let Zlg, l ∈ {1,…,|Rk|}, g ∈
{0,…,G + 1} indicate if kmer xl is in group g. Then, the complete log
likelihood for the proposed mixture model (Eq. 2) is
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Figure 3 Histogram of estimated Tl for E. coli dataset.
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efficiency, at each iteration, we first compute
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the first three for all g = 0,…,G + 1. Here, Ng is the number of kmers in
group g, T is the number of attempts to read a random kmer, and Zg
indicates if this kmer is in group g. Then, the update equations for the
parameters are
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given ̂ above. This and the second equation are implicit functions for ̂
and p̂ that can be solved using any one-dimensional root finder. To
choose the best number of groups Ĝ , we compute and minimize the BIC
[23] over a range of plausible G. Members of the gamma component that
represent kmers not present in the genome are identified as those with

argmax g lg lP Z T G( | , , )
^ ^

= =1 0 .
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