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Abstract
The lack of DNA sequence information for most non-model organisms impairs the design of

primers that are universally applicable for the study of molecular polymorphisms in nuclear

markers. Next-generation sequencing (NGS) techniques nowadays provide a powerful ap-

proach to overcome this limitation. We present a flexible and inexpensive method to identify

large numbers of nuclear primer pairs that amplify in most Brassicaceae species. We first

obtained and mapped NGS transcriptome sequencing reads from two of the distantly relat-

ed Brassicaceae species, Cardamine hirsuta and Arabis alpina, onto the Arabidopsis thali-
ana reference genome, and then identified short conserved sequence motifs among the

three species bioinformatically. From these, primer pairs to amplify coding regions (nuclear

protein coding loci, NPCL) and exon-primed intron-crossing sequences (EPIC) were devel-

oped. We identified 2,334 universally applicable primer pairs, targeting 1,164 genes, which

provide a large pool of markers as readily usable genomic resource that will help addressing

novel questions in the Brassicaceae family. Testing a subset of the newly designed nuclear

primer pairs revealed that a great majority yielded a single amplicon in all of the 30 investi-

gated Brassicaceae taxa. Sequence analysis and phylogenetic reconstruction with a subset

of these markers on different levels of phylogenetic divergence in the mustard family were

compared with previous studies. The results corroborate the usefulness of the newly devel-

oped primer pairs, e.g., for phylogenetic analyses or population genetic studies. Thus, our

method provides a cost-effective approach for designing nuclear loci across a broad range

of taxa and is compatible with current NGS technologies.

Introduction
For decades, evolutionary biologists have relied on a limited set of marker regions for DNA se-
quencing-based studies in plant population genetics, phylogenetics and phylogeography. Most
often, organellar DNA [1] and nuclear ribosomal DNA (nrDNA) regions [2,3] have been used
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for these purposes. The widespread use of these marker regions is primarily a consequence of
the availability of conserved primers for their amplification in a wide range of species, e.g. for
the chloroplast genes rbcL [4],matK [5] and for intergenic spacers, such as plastid trnL-F [6]
and nrDNA internal transcribed spacer (ITS) regions [7]. Uniparental inheritance, single-locus
origin and low mutation rates, in the case of organellar DNA, allow direct sequencing of PCR
products because no heterozygosity is expected in these regions. For nrDNA, concerted evolu-
tion among gene family members reduces heterogeneity and facilitates direct sequencing of
PCR products [2,8].

Despite their widespread use, organellar genomes have several disadvantages for evolution-
ary studies. Uniparental inheritance and lack of recombination (but see [9,10]), as well as low
mutation rates in plants [8,11] present major limitations for inferring evolutionary history, be-
cause even if multiple markers are sequenced, they reflect variation at only a single locus and
additionally lack information about one of the parental species (i.e. the pollen donor) in hybrid
or in polyploid species [12–14]. Concerted evolution of multi-copy nrDNAmarkers, such as
the internal transcribed spacer regions (ITS), may produce pseudogenes [15], remain incom-
plete [16] or lead to the loss of one parental copy in hybrids [17], which may also bias results in
evolutionary studies. The limitations of these markers strongly suggest that evidence from mul-
tiple and unlinked nuclear markers, which are not affected by these limitations, should be used.
Using such data may provide improved resolution and phylogenetic congruence among differ-
ent loci may indicate that the phylogeny represents the underlying species history, as shown
e.g. by Fink et al [14].

In addition to DNA sequencing, other types of molecular markers have also been used for
multilocus analyses, including microsatellites and amplified fragment length-polymorphisms
(AFLPs). Their specific advantages and disadvantages have been thoroughly reviewed else-
where (see[14,18,19]). In general, these markers cannot easily be compared among distantly re-
lated species, as is done in many phylogenetic or comparative phylogeographic studies, or
harness the information content of nucleotide variation, and therefore do not alleviate the need
for multiple, independent DNA sequence-based markers. Moreover, nuclear DNA markers
also allow addressing more complex evolutionary questions [20,21], for instance the detection
of hybrid speciation [13,22,23] or rapid radiation events [12,14].

In the age of next-generation sequencing (NGS), multiple approaches can be taken for char-
acterizing low-copy nuclear markers in a chosen group of organisms. Mining of genome se-
quence data, for example, has proven useful for the identification of shared single-copy nuclear
genes in model organisms of the angiosperms [24]. It has been shown, that the merging of
newly generated and publicly available sequence information allows to design primer pairs for
closely related taxa [25,26], as well as for highly diverged groups [27–31]. However, for many
study species or groups, no public datasets are available and existing data may be mislabeled
[32] or erroneous [33]. Hence, it may be most valuable to generate de-novo sequence data, in
combination with suitable reference genomes and the development of a dedicated bioinformat-
ics workflow for primer or probe design, for characterizing multiple low-copy nuclear gene
markers for population genetic, phylogenetic or phylogeographic analyses in a taxonomic
group of interest.

We selected the mustard family (Brassicaceae) to evaluate novel approaches for the ge-
nome-wide characterization of nuclear gene markers and efficient primer design. In addition,
we provide a database of the newly developed nuclear markers that are ready to use for a broad
range of taxa. The Brassicaceae are ideally suited as a study group because multiple high-quality
reference genomes for the model species Arabidopsis thaliana are available ([34], http://
arabidopsis.org). Furthermore, phylogenetic relationships in the mustard family have been ex-
tensively studied using a range of markers, including several nuclear genes (e.g. [35–38]).
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The main goal of the present study was to characterize low-copy nuclear gene markers on a
genome-wide scale in the mustard family. To reach this goal, we first developed a powerful
primer design approach for the amplification of markers across this phylogenetically and eco-
logically highly diverse Brassicaceae family. Second, we established a large database of ready to
use nuclear Brassicaceae markers. And finally we validated the suitability of a subset of markers
for PCR amplification, Sanger sequencing and phylogenetic reconstruction to highlight their
usefulness.

Material and Methods
To detect conserved sequence regions within the Brassicaceae, we used the available high- qual-
ity reference genome of Arabidopsis thaliana and additionally sequenced the transcriptomes of
two divergent Brassicaceae species, Cardamine hirsuta and Arabis alpina. Sequencing reads
from these two species were then aligned against the A. thaliana reference genome. These three
species represent different lineages of the Brassicaceae family and hence should allow to detect
shared, conserved regions suitable for designing universally applicable Brassicaceae primers.
Cardamine hirsuta as well as A. thaliana are members of lineage I according to Al-Shehbaz
[38], and diverged relatively early. Arabis alpina belongs to the Arabideae, the largest tribe of
Brassicaceae [38], which is part of the expanded lineage II sensu Franzke et al. [39]. Dating the
evolutionary history of Brassicaceae is particularly difficult, mostly due to few fossil records
[40] and rapid radiation events [37,39,41]. A recent study [42] dated the split of lineage I and II
to 27 million years ago (mya). Divergence time between Cardamine and Arabidopsis has been
estimated to be at least 13 mya [35,43]. Therefore, the selection of these three different taxa re-
flects a divergence of nearly 30 million years and hence they cover a broad evolutionary range
across the Brassicaceae, which allowed us to identify conserved regions among these species.
The workflow is presented in Fig 1 and explained in detail below.

Plant material, RNA extraction, normalization and sequencing
To gather as much of the exome as possible, 24 individuals from six populations of A. alpina
and 28 individuals from nine populations of C. hirsuta were collected at different localities in
Switzerland, to which we applied four growth chamber (Kälte 3000, Switzerland) stress treat-
ments (S1 Table). "Drought" treated plants were harvested after seven days of water depriva-
tion; "cold1" treated plants were exposed to 4°C for 24h, and "cold2" treated plants for two days
to -6°C, while "heat" treatment involved two exposures to 40°C for 2h on two consecutive days.
Since the localities of sampling are not nature reserves, and collected plants are neither pro-
tected nor endangered in these regions, we did not require sampling permits. This applies to all
plant material used in our study.

mRNA from each species and treatment was extracted with RNeasy Plant Mini Kit (Qiagen,
Netherlands) separately, and diluted to 300 ng/μl before they were equimolar pooled. Pooled
mRNA was then reverse-transcribed with Super SMART PCR cDNA synthesis kit (Clontech,
Takara Bio Europe SAS, France) in combination with Super Script III Reverse Transcriptase
(Life Technologies, Invitrogen, USA). cDNA was amplified with iProof High-Fidelity DNA Po-
lymerase (BioRad, USA) following the Super SMART protocol, normalized with TRIMMER
(Evrogen, Russia) and sequenced on a Genome Sequencer FLX (GS-FLX; Roche, Switzerland)
at the Functional Genomics Center Zurich (FGCZ; Zurich, Switzerland). Library synthesis was
done with the GS-FLX Titanium Rapid Library Preparation Kit, and sequencing was then per-
formed according to the Roche GS-FLX XLR70 Titanium emPCR and sequencing manuals.
Each sample was sequenced twice on half a picotiter plate.
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Fig 1. Workflow for the identification of conserved nucleotide sequences in multiple Brassicaceae
species and subsequent primer design. Blue boxes refer to the three major steps in the workflow, white
boxes indicate the general steps taken Explanations on the right provide specific results from this study.

doi:10.1371/journal.pone.0128181.g001
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Read mapping, identification, primer design
The GS-FLX raw sequencing reads (available from the NCBI sequence read archive, accession
numbers SAMN03014707 and SAMN03014708) were extracted with the sff_extract tool and
quality-controlled using custom-made Perl scripts. All raw read files had acceptable quality
(average phred quality score above 20 to at least read position 350) and read length distribu-
tions (few short reads, high peak towards the long read lengths), and were thus included in the
analysis. Reads were mapped onto the A. thaliana chromosomes [44] with the runMapping
tool included in the Roche 454 software suite. Sequence alignments for C. hirsuta and A. alpina
are available at the Dryad repository doi:10.5061/dryad.63j2j. Default mapping parameters
were used except for minimum overlap length (set to 80%) and minimum overlap identity (set
to 95%). The mapping output (ACE file) was converted to SAM format using the tools toAmos,
bank-transact, and bank2contig from AMOS [45].

Using samtools [46] and custom-made Perl scripts, we then extracted start/end position in-
formation and nucleotide sequences for mapped regions at least 20 bp long and with at least 2x
coverage per species. We decided for a low coverage to make our approach also suitable for
smaller datasets. The mappings for A. alpina and C. hirsuta were then compared with Perl
scripts, sequences which mapped to the same locations in A. thaliana and were conserved in all
three species were extracted. These sequences were subsequently filtered for sequence pairs
that had a minimal distance of 300 bp and a maximal distance of 700 bp on the A. thaliana ref-
erence genome, to adjust the length to current NGS sequencing platforms. These sequences
were then used as input for primer3 v2.2.3 [47], to design forward and reverse PCR primers
with lengths of 18 to 27 bp and annealing temperatures between 58 and 62°C. The following
primer3 options were changed from default: PRIMER_MIN_SIZE = 18, PRIMER_OPT_
SIZE = 20, PRIMER_MAX_SIZE = 27, PRIMER_MIN_TM = 58.0, PRIMER_OPT_TM = 60,
PRIMER_MAX_TM = 62.0.

Our primer pairs were not a priori targeting exonic or intronic regions but instead targeted
conserved regions across the three study species suitable for primer design and sufficiently
close for PCR amplification and subsequent sequencing. Primer pairs were then tested in silico
for uniqueness on the A. thaliana genome, using BLAST+ v2.2.23 [48] and custom-made Perl
scripts using the following conditions: Primers were allowed to map to the genome with at
most two nucleotide mismatches, and the maximal potential fragment size was set at 3,500 bp.
Primer pairs potentially producing more than one fragment were discarded. Remaining primer
pairs were annotated with the A. thaliana annotation from TAIR (http://arabidopsis.org).

A gene ontology (GO) analysis was performed to infer the biological functions of the anno-
tated genes using DAVID [49,50] with false discovery rate (FDR) set to� 0.05.

Primer tests and sample selection
A subset of the primer pairs was then tested for amplification success and phylogenetic resolu-
tion in 30 Brassicaceae species covering the three major "lineages" [38].

We used herbarium specimens (collection Matthias Baltisberger, ETH Zurich) comple-
mented by freshly collected and silica-gel dried leaves of plants from the University of Zurich
Botanical Garden (Table 1).

DNA was extracted with DNeasy Mini Kit (Qiagen), quantified with NanoDrop (Thermo-
Fisher Scientific, USA) and Qubit (Invitrogen), and diluted to 50 ng/μl. Of the 2,334 identified
primer pairs, 48 were selected (S6 Table) with a balanced number of EPIC and NPCL regions
and even distribution across the reference genome.

PCR reactions consisted of 6.5 μl dH2O, 3 μl GoTaq buffer (Promega, USA), 1.5 μl MgCl2
(25mM), 1.5 μl dNTPs (2.5 mM), 0.75 μl forward primer, 0.75 μl reverse primer, 0.075 μl
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Table 1. Species and samples used in this study for primer testing and sequencing.

Accession
Name

Species Herbarium
Number

Collector and
Date

Origin PCR Sequencing Family Lineage Genus

- Aethionema saxatile
(L.) R.Br.

CH0Z-
20100490

Steiger P., et al.
2010

Switzerland, San
Salvatore TI 420 m
asl

☑ ☑ outgroup ☐ ☐

- Arabidopsis halleri (L.)
O'Kane et Al-Shehbaz

- Fischer M., 2011 45.90919° N
9.39207°

☑ ☐ ☐ ☐ ☐

Col-0 Arabidopsis thaliana
(L.) Heynh. in Holl. &
Heyn.

- - - ☑ ☑ ☑ ☑ ☐

- Arabis alpina L. Z/ZT MB
14820

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☑ ☑ ☐ ☑

- Arabis bellidifolia
Crantz s.l.

Z/ZT MB
14821

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☑ ☐ ☐ ☑

- Arabis ciliata Clairv. - Gugerli F. - ☑ ☑ ☐ ☐ ☑

- Arabis caerulea All. Z/ZT MB
14816

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☑ ☐ ☐ ☑

- Arabis subcoriacea
Gren.

Z/ZT MB
14814

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☑ ☐ ☐ ☑

- Barbarea vulgaris R.
Br.

XX0Z-
19820365

Käser U., 2010 Botanical Garden
Jaen, France

☑ ☑ ☐ ☑ ☐

- Biscutella laevigata L. Z/ZT MB
14815

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☑ ☑ outgroup ☐

- Boechera holboellii
(Hornem.) Á.Löve &
D.Löve

- - - ☑ ☑ ☐ ☑ ☐

- Brassica nigra (L.) W.
D. J. Koch

XX0Z-
20010028

Käser U., 2010 Botanical Gardens
University Bonn-
Germany

☑ ☑ ☑ ☐ ☐

- Braya humilis (C. A.
Meyer) B. L.
Robinson

- Marhold K. Russia ☑ ☑ ☑ ☐ ☐

- Cardamine alpina
Willd.

Z/ZT MB
14836

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☐ ☐ ☐ ☐

- Cardamine amara L.
s.str.

Z/ZT MB
14813

Baltisberger M.,
2011

Davos, Switzerland,
2100 m asl

☑ ☐ ☐ ☐ ☐

HAY1 Cardamine hirsuta L. - Shimizu-Inatsugi
R.,

University of Zurich,
Switzerland

☑ ☑ ☑ ☑ ☐

- Cardamine resedifolia
L.

Z/ZT MB
14818

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☐ ☐ ☐ ☐

- Cochlearia officinalis
L.

XX0Z-
20001358

Schneeberger E. Denmark,
Bornholm, Teglkas,
Shore

☑ ☑ ☑ ☐ ☐

- Diplotaxis tenuifolia
(L.) DC.

XX0Z-
20000361

Käser U., 2009 Giardino Botanico
Alpino Rezia-
Bormio

☑ ☑ ☑ ☐ ☐

- Draba aizoides L. Z/ZT MB
14830

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☑ ☐ ☐ outgroup

- Erysimum rhaeticum
(Hornem.) DC.

XX0Z-
19770612

Käser U., 2009 Botanical Garden
St. Gallen-
Switzerland

☑ ☐ ☐ ☐ ☐

- Hesperis matronalis L. Z/ZT MB
14807

Baltisberger M.,
2011

Davos, Switzerland,
1600 m asl

☑ ☑ ☑ ☐ ☐

- Hornungia alpina
(Siev.) O.Appel

Z/ZT MB
14817

Baltisberger M.,
2011

Davos, Switzerland,
2300 m asl

☑ ☐ ☐ ☐ ☐

(Continued)
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GoTaq (Promega), and 1 μl DNA (50 ng/μl). PCR conditions were designed to allow both
Sanger sequencing and tagging for next-generation sequencing (S2 Table). Conditions for
primer pairs amplified here were 94°C for 3 min, followed by 32 cycles of 94°C for 30 s, 58°C
for 30 s, 72°C for 30 s, and 72°C for 7 min. PCRs were performed on Labcycler Basic (Senso-
quest, Germany) and GeneAmp PCR System 9700 (Life Technologies, Invitrogen, USA). PCR
amplifications were checked on 1% agarose gels in 1x TBE buffer. Single bands were counted as
successful amplifications, whereas double bands, complex banding patterns or lack of amplifi-
cation products were counted as failed amplifications.

We tested the newly designed primer pairs at different levels of phylogenetic relationships
(i.e. family, "lineage" and genus). Overall, we amplified 13 nuclear marker regions (S6 Table) to
reconstruct phylogenetic relationships among selected members of the Brassicaceae family.

The target species and primers are summarized in Table 1 and S6 Table. First, for the fami-
ly-wide phylogeny, we chose 15 species that represent the depth of the mustard family: species
from three "lineages" (I, II, and III) accepted in Brassicaceae, several species that are not as-
signed to "lineages" and basal taxa sensu Al-Shehbaz [38]. Six NPCLs with low sequence diver-
gence between the mapping species and two EPIC markers containing two short introns with
more polymorphic sites were used. Second, we selected “lineage I” of Brassicaceae sensu Al-
Shehbaz [38] for our analysis at the "lineage" level using seven species, one NPCL region, two
EPIC markers with a single intron, and three EPIC markers with two introns. Here, we focused
on sequencing success and divergence of different types of loci. Third, Arabis was selected for
the evaluation of PCR success and phylogeny reconstruction at the genus level, using five Ara-
bis species and Draba aizoides as outgroup, and four primer pairs (one NPCL, two EPIC mark-
ers with two introns, one EPIC marker containing three introns).

Successfully amplified PCR products were purified using Exonuclease I and Fastap (Thermo
Scientific) at 37°C for 45 min, followed by enzyme inactivation at 80°C for 15 min. Sanger

Table 1. (Continued)

Accession
Name

Species Herbarium
Number

Collector and
Date

Origin PCR Sequencing Family Lineage Genus

- Hornungia alpina
subsp. brevicaulis
(Hoppe) O.Appel

Z/ZT MB
14834

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☑ ☑ ☐ ☐

- Iberis amara L. XX0Z-
20100109

Käser U., 2010 EX BG Kiel;
University
Konstanz-Germany

☑ ☑ ☑ ☐ ☐

- Kernera saxatilis (L.)
Sweet

Z/ZT MB
14819

Baltisberger M.,
2011

Davos, Switzerland,
2200–2400 m asl

☑ ☑ ☑ ☐ ☐

- Lepidium campestre
(L.) R. Br.

XX0Z-
19963427

Käser U., 2010 - ☑ ☑ ☑ ☑ ☐

- Matthiola valesiaca
Boiss.

CH0Z-
20060845

Affeltranger K.,
2006

Switzerland, Binn
VS 1280 m asl

☑ ☑ ☑ ☐ ☐

- Rorippa pyrenaica
(All.) Rchb.

- Shimizu-Inatsugi
R., 2007

Botanic Garden
Zurich, Switzerland

☑ ☑ ☐ ☑ ☐

- Thlaspi ochroleucum
Boiss. & Heldr.

Z/ZT MB
14807

Baltisberger M.,
2011

Switzerland ☑ ☑ ☑ ☐ ☐

The use of each species is divided into PCR, sequencing, family, "lineage" and genus. PCR indicates use for PCR amplification and sequencing indicates

sequencing of the species, respectively. Family, "lineage" and genus refer to the application of species sequences at the three taxonomic levels that were

phylogenetically tested in this study. The term "outgroup" refers to a taxon being sequenced and used as outgroup for phylogenetic analysis at a specific

relationship level.

doi:10.1371/journal.pone.0128181.t001
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sequencing was performed in 10 μl reaction volumes using 1 μl purified PCR product, 0.5 μl
BigDye v3.1 (Applied Biosystems, USA), 1.9 μl sequencing buffer (5x concentration), 5.6 μl
ddH2O and 1 μl of the sequencing primer (10 μM). Cycle sequencing reactions were performed
with the following conditions: 60 s at 96°C followed by 35 cycles of 10 s at 95°C, 5 s at 50°C,
and 4 min at 60°C. Reactions were cleaned using the BigDye Xterminator Purification kit ac-
cording to manufacturer protocol (Applied Biosystems). Samples were analyzed on an ABI
3130xl DNA Analyser (Applied Biosystems).

Phylogenetic analyses
We used Geneious v7.0.4. (Biomatters Ltd.) for quality check, trimming and sequence analysis.
Sequence data are available in GenBank (accession numbers KM403211-KM403369). Align-
ments were created with mafft v7.0.17b [51], with the alignment strategy set to auto in the case
of NPCL regions and single-intron covering EPIC markers, whereas E-INS-i, an iterative re-
finement method [51], was selected for EPIC markers with more than one intron. Alignments
were manually inspected and adjusted if necessary. Stretches of monomeric repeats of over
8-bp length, microsatellite regions and ambiguous intron alignments were removed before
analysis. Heterozygous sites were treated as ambiguities following IUPAC-IUB [52]. Success-
fully sequenced fragments were blasted in order to confirm the amplification of correct
regions.

Aligned sequences were concatenated and analyzed using Sequence Matrix v1.7.8 [53] and
are available at the Dryad repository (doi:10.5061/dryad.63j2j). Phylogenetic trees were calcu-
lated in Geneious v7.0.4. using the implemented RAxML v7.2.8. [54] for maximum likelihood
analyses, and the MrBayes 3.2.1. [55] tool for Bayesian inference.

All concatenated alignments were calculated with partitions and substitution models ac-
cording to the single markers. Family, "lineage" and genus approaches were run with the fol-
lowing setup for maximum likelihood analyses: For RAxML we used the favoured GTR
substitution model by the jModelTest [56,57] AIC criterion. 1,000 bootstrap replicates with the
setting "fast bootstrap calculation with detection of best ML tree" were performed to calculate
bootstrap support (BS). The MrBayes substitution model to obtain posterior probabilities (PP)
was also selected via AIC criterion in jModeltest. We ran 10,000,000 generations with random
seed, a burn-in of 500,000 generations and 4 MCMC chains, three heated and one cold chain.
Heated chain temperature was set to the default value of 0.2. Subsampling frequency in all
MrBayes runs was set to 2,000, and outgroups were selected before analysis.

We compared the markers amplified by our primer pairs with previously used loci in terms
of nucleotide diversity and parsimony-informative characters (PIC), which were assessed via
MEGA5 [58]. Nucleotide diversity was calculated using "Mean Diversity in Entire Population"
and PIC content was extracted from the "Sequence Data Explorer". GenBank accessions (S5
Table) of the nrDNA marker ITS, and the cpDNA regionsmatK and ndhF of species from gen-
era also used in our study were retrieved and aligned as described above.

Results

Read mapping, identification, primer design
A total of 1,084,601 and 985,013 sequencing reads were generated for A. alpina and C. hirsuta,
respectively. 524,015 (48.3%) of the A. alpina reads mapped to A. thaliana and 488,249
(93.2%) had a mapping quality above 30, for C. hirsuta, respective numbers were 578,373
(58.7%) and 553,846 (95.8%) reads. Read length was between 40 and 1,188 nucleotides (medi-
an = 352, mean = 329).
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We designed 2,334 primer pairs in 1,164 genes from short conserved anchor regions that
are shared between A. thaliana, C. hirsuta and A. alpina (S6 Table). The mean length of these
loci, compared to A. thaliana, was 535 bp (range: 339–787 bp) and their concatenated length
equalled 1.23 Mbp.

The GO-term analysis revealed that genes amplified with our primer pairs cover many dif-
ferent pathways. Among the most overrepresented GO-terms were response to metal ions, re-
sponse to abiotic stimuli, photosynthesis and carbohydrate biosynthesis (S3 Table).

Primer tests and sample selection
PCR amplification success for 48 selected primer pairs in 30 members of the Brassicaceae fami-
ly was on average 79.4% and varied between 50% and 100% for the different primer pairs, and
between 35% and 100% depending on the species. We observed a trend that more diverged spe-
cies had lower amplification success. In six cases, corresponding to 0.4% of all 1,440 PCRs per-
formed, we detected two amplification products (S4 Table), which were counted as failed
amplifications. The specificity of the primer pairs in successfully sequenced products was
100%, all 236 amplicons did match the targeted genes in a BLAST search.

Phylogenetic analysis
The phylogenetic tree at the family level based on eight concatenated nuclear markers (3,154
bp in total) showed good support for the three major Brassicaceae lineages (Fig 2). "Lineages I",
"II" and "III" were strongly supported (BS� 81; PP� 0.98), but basal nodes of "lineage II" were
not well resolved with either maximum likelihood or posterior probability inferences. The ob-
tained phylogeny was compared with Couvreur et al. [35] and with the BrassiBase phylogeny
[59]. Overall, we obtained good support for all branches identified in these studies. Incongru-
ences were found in the placement of Cochlearia, as well as the non-basal position of Biscutella
in our results, whereas traditionally the corresponding tribe (Biscutelleae) was placed as a sister
to all major lineages.

The concatenated dataset for phylogenetic analysis at the "lineage" level was 2,407 bp in
length. Barbarea vulgaris, C. hirsuta and Rorippa pyrenaica formed one well-supported clade,
(Fig 3; BS� 99; PP = 1.00), Boechera holboelli and A. thaliana form another (Fig 3; BS� 99;
PP = 1.00).

At the genus level, highly variable EPIC markers with multiple introns, as well as conserved
regions, were sequenced. Most of the intron alignments had to be removed from the final align-
ment because of ambiguities. Arabis subcoriacea, A. ciliata and A. bellidifolia were grouped to-
gether with high support (BS = 76, PP = 0.96; Fig 4).

A comparison between markers used in this study and commonly applied markers ITS,
ndhF andmatK at all three phylogenetic levels based on alignments revealed high variation in
nucleotide diversity and PIC content of our markers. These values were always ranging be-
tween the levels of the compared ITS and plastid markers (Table 2).

Discussion
The combination of high-throughput transcriptome sequencing in two distantly related Brassi-
caceae species and bioinformatics analysis in combination with the high quality A. thaliana ref-
erence genome allowed us to identify 2,334 primer pairs for nuclear markers located in 1,164
different genic regions. A GO overrepresentation analysis (S3 Table) revealed that responses to
abiotic factors, such as responses to ions, were among the most overrepresented terms among
these genes. The validation of a subset of primer pairs revealed that they can successfully be
used for phylogenetic analyses at different taxonomic levels across the highly diverse mustard
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family. Other valuable features of the here provided new markers aside from their number are
i) the possibility to choose levels of variability in amplified regions (S6 Table), and ii) to gener-
ate extensive sequence information for detailed analysis (up to 1.23 Mb length with all markers
developed in this study). Thus, the published list of primer pairs may be of great value to stud-
ies of ecological genetics, adaptive trait evolution and population genetics in Brassicaceae.

Most previous studies that developed primer pairs amplifying across multiple species
(cross-amplifying) focussed on specific markers, such as EPICs [26,28,29,31], nuclear protein
coding loci NPCLs [25,27,30] or 3'UTR-anchored primers [25,29], depending on the scope of

Fig 2. Phylogenetic inference at the family level. Best Maximum Likelihood phylogram of concatenated gene sequences are shown. Bootstrap support
values and posterior probabilities are given above or below the corresponding branches, respectively. Values below 50/0.5 are omitted. "Lineage"-brackets
refer to lineages sensu Al-Shehbaz (2012). Percentage amplification success per species is given in brackets next to each species name.

doi:10.1371/journal.pone.0128181.g002
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their scientific interest (Table 3). Among our 2,334 primer pairs are numerous EPIC, NPCL
and UTR-anchored markers that were jointly identified in a single workflow, which greatly en-
hances the utility of our method and the supplied primer list (S6 Table). Because of the wide
range of nucleotide variation that can be detected with different markers, partly dependent on
their amplification of coding versus con-coding regions, they can be used for phylogenetic analy-
ses at various taxonomic levels, but also for phylogeographic and population genetic studies [21].

A key aspect for the widespread use of the new primer pairs is their cross-species applicabili-
ty. Our extensive tests revealed a PCR amplification success of 79.4% across a broad taxonomic
range, and 99.6% of the amplified products showed single PCR bands, thus confirming the
high specificity of the developed primers beyond the three initially sequenced taxa. As ex-
pected, amplification success varied between 100% in A. thaliana, which was used as a refer-
ence species, and 35% in Aethionema saxatile, which is only sister to the core Brassicaceae.
Across closely related taxa to the study species, a very high number of successful PCR reactions
was obtained. Arabidopsis halleri provided well-defined single bands in 96% of the tested prim-
er pairs; the respective rates were 90–98% (mean 94%) for four included members of Carda-
mine and 90–98% (mean 94.8%) for the five tested species of Arabis. Overall, a limited taxon
sampling can thus be sufficient to identify large numbers of conserved primer pairs suitable for
studying a wide diversity of species. Moreover, the applicability of these primer pairs is not re-
stricted to the lineages represented in the study, but may extend significantly beyond the stud-
ied species, as shown in Fig 2.

Lower amplification success for primer pairs in taxa that are phylogenetically distant to the
studied species has also been reported by other studies, with success rates of 10.7% in the

Fig 3. Phylogenetic inference at the "lineage" level. Best Maximum Likelihood phylogram of
concatenated gene sequences are shown. Bootstrap support values and posterior probabilities are given
above or below the corresponding branches, respectively. Values below 50/0.5 are omitted. Percentage
amplification success per species is given in brackets next to each species name.

doi:10.1371/journal.pone.0128181.g003
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Lamiaceae [26] or 8.6% in Cycadales [29]. In our study, 10.4% of the tested primer pairs could
be amplified in all 29 tested core Brassicaceae, and 6.25% in all 30 Brassicaceae. These percent-
ages, if extended to the whole developed set of primer pairs would result in 244 primer pairs am-
plifying single PCR products in all core Brassicaceae or 147 primer pairs in all Brassicaceae.

Of further importance for the use of primers is that they amplify PCR products of suitable
length for sequencing. While many studies report primers that amplify products> 1 kb long,
we focused on relatively short amplification products in A. thaliana. This species has a much
smaller genome than many other members of the Brassicaceae, amplicon sizes, especially for
regions including introns, may thus often be undersized estimates. Nevertheless, many of our
relatively short PCR products can be sequenced either in part or across their entire length not
only with Sanger sequencing, but also with current NGS technologies, especially when using
paired-end protocols.

Furthermore, many studies starting with a limited number of sequences tend to optimize
PCR conditions separately for each marker. As a consequence, these markers often cannot be
combined in multiplex assays that are most economic in combination with NGS technologies,
so called target-enrichment strategies [60]. Our approach of keeping annealing temperatures in
a narrow range for all primer pairs, together with the limited size range of PCR products, facili-
tates the joint analysis of multiple nuclear gene markers.

Fig 4. Phylogenetic inference at the genus level. Best Maximum Likelihood phylogram of concatenated
gene sequences are shown. B Bootstrap support values and posterior probabilities are given above or below
the corresponding branches, respectively. Values below 50/0.5 are omitted. Percentage amplification
success per species is given in brackets next to each species name.

doi:10.1371/journal.pone.0128181.g004
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Table 2. Details on alignments andmarkers used in our study as well as often-used markers at three taxonomic levels.

Family Bra254 Bra264 Bra637 Bra813 Bra1258 Bra1511 Bra1693 Bra2187 ITS matK ndhF

Marker
structure

e e e ii e e e ii nrDNA cpDNA cpDNA

No. of
sequences

14 15 13 13 14 14 12 13 14 14 12

Sequencing
success

93.30% 100% 86.70% 86.70% 93.30% 93.30% 80.00% 86.70% - - -

Alignment
length (bp)

398 471 401 326 427 430 399 296 599 707 725

PIC 78 71 47 29 69 60 95 31 156 57 58

PIC % 19.60% 15.10% 11.70% 8.70% 16.20% 14.00% 23.80% 10.50% 26.00% 8.10% 8.00%

Nucleotide
diversity

0.113 0.054 0.069 0.079 0.089 0.056 0.147 0.071 0.154 0.067 0.071

GC content
(%)

47.40% 47.20% 41.60% 43.90% 47.60% 48.50% 43.90% 45.00% 54.00% 30.70% 25.50%

Outgroup Biscutella Aethionema Biscutella Aethionema Biscutella Biscutella Aethionema Aethionema - - -

Substitution
model

GTR+G
+I

GTR+G+I GTR+G GTR+G GTR+G+I GTR+G
+I

GTR+G+I GTR+G+I - - -

"Lineage I" Bra264 Bra406 Bra813 Bra1709 Bra1933 Bra2187 ITS matK ndhF

Marker
structure

e ii ii i i ii nrDNA cpDNA cpDNA

No. of
sequences

7 7 7 6 7 6 7 7 7

Sequencing
success

100% 100% 100% 87.50% 100% 87.50% - - -

Alignment
length (bp)

470 449 480 336 157 515 599 725 651

PIC 33 33 39 17 4 31 72 14 12

PIC % 7.00% 7.30% 8.10% 5.10% 2.60% 5.60% 12.00% 1.90% 1.80%

Nucleotide
diversity

0.058 0.097 0.084 0.071 0.042 0.077 0.167 0.043 0.041

GC content
(%)

47.00% 37.40% 36.70% 45.70% 44.40% 41.10% 55.60% 30.90% 25.70%

Outgroup Biscutella Biscutella Biscutella Biscutella Biscutella Biscutella - - -

Substitution
model

GTR+G
+I

GTR+G HKY+I
(GTR+I)

GTR+I F81
(GTR)

GTR+G - - -

Genus Bra264 Bra320 Bra813 Bra1210 ITS

Marker
structure

e iiii ii ii nrDNA

No. of
sequences

6 5 6 4 6

Sequencing
success

100% 83.30% 100% 66.70% -

Alignment
length (bp)

470 451 548 528 617

PIC 13 13 7 1 36

PIC % 2.80% 2.90% 1.30% 0.20% 5.90%

Nucleotide
diversity

0.041 0.069 0.033 0.054 0.099

GC content
(%)

48.80% 38.60% 36.00% 44.20% 52.70%

Outgroup Draba Draba Draba Draba -

(Continued)
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Direct Sanger sequencing of PCR products was successful with the primer pairs that were
tested. Although the Sanger method does not allow to distinguish different alleles directly,
which appear as heterozygous sites in electropherograms, we were still able to use this method
to assess the utility of marker regions for phylogenetic inference. Resulting phylogenies at the
family and "lineage" levels were largely congruent with previous results [35,59]. Phylogenetic
resolution at the genus level was low, which may be the consequence of the low number of in-
cluded species or low phylogenetic information content of two of the four marker regions used,
potentially leading to an increase in noise levels [61].

Comparing markers from our study with commonly used gene regions showed that our
primer pairs are able to amplify fragments with high and low potential sequence divergence
and PIC content. The nucleotide diversity and PIC number of loci from this study were found
to range, depending on the studied locus and relationship levels, between low diversity values
similar to the compared plastid markersmatK and ndhF, and levels that are similar to the
nrDNAmarker ITS, which is a fast evolving region (Table 2). These considerable differences in
sequence evolution underline previous statements that single-gene trees may often not reflect
the true evolutionary history of a taxon [14,62], thus it is of utmost importance to include
many unlinked loci in evolutionary analyses. Nowadays NGS technologies coupled with target-

Table 2. (Continued)

Family Bra254 Bra264 Bra637 Bra813 Bra1258 Bra1511 Bra1693 Bra2187 ITS matK ndhF

Substitution
model

GTR+G GTR+I GTR+G GTR+G -

Marker structure refers to structure of amplified fragment (e = exon, i = one intron in the fragment, ii = two introns in the fragment, iii = three introns in the

fragment). Sequencing success is the percentage of obtained, readable sequences. PIC refers to number of parsimony-informative characters in an

alignment. PIC % shows the percentage of parsimony-informative sites within alignments. Substitution model refers to the applied substitution model for

phylogenetic inference; values in brackets refer to alternative substitution model used in RAxML. Asterisk indicates that information is based on TAIR10.

doi:10.1371/journal.pone.0128181.t002

Table 3. Comparison of our approach and other publications with similar scopesmentioned in our study.

Study Taxon range Method Target loci No. of loci
found

Standard PCR
conditions

Length
(bp)

Li et al. (2007) Order (Arctinopterygii) database mining NPCL 154 no > 800

Townsend et al.
(2008)

Order (Squamata) database mining NPCL 85 no � 700

Chenuil et al. (2010) Subkingdom
(Eumetazoa)

database mining EPIC 52 no n. A.

Li et al. (2010) Infraclass (Teleostei) database mining EPIC 210 yes 207–324

Curto et al. (2012) Family (Lamiaceae) database mining EPIC 50 no 362–1717

Shen et al. (2013) Subphylum
(Vertebrata)

database mining NPCL 102 yes (nested PCR) 510–1650

Salas-Leiva et al.
(2014)

Order (Cycadales) database mining EPIC & UTR 46 no 259–1890

Tonnabel et al.
(2014)

Genus (Leucadendron) database mining &
RNAseq

NPCL & UTR 7 no 277–796

This study Family (Brassicaceae) database mining &
RNAseq

NPCL & EPIC &
UTR

2,334 yes 339–787

Target loci indicate which fragments were targeted, standard PCR conditions indicates the availability of a uniform PCR protocol for all markers, length

refers to fragment length of the regions found in a study. No. of loci found refers to the number of detected primer pairs or loci in the respective study.

doi:10.1371/journal.pone.0128181.t003
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enrichment methods, which have been used e.g. in phylogenetic [63–65] and phylogeography
studies [66,67], may help overcome the potential mismatches of gene and species-trees. There-
fore, our method and primer list may be used for such target-enrichment approaches, and pres-
ent useful tools to study a large number of conserved marker regions in a cost-effective and fast
manner across a broad range of taxa in the Brassicaceae family.

Available annotations for our primer list can be used to focus on specific groups of genes in
targeted evolutionary, ecological or genomic studies that focus, for example, on genetic diversi-
ty and evolution of stress-responsive genes.

Altogether, we anticipate that the set of 2,334 nuclear gene markers presented here will benefit
the Brassicaceae research community and facilitate future analyses of phylogenetic relationships
and evolutionary processes in this highly diverse plant group [39,68]. Essential information, such
as amplicon type, length or gene ID based on the A. thaliana reference genome, are readily avail-
able (S6 Table) and hence ready to use for further studies. Finally, and most importantly, the
large number of available nuclear gene markers will hopefully allow changing our perspective to
move away from the analysis of a few genes that undergo uniparental inheritance or concerted
evolution towards a truly genome-wide analysis of diversity and divergence.

Supporting Information
S1 Table. Plant accessions and treatments for transcriptome sequencing of A. alpina and C.
hirsuta. Sample origin refers to sampling location, tissue type refers to sampled tissue for RNA
extraction. Treatment refers to applied stress treatment with details in brackets, before tissue
was collected. 1 Pooled samples from three populations from 8.86°E 47.06°N, 8.91°E 47.06°N
and 9.05°E 47.09°N. 2 Pooled samples from three populations from 9.35°E 47.24°N, 9.02°E
47.08°N and 9.43°E 46.97°N.
(PDF)

S2 Table. PCR protocol for Fluidigm Amplicon Tagging (http://www.fluidigm.com/access-
array-system.html). Tag sequences: forward 5’-ACACTGACGACATGGTTCTACA-3’ and re-
verse 5’-TACGGTAGCAGAGACTTGGTCT-3’.
(PDF)

S3 Table. GO-overrepresentation analysis of all 1,164 genes amplified (at least in part) with
primer pairs developed in this study, sorted by false-discovery rate (FDR) values. Analysis
was performed by the online tool DAVID 6.7.
(PDF)

S4 Table. PCR amplification success of 48 primer pairs tested on 30 Brassicaceae species.
Numbers 0,1 and 2 refer to the number of bands obtained on agarose gels after PCR. Amplifi-
cation success per marker and amplification success per species were calculated by adding all
successful single product amplifications and dividing it by the overall number of tested species
or markers, respectively.
(PDF)

S5 Table. Sequences retrieved from GenBank for comparisons between commonly used
markers and markers amplified with primer pairs developed in this study.
(PDF)

S6 Table. 2,334 primer pairs developed in this study.
(XLSX)
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