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Acute leukemia (AL) is a highly heterogeneous hematologic malignancy, and although
great progress has been made in the treatment of AL with allogeneic hematopoietic stem
cell transplantation (Allo-HSCT) and new targeted drugs, problems such as infection and
GVHD in AL treatment are still serious. How to reduce the incidence of AL, improve its
prognosis and reduce the side effects of treatment is a crucial issue. The gut microbiota
plays an important role in regulating disease progression, pathogen colonization, and
immune responses. This article reviews recent advances in the gut microbiota and AL
pathogenesis, infection, treatment and its role in allo-HSCT.
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INTRODUCTION

Acute leukemia (AL), a kind of hematologic malignancy, mainly includes acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL) (1). In 2018, a global survey of 36 cancers in 185
countries indicated that leukemia ranks fifteenth in cancer incidence and tenth in cancer deaths (2).
The most common cancer in children is AL (3). More than 80% of children with ALL are long term
survivors, compared with 20% to 40% of adults (4). In AML, the five-year survival rate is 40% for
patients younger than 60, and only 10-20% for patients older than 60 (5). Cytotoxic chemotherapy,
ionizing radiation, genetic mutations, benzene, and some blood system diseases (such as
myelodysplastic syndrome, paroxysmal nocturnal hemoglobinuria) can lead to AL (6, 7). The
specific pathogenesis of AL is not fully understood, and some types of AL are dangerous, ineffective
and have a high mortality rate. Immune system plays an important role in the pathogenesis,
progression and treatment of AL. AML patients have higher T regulatory cells (Tregs) and CD8+ T
cells compared to normal donors (8). However, AML patients have T-cell dysfunction, which is
associated with immune escape of the disease (9). Moreover, Tregs are a major contributor to
defective immune responses (10). In AML patients, increased Tregs can suppress effector T cells,
and the more Tregs, the worse the treatment effect (11). Treatment with chimeric antigen receptor
T-cell therapy is highly effective in patients with ALL, which is also associated with the immune
system (12).

There are four major colonization sites of microorganisms in the human body: oral, vagina, skin,
and gut (13). Gut microbiota colonize the newborn following birth (14). The gut microbiota is
composed of native flora and transient flora in food intake (15). It is estimated that each individual’s
gut microbiome includes more than 100 different species (15). Gut microbiota has recently been
recognized as an important factor in regulating disease progression, pathogen colonization, and
immune responses (1, 13, 16), and the pathogenesis, progression, and treatment of AL have been
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linked to the immune system. Gut microbiota has also been
linked to diabetes, Alzheimer’s disease, tumor and so on (17–19).
This review summarizes the progress of the interaction between
gut microbiota and AL.
THE ROLE OF GUT MICROBIOTA IN THE
PATHOGENESIS OF AL

The pathogenesis of AL is unclear. Greaves M propose a model
for ALL, in which some children are born with pre-leukemic
clones, but acquired infections cause key genetic mutations that
develop into ALL (20). Some studies have found that newborns
carry leukemia-related mutations, such as TCF3-PBX1 and
ETV6-RUNX1 (21, 22). Exposure to infection promotes the
occurrence of ALL in newborns carrying these genes (23, 24).
In mice with PAX5 or ETV6-RUNX1, ALL was caused by a
disruption in the microbiome caused by antibiotic treatment
early in life, and the gut microbiome of PAX5-carrying mice
differed from the wild type (25). A study enrolled 81 subjects,
including 58 ALL patients and 23 healthy controls, using 16S
rRNA quantitative arrays and bioinformatics analysis to examine
their stool specimens (26). Many species of bacteria appeared
significantly different in stool specimens from ALL patients
compared to healthy controls, such as a significant enrichment
of Bacteroides clarus in ALL (26). Whether gut microbiota
disturbance can cause AL in humans needs further study.

Alterations in some gut microbiota species and metabolites
may promote the development of leukemia. In a mouse model of
leukemia, the proportion of bacteria with the function of
converting dietary flavonoids in the small intestine of leukemic
mice was increased (27). It has been suggested that maternal
intake of bioflavonoids may lead to infant and young child
leukemia (28). A national case-control study conducted in
Denmark and found that infections of the gastrointestinal tract
were associated with an increased risk of AML (29). So why does
the occurrence of a gastrointestinal infection lead to an increased
risk of developing AML? We assume that the imbalance of gut
microbiota due to gastrointestinal infections causes immune
disorders that lead to AML, but more studies are still needed
to verify this.

The risk of AL increased significantly during childhood or
adolescence after the cumulative dose of ionizing radiation (30).
Ionizing radiation is the accepted cause of leukemia. A study
found that mice that survived high doses of radiation had unique
gut microbiota, with Lachnospiraceae and Enterococcaceae as
the most abundant bacteria (31). Then, they collected stool
samples from 21 leukemia patients who had received total
body radiation before hematopoietic stem cell transplantation,
patients with shorter duration of diarrhea (diarrhea less than 10
days) had more Lachnospiraceae and Enterococcaceae in their
feces than patients with longer duration of diarrhea (diarrhea
more than 10 days) (31). Lactobacillaceae also increased in
patients with shorter duration of diarrhea, but there was no
statistical significance (31). Bone marrow and small intestinal
epithelial cells are highly sensitive to ionizing radiation, and they
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are the main site of radiation injury (32). Short-chain fatty acids
(SCFAs), a metabolite of gut microbiota, reduces DNA damage
and reactive oxygen species release in blood and gastrointestinal
tissues during radiation damage (31). Fecal microbiota
transplantation (FMT) improved the survival rate of irradiated
animals, increased white blood cells, and improved
gastrointestinal function (33). The gut microbiota plays a key
role in host defenses against radiation, as well as protecting the
hematopoietic and gastrointestinal systems.

Benzene is a widespread air pollutant and a component of
gasoline, industrial emissions, automobile exhaust and tobacco
smoke (34). Traffic-related benzene exposure can cause acute
myeloid leukemia in children (35). A study of benzene exposure
in mice showed that benzene exposure altered the gut
microbiota, with increased level of Actinobacteria, and
Helicobacter were observed in the stools of mice exposed to
high doses of benzene, and increased level of Actinobacteria were
significantly and negatively correlated with basic blood cells
(white blood cell, red blood cell, and hemoglobin levels) (36).
Whether gut microbiota plays a role in benzene causing leukemia
remains to be studied.

It is well known that naïve helper T cells (Th0) can be
transformed into Th1, Th2, Treg and Th17 cells etc. Th1
produces the cytokine interferon gamma (IFN-g) that exerts
anti-tumorigenic effects in the tumor microenvironment, while
Th2/Treg produces the cytokines interleukin 4 (IL-4), IL-5,
IL-10, etc. that mediate pro-tumorigenic effects (17). In some
solid tumor models, depletion of the gut microbiota leaded to a
significant increase in IFN-g-producing T cells and a decrease in
IL-17A and IL-10-producing T cells, thereby reduced tumor
burden. However, this phenomenon was not present in mice
lacking mature T and B cells, suggesting that the action of the gut
microbiota on tumor cells required the active involvement of
adaptive immunity (17). In innate and adaptive immunity,
microbiota plays an important role in its maturation,
development and functions (37).

There is no doubt that the development of AL is related to the
dysregulation of the human immune system, and the gut
microbiota also regulates the human immune system, which
has been shown to be closely related to the development of
pancreatic cancer, colon cancer and other tumors (38, 39).
Whether the gut microbiota is also involved in the
development of AL by modulating human immunity needs to
be studied in more depth.
A NORMAL, DIVERSE GUT MICROBIOTA
IS CRITICAL TO HUMAN IMMUNITY
AND CAN PREDICT INFECTION IN
PATIENTS WITH AL

Infection is a common symptom in patients with newly
diagnosed AL. In addition, the bone marrow suppression that
occurs after chemotherapy in AL patients is also prone to
infection. Infection is an important cause of death in patients
with AL (40, 41). Gut microbiota is strongly associated with host
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immune function and resistance to infection. It is essential for
the host to maintain a healthy immune system (42). It has been
shown that gut microbiota can produce inhibitory products to
suppress vancomycin-resistant enterococci (43). The use of
carbapenem antibiotics in the empirical treatment of fever due
to neutropenia in patients with AL reduces gut microbiota
diversity and increases colonization by vancomycin-resistant
enterococci (44). SCFAs, a metabolite of gut microbiota,
promote the differentiation of T lymphocytes into effector
T cells and regulatory T cells by inhibiting histone deacetylase
(45). SCFAs also significantly inhibited the activity and
infectivity of E. coli and protected intestinal epithelial cells
from damage caused by C. difficile toxins (45, 46). Treatment
of mice with broad-spectrum antibiotics resulted in a decrease in
the number of hematopoietic stem cells and pluripotent
progenitor cells in their bone marrow, as well as a decrease in
granulocytes and B cells in the bone marrow and an increase in
CD8+ T cells (47). This is the result of broad-spectrum
antibiotics interfering with the STAT1 signaling pathway by
consuming the gut microbiota (47). The aromatic amino acid
metabolite production pathway of intestinal gut symbiont
Clostridium sporogenes produces 12 compounds, 9 of which
accumulate in host serum, indolepropionic acid being one of
them. A decrease in indolepropionic acid increases the number
of immune cells in mice, including neutrophils, monocytes, and
memory T cells, and mice with decreased indolepropionic acid
have greater intestinal permeability and are more likely to trigger
an inflammatory response in mice (48). A normal and diverse
gut microbiota is essential for human immunity and resistance
to infection.

Causes of gut microbiota dysbiosis in AL patients associated
with antibiotic use, nutrition, and chemotherapy (49). A study
used a 16s rRNA-based analysis of bacterial flora in oral and
fecal specimens from 97 AML patients every two weeks from
induction chemotherapy to neutrophil recovery. They found that
fecal flora diversity and high levels of Porphyromonadaceae at
the time of induction chemotherapy were positively associated
with a low risk of infection (50). In AML patients who developed
infection during induction chemotherapy, baseline fecal flora
diversity was significantly lower than in patients who did not
develop infection, and flora diversity gradually decreased over
the course of induction chemotherapy (51). In a study of ALL,
chemotherapy was also found to have an impact on the diversity
of the gut microbiota, with a significant decrease in the relative
abundance of certain bacterial groups (e.g., Bacteroidetes) and a
significant increase in the relative abundance of other groups
(e.g., Clostridiaceae and Streptococcaceae) following
chemotherapy (52). In contrast to the findings of some studies
(44), this study concluded that antibiotic use does not alter the
diversity of the gut microbiota (52). However, it has also been
suggested that vancomycin use significantly reduces gut
microbial diversity in patients with ALL, while no correlation
was found with piperacillin tazobactam, antifungal drugs and
other antibiotics (53). Some investigators concluded that the
composition, but not the diversity, of the gut microbiome prior
to chemotherapy was an independent predictor of febrile
Frontiers in Oncology | www.frontiersin.org 3
neutropenia during chemotherapy. The predominance of
Aspergillus phylum and Enterococcus (relative abundance
≥30%) predicted febrile neutropenia; Enterococcus (relative
abundance ≥30%) and Streptococcaceae predominate in
predicting diarrheal disease (52). Intestinal nutrition deficiency
can lead to loss of intestinal epithelial barrier function and
increased susceptibility to infection (54).

In a study evaluating the effect of probiotics on
chemotherapy-induced gastrointestinal side effects in patients
with AL, patients with AL were randomized to an oral
Lactobacillus rhamnosus group and a control group. The
primary endpoint was the incidence of gastrointestinal side
effects, with significant reductions in nausea, vomiting, and
abdominal distention (P<0.05) and a relative risk of diarrhea
(0.5) in the oral probiotics group (55). Patients in the control
group of this study did not take placebo and subjective error may
occur. In a study of gut microbiota recovery in mice and humans,
it was found that neither probiotics nor spontaneous recovery
restored gut microbiota diversity after 4 weeks of disruption
cessation with antibiotics. Importantly, probiotics significantly
delayed recovery to baseline microbiome richness at all time
points tested, compared to spontaneous recovery (56). However,
gut microbiota diversity was indistinguishable to control after 8
days of fecal transplantation (56). The use of probiotics can only
restore one or a few specific gut microbes, but not the function of
a complex microbial community. Therefore, supplementation
with one probiotic alone may have adverse effects on the host
(49), or may even result in probiotic-induced infections. A
patient who received autologous hematopoietic stem cell
transplantation took probiotic-rich yogurt due to severe
diarrhea, and a week later the patient developed infectious
shock (57). Strain-specific PCR analysis showed that the
pathogen was Lactobacillus rhamnosus GG, which was
consistent with the probiotics in the yogurt (57). Another child
with Philadelphia chromosome-positive ALL underwent
chemotherapy and developed neutropenic fever with blood
cultures suggestive of Bifidobacterium breve, which may be
pathogenic when host immunity is reduced (58). In patients
with AL, the diversity and composition of gut microbes correlate
with whether or not an infection occurs or what type of infection
occurs, and they are influenced by factors such as chemotherapy
and antibiotics. Probiotics can reduce gastrointestinal symptoms
such as diarrhea, but opportunistic infections with probiotics
have also been reported in the presence of neutrophil deficiency.

The gut microbiota is closely related to the normal immunity
of the organism (42). Among the infections present in patients
with AL, the gut microbiota has been associated with diarrhea,
neutropenic fever, and sepsis, and its diversity and composition
are predictive of infection in patients (45–52, 59).
GUT MICROBIOTA AFFECTS A WIDE
RANGE OF DRUGS USED TO TREAT AL

There is increasing evidence that host responses to
chemotherapeutic agents can be influenced by the gut
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microbiota, primarily in terms of promoting drug efficacy;
abrogation of anticancer effects; and modulation of toxicity
(60). Gut microbiota regulates chemotherapeutic drugs
through key mechanisms such as reduced diversity, ecological
variation, translocation, immune regulation, metabolism,
enzymatic degradation (60).

Cyclophosphamide (CTX) is commonly used to treat ALL,
lymphoma, and other tumors. Viaud S et al. investigates the role
of gut microbiota in CTX therapy through a mouse model (61).
Non-myeloablative doses of CTX and adriamycin treated
mice resulted in shortened small intestinal villi, disrupted
epithelial barrier, and interstitial edema 48 hours after drug
application (61). After the disruption of the intestinal barrier,
some intestinal microorganisms are transferred to the mesenteric
lymph nodes and spleen, and intestinal microorganisms
including Lactobacillus johnsonii, Lactobacillus murinus and
Enterococcus hirae can be cultured in these lymphoid organs
(61). CTX treatment induces selective translocation of gut
microbiota, for example, leading to reduced abundance of
Lactobacillus and Enterococcus in the small intestine of mice.
Some intestinal bacteria (Lactobacillus johnsonii, Lactobacillus
murinus and Enterococcus hirae) stimulate the production of
specific “pathogenic” T helper 17 (pT(H)17) cells. Killing these
bacteria with antibiotics reduced the pT(H)17 response in
tumor-bearing mice and made them resistant to CTX.
Adoptive transplantation of pT(H)17 cells could recover the
anti-neoplastic efficacy of CTX in part. In another study, calorie
restriction was found to significantly enhance the gut microbiota
with Lactobacillus and Trichinella, which are shown to relieve
inflammation and improve intestinal barrier function. Calorie
restriction reshapes stronger gut microbiota and may help reduce
side effects of CTX (62).

Methotrexate (MTX) has the function of anticancer and
immunosuppressive, and is one of the main drugs used in the
treatment of ALL, central nervous system leukemia, and
rheumatic immune system diseases (63–65). Common side
effects of MTX include mucositis and intestinal damage (66,
67). MTX has significant effects on the amounts, diversity and
major components of the mouse gut microbiota (68). MTX
-treated mice showed reduced intestinal microbial diversity
and changes in the composition of the gut microbiota, such as
a dramatic decrease in the number of ruminal cocci and a
dramatic increase in the number of members of the
Lachnospiraceae (68). B. fragilis was significantly reduced by
MTX treatment, and there was a tendency for the proliferation
rate of B. fragilis to decrease with increasing M1 macrophage
density (68). The mucosal muscle lesions seen in mtx-treated
mice were significantly relieved by gavage with fragile B (68).
Fragile B. markedly attenuated the MTX-induced increase in M1
macrophages, and the decrease in fragile B. in turn aggravated
the MTX-induced macrophage imbalance, resulting in positive
feedback, which led to intestinal tissue injury (68). Chronic long-
term MTX exposure induced changes in the gut microbiota
composition and function, with the relative abundance of the
Firmicutes being higher than that of the Bacteroidetes at low
doses of MTX, but the opposite at high doses of MTX. The
Frontiers in Oncology | www.frontiersin.org 4
relative abundance of the Firmicutes was positively correlated
with the 48-h fecal excretion of 2,4-diamino-N-10-methylpteroic
acid (DAMPA), a metabolite of MTX. Long-term exposure to
MTX can alter the composition and function of the microbiome,
which in turn affects its ability to detoxify MTX (69). MTX
largely alters the human gut microbiota. Changes in gut flora and
gene abundance were different between patients who responded
to MTX and those who did not. MTX affects a variety of
conserved human gut bacterial pathways, leading to reduced
host immune activation (70).

PD-1 is a kind of immune checkpoint, PD-1 binding with
PD-L1 will inhibit T cells and block the anti-tumor immune
response. Anti-PD1 has been approved by FDA for the
treatment of melanoma, non-small cell lung cancer, renal cell
carcinoma and other tumors (71). In a mouse model, enhanced
PD-1 expression on circulating CD8 T cells leads to the
progression of AML (72). A phase II clinical trial of
azacitidine combined with nivolumab in patients with
relapsed/refractory AML obtained an encouraging result, with
an overall response rate (ORR) of 33% (73). PD-1 inhibitors
have promising applications in the treatment of AL, and the gut
microbiota also interacts with PD-1 inhibitors. In a mouse
model study of epithelial tumors, primary resistance of
tumors to immune checkpoint inhibitors (ICIs) was found to
be attributable to unusual composition of the gut microbiome,
and the clinical benefit of ICIs in patients with late-stage cancer
could be inhibited by antibiotics (74). Germ-free or antibiotic-
treated mice receiving fecal microbiota transplantation (FMT)
from patients with tumors that responded to ICIs improved the
antitumor effects of PD-1 blockade, but FMT from patients with
tumors that did not respond to ICIs had no such effect (74).
Metagenomics of patient fecal samples revealed a correlation
between the relative abundance of Akkermansia muciniphila
and patient response to ICIs. Administration of oral
supplementation of A. muciniphila to mice unresponsive to
FMT restored the efficacy of PD-1 blockade in an interleukin-
12-dependent manner (74). In another study of melanoma
patients, researchers found that the effect of anti-pd-1
immunotherapy was associated with greater abundance of
Bifidobacterium longum, Collinsella aerofaciens, and
Enterococcus faecium in the patients ’ stools (75) .
Transplanting feces from patients who responded to anti-pd-1
into germ-free tumor-bearing mice enhanced the T-cell effect
and improved tumor control (75). In a study of the gut
microb io ta of melanoma pat ients rece iv ing PD-1
immunotherapy, investigators found that the diversity of the
flora and the relative abundance of Ruminococcaceae family
were significantly higher in patients who responded to PD-1
immunotherapy (76). In immunotherapy for liver cancer,
researchers also found more taxa richness and higher gene
counts in the stools of patients who responded to anti-PD-1
(77). Gut microbiota correlates with the efficacy of ICIs in a
wide range of tumors, with higher diversity of gut microbes
associated with better efficacy. Whether the efficacy of anti-PD-1
therapy in patients with AL is also associated with the gut
microbiota needs to be urgently investigated.
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There are no studies on the interaction of gut microbiota with
drugs used to treat AML (e.g., erythromycin, cytarabine, etc.),
which is a future direction to investigate the relevance of gut
microbiota to AL therapeutic drugs.
THE PLACE OF GUT MICROBIOTA
IN ALLO-HSCT: FOR BETTER
OR FOR WORSE?

Allo-HSCT is currently one of the most effective treatments for
AL (78). Allo-HSCT means that hematopoietic stem cells
collected from a healthy donor are infused into a patient with
leukemia, and the donor’s immune cells can attack the leukemia
cells to produce a graft-versus-leukemia (GVL) effect (79). The
main side effect of allo-HSCT is graft-versus-host disease
(GVHD) (79, 80). GVHD means that the immune cells of the
donor attack the normal tissues of the patient, and the common
organs are the skin, liver, and gastrointestinal tract, and the
patient may present with diarrhea, vomiting, abdominal pain,
jaundice, sclerosis of the skin, and other harmful manifestations
(79). Acute graft-versus-host disease (aGVHD) occurs in 30-50%
of all allo-HSCT patients, and chronic graft-versus-host disease
(cGVHD) occurs in 35-50% of patients (81, 82). Prevention of
GVHD includes the use of cyclosporine, tacrolimus,
mycophenolate mofetil (MMF), methotrexate, etc (83). Despite
the use of these drugs, many patients still develop GVHD, and
glucocorticoids are an effective treatment for both aGVHD and
cGVHD (83). But glucocorticoids can cause side effects such as
osteoporosis, susceptibility to infection, increased blood sugar
and blood pressure, necrosis of femoral head and so on. In
summary, GVHD affects the quality of survival, mortality in allo-
HSCT patients. Gut microbiota plays an important role in the
development and treatment of GVHD (84).

Gut microbiota correlates with the development of GVHD. In
1974, van Bekkum DW et al. found that GVHD occurred in mice
treated with lethal total body irradiation and allo-HSCT, with a
mortality rate of 95% within 100 days, whereas mice treated
similarly in a sterile state or given a colonization-resistant flora
had almost no GVHD (85). This study confirmed in an animal
model that the microbiome is associated with GVHD. In a study
of mice, it was found that the gut microbiota diversity of mice
with GVHD decreased significantly during the first 2 weeks of
bone marrow transplantation, and in terms of changes in
bacterial subgroups, the number of Lactobacillus increased
significantly in the ileum, while the number of Clostridium
and other Firmicutes decreased significantly (86). The authors
also found that removal of Lactobacillus prior to bone
marrow transplantation aggravated GVHD in mice and that
reintroduction of a dominant species of Lactobacillus mediated
protection against GVHD (86).

The presence of disruption of the gut microbiota early in bone
marrow transplantation is also a potential risk factor for GVHD
(86). We already know that SCFAs can reduce DNA damage in
blood and gastrointestinal tissues during radiation damage (31),
Frontiers in Oncology | www.frontiersin.org 5
and SCFAs inhibit histone deacetylation (45). SCFAs mainly
include formate, acetate, propionate and butyrate (87).
Mathewson ND et al. analyzed SCFAs produced by the
microbiome of allo-HSCT mice and found that only butyrate
was significantly reduced in the intestinal tissues of transplanted
recipients, resulting in reduced levels of histone deacetylation in
small intestinal epithelial cells. In contrast, increasing the level of
butyrate in the small intestine restored histone deacetylation,
protected small intestinal epithelial cells, and reduced the
severity of GVHD (88). The mechanism by which butyrate
protects small intestinal epithelial cells may be through the
regulation of histone deacetylation to increase anti-apoptotic
genes. In butyrate-treated small intestinal epithelial cells, Bak1
and Bax were significantly reduced and the anti-apoptotic
protein BCL-B was significantly increased (88). In the study of
SCFAs and cGVHD, higher SCFAs (mainly butyrate and
propionate) in the plasma of patients at 100 days post-
transplantation were associated with decreased cGVHD (89).
Golob JL et al. prospectively collected 669 stool samples from 66
allo-HSCT patients, once a week from pre-transplant to 100 days
post-transplant. Their analysis revealed that the presence of
Lachnospiraceae in stool was negatively associated with GVHD
when neutrophils recovered after transplantation, whereas the
presence of oral Actinobacteria and oral Firmicutes was
positively associated with GVHD (90). A study by Han L et al.
found more gut microbiota diversity in the non-aGVHD group
than in the aGVHD group (91), they evaluated the gut
microbiota to predict GVHD and found that Lachnospiraceae
and Peptostreptococcaceae were negatively associated with
GVHD, while Enterobacteriaceae were positively associated
with aGVHD (91). Lachnospiraceae was negatively correlated
with severe aGVHD, and levels of all major SFCAs were
significantly decreased in patients with severe aGVHD, with a
75.8% decrease in acetate, a 95.8% decrease in propionate, and a
94.6% decrease in butyrate, while propionate levels were retained
in patients with mild aGVHD. Butyrate was severely reduced in
all gastrointestinal stages of aGVHD (92). Patients with ≤10%
Lachnospiraceae in stool specimens at transplant pretreatment
were significant contributors to overall mortality, and reduced
gut microbiota diversity at day 10 post-transplant significantly
increased the risk of GVHD (93). These studies all confirmed
that abundant Lachnospiraceae and intact gut microbiota
diversity were negatively correlated with GVHD (90–93).
Lachnospiraceae-dominant gut microbiota mice also can
withstand high doses of radiation (31), Lachnospiraceae and
SCFA (propionate) are used to modulate host resistance to
high doses of radiation by promoting hematopoiesis and
gastrointestinal recovery (31).

Another product of the gut microbiota, indole, has also been
shown to improve GVHD. Indole is produced by certain intestinal
microflora (e.g., Escherichia coli, Lactobacillus, Bacteroides) (94).
Indole-3-carbaldehyde (ICA) is an exogenous indole derivative.
ICA upregulated genes associated with type I interferon (IFN1)
responses, limited intestinal epithelial damage, reduced
inflammatory cytokine production, and decreased GVHD
pathology and GVHD mortality without affecting donor T cell-
July 2021 | Volume 11 | Article 692951
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mediated graft-versus-leukemia responses (95). Although SCFAs
and indoles, metabolites of the gut microbiota, have been shown to
reduce the severity of GVHD, another circulating gut microbial
metabolite, TMA N-oxide (TMAO), has been reported to enhance
M1 macrophage polarization, and polarized inflammatory
macrophages establish an environment for t helper type 1 (Th1)
and Th17 responses, thereby increasing GVHD (96).

The use of broad-spectrum antibiotics can increase the
severity of GVHD. In a mouse model of allo-HSCT, treatment
with imipenem-cilastatin was found to disrupt intestinal
microbiota and increase the severity of GVHD (mainly
increased GVHD pathology in the colon) in mice with GVHD,
resulting in increased mortality (97). However, if the mice did
not develop GVHD, treatment with imipenem-cilastatin did not
affect the survival of the mice (97). Why did the use of
imipenem-cilastatin lead to increased severity of GVHD in
mice? Further studies revealed that in these mice, donor
effector CD4+ T cells (CD25+FoxP3-) and interleukin-23 (IL-
23) were increased and granulocytes were infiltrated in their
colon (97). AL patients treated with intensive chemotherapy and
broad-spectrum antibiotics destroy the diversity of the intestinal
microbiota (98). The use of autologous fecal microbiota transfer
(AFMT) restores intestinal flora diversity and is safe for
immunocompromised patients (98). Whether AFMT can
improve GVHD requires further study.

Gut microbiota correlates with the prognosis of allo-HSCT.
Kusakabe S et al. studied the gut microbiota of normal,
autologous HSCT patients and allo-HSCT patients, and they
found that in allo-HSCT patients with skewed microbiota had a
higher frequency of more complications and death after
transplantation than the subgroup with preserved microbiota
composition (93). The diversity of the gut microbiota is an
independent predictor of mortality in allo-HSCT patients, Taur
Y collected stools from 80 allo-HSCT patients for analysis, and
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the percentage of patients maintaining high, intermediate, and
low diversity of the gut microbiota was 26 (32.5%), 20 (25.0%),
and 34 (42.5%), and their 3-year overall survival rates were 67%,
60% and 36%, respectively (99). Peled JU et al. analyzed 8767
stool samples from 1362 patients who received allo-HSCT from a
total of four transplant centers in the United States, Germany,
and Japan and found that higher gut microbiota diversity at the
time of neutrophil engraftment was associated with lower patient
mortality, patients with low gut microbiota diversity were
positively associated with transplant-related mortality and a
high risk of GVHD (100). A study on gut microbiota and
pulmonary complications after allo-HSCT found that low gut
microbiota diversity was associated with PCs occurring
preengraftment, whereas g-proteobacteria dominant gut flora
was associated with PCs postengraftment (101). PCs
postengraftment and g-proteobacteria dominant gut flora were
associated with mortality (101). In a study of a total of four bone
marrow transplant centers from the United States, Japan, and
Germany, the investigators defined Enterococcal dominance as
having a relative genic abundance of ≥0.3 in any fecal sample
(102). The incidence of Enterococcus dominance was high at all
centers, with 441 of 1101 patients (40.1%) at Memorial Sloan
Kettering Cancer Center (MSKCC) and 103 of 224 patients
(46.0%) at the other 3 centers having E. faecium dominance
between day -20 and day +80 of allo-HSCT (102). Early post-
transplant (day 0 to + 21) Enterococcus dominance significantly
reduced overall survival and increased GVHD-related mortality,
increasing the risk of severe aGVHD (102). In a mouse model of
allo-HSCT, an increase in Enterococcus in the feces of mice was
also positively associated with GVHD, and the absence of lactose
in the diet significantly reduced the colonization of Enterococcus
after transplantation and attenuated GVHD (102). Lactose-free
diets may be used in clinical settings to attenuate the growth of
pathogens such as enterococci and improve clinical outcomes.
TABLE 1 | Mechanisms by which the gut microbiota affects GVHD.

Influence of gut microbiota on GVHD Mechanisms References

Lactobacillus shows improvement in GVHD – (86)
Disruption of gut microbiota diversity aggravates
GVHD

– (86, 91, 93)

Butyrate, a metabolite of the gut microbiota,
attenuates GVHD

Butyrate improved IEC junctional integrity, decreased apoptosis (88, 89)

Lachnospiraceae is negatively associated with
GVHD

– (90–93)

Indole, a metabolite of the gut microbiota,
improves GVHD

Indole upregulates genes associated with IFN1 response, limits intestinal epithelial damage, reduces
inflammatory cytokine production, and decreases GVHD pathology and GVHD mortality.

(95)

GVHD progression was induced by TMAO, a
circulating gut microbial metabolite

TMAO enhances M1 macrophage polarization and establishes an environment for Th1 and Th17
responses

(96)

Antibiotic use alters the composition of the gut
microbiota and increases GVHD

Loss of protective colonic mucosa and impairment of intestinal barrier function due to antibiotics (97)

Obesity aggravates GVHD by affecting the gut
microbiota

Obesity reduces the diversity of the gut microbiota and reduces Clostridiaceae abundance, leading to
increased intestinal permeability, transintestinal transit of endotoxins, and radiation-induced
gastrointestinal damage in mice

(107)

The microbiota controls MHC-II at the pre-
transplant IEC

Microbiota depletion inhibits IL-12/23p40 production by ileal macrophages, IL-12/23p40 prevents
upregulation of MHC class II cells on IECs and initiation of lethal GVHD in the gastrointestinal tract

(108)

The gut microbiota metabolite sensor G-protein-
coupled receptor 43 (GPR43) attenuates
gastrointestinal GVHD

GVHD protection by SCFAs requires GPR43-mediated ERK phosphorylation and activation of NLRP3
inflammasome in host non-hematopoietic target tissues

(109)
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Interestingly, it has been shown that the relative abundance of
Eubacterium hallii is higher in minimal residual disease (MRD)-
negative multiple myeloma patients compared to MRD-positive
patients (103). Whether the relative abundance of gut microbiota
is associated with risk stratification of AL and MRD has not been
studied, which warrants further research.

FMT is a treatment for multidrug-resistant bacteria
colonization and GVHD in patients undergoing allo-HSCT.
Battipaglia G et al. performed FMT in 10 patients colonized by
multidrug resistance; eight of these patients were colonized by
carbapenemase-producing bacteria and two by vancomycin-
resistant enterococci; four of them underwent FMT before
allo-HSCT and the other six underwent FMT after allo-HSCT;
seven of the 10 patients achieved decolonization (104). We already
know that disruption of gut microbiota diversity can exacerbate
GVHD, but patients are in a state of severe immunosuppression
after allo-HSCT, and performing FMT on them may be at
potential risk for microbial infection. Kakihana K et al.
performed FMT on one glucocorticoid-dependent and three
glucocorticoid-resistant patients with gut aGVHD, and none of
the patients experienced serious adverse effects (105). All four
patients responded to FMT, with three complete responses and
one partial response (105). DeFilipp Z et al. performed FMT on 13
patients at a median of 27 days (19-45) after allo-HSCT, and
analysis of the patients’ fecal microbiota composition and urinary
3-indoxyl sulfate concentration showed that FMT reconstructed
the diversity of the patients’ gut microbiota (106).We summarized
recent studies on gut microbiota and GVHD (Table 1).

A study analyzing the gut microbiota of 541 patients
undergoing allo-HSCT found that the cumulative incidence of
recurrence/progression at 2 years was 19.8% and 33.8% in
patients with and without Eubacterium limosum, respectively,
with higher abundance of Eubacterium limosum being
associated with fewer recurrences (110). Eubacterium limosum
may serve as a biomarker for allo-HSCT to predict recurrence,
and the exact mechanism by which it reduces recurrence needs to
be confirmed by further studies.
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In general, the gut microbiota may play an important role in
the pathogenesis, progression and treatment of AL by
influencing human immunity. The gut microbiota has been
found to resist damage from radiation and benzene, which
may cause AL. The gut microbiota is also closely related to the
body’s normal immunity, and in AL, the diversity of the gut
microbiota is associated with multiple infections. When AL
patients undergo chemotherapy, the gut microbiota is affected
and, in turn, the gut microbiota affects the efficacy of multiple
chemotherapeutic agents. The diversity of the gut microbiota and
its metabolites are strongly associated with the occurrence of
GVHD, mortality and relapse of allo-HSCT. More studies can be
conducted in the future to focus on the relationship between the
gut microbiota and AL, especially that the gut microbiota
improves the treatment outcome and prognosis of AL patients
by regulating human immunity.
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