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MOTIVATION This workwasmotivated by the need for a cell-tracking technique formulti-session 1-photon
imaging datasets. Our approach is robust to spatial footprint shifts and is able to accurately track cells in
regions of overlapping footprints whenmultiple cells are possible targets.We discovered that incorporating
cell-cell similarity metrics based on the temporal calcium activity of the detected neurons increases the
number of correctly tracked cells and reduces the percentage of incorrectly tracked cells. Using this infor-
mation, we improved the quality of the cell-cell similarity matrix and developed amethod for tracking based
on metric weight perturbation and consensus clustering.
SUMMARY
In vivo calcium imaging enables simultaneous recording of large neuronal ensembles engaged in complex
operations. Many experiments require monitoring and identification of cell populations across multiple ses-
sions. Population cell tracking acrossmultiple sessions is complicated by non-rigid transformations induced
by cell movement and imaging field shifts. We introduce SCOUT (Single-Cell spatiOtemporal longitUdinal
Tracking), a fast, robust cell-tracking method utilizing multiple cell-cell similarity metrics, probabilistic infer-
ence, and an adaptive clustering methodology, to perform cell identification across multiple sessions. By
comparing SCOUT with earlier cell-tracking algorithms on simulated, 1-photon, and 2-photon recordings,
we show that our approach significantly improves cell-tracking quality, particularly when recordings exhibit
spatial footprint movement between sessions or sub-optimal neural extraction quality.
INTRODUCTION

Extracting longitudinal activity from large-scale neuronal ensem-

bles is a fundamental first step toward the analysis of neural cir-

cuit responses. Ca2+ imaging of population neurons allows the

recording of larger neural ensembles than can be recorded using

electrophysiology. In vivo calcium imaging using microendo-

scopic lenses enables imaging of previously inaccessible en-

sembles of neuronal populations at the single-cell level in freely

moving mice as they perform neural transformations that under-

lie behavioral responses over both short and long timescales

(Flusberg et al., 2008; Ghosh et al., 2011; Ziv and Ghosh,

2015). Microendoscopic in vivo brain imaging via head-mounted

fluorescent miniature microscopes (‘‘miniscopes’’) are used

widely to study neural circuits in various brain regions (Cai
Cell
This is an open access article und
et al., 2016; Ziv et al., 2013; Jimenez et al., 2016; Rubin et al.,

2015; Sun et al., 2019; Kitamura et al., 2015; Sun et al., 2015;

Barbera et al., 2016; Klaus et al., 2017; Yu et al., 2017).

Experiments that require the accurate identification of neurons

across multiple recording sessions have proved difficult, as cell

movement, shifts in field of view, and inaccuracies in the extrac-

tion of neural activity from session recordings complicate this

task. Most previous attempts to track the activity of neurons

over long-term experiments have taken one of three forms

(Figures 1A and 1B): (1) initial concatenation of registered rec-

ordings followed by extraction of fluorescence traces and spatial

footprints from the concatenated recording (Sun et al., 2019);

(2) concatenation followed by splitting the spatial dimension

into overlapping patches, whereby extraction is performed on

each patch separately and neurons are merged across the
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er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:xiangmin.xu@uci.edu
mailto:qnie@uci.edu
https://doi.org/10.1016/j.crmeth.2022.100207
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2022.100207&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A

B

E

C D

Figure 1. SCOUT: A method for single-cell tracking incorporates spatial and temporal metrics into a probabilistic consensus clustering

framework

(A) Neuron spatial footprints from three sessions obtained from a 1-photon recording of the prefrontal cortex with neurons colored by session (first three

rectangles). Overlaid results appear in the fourth rectangle. Cell tracking seeks to identify the same cell across multiple days.

(B) Long-term study of neural activity requires computation of fluorescence traces for identified neurons across sessions (right) from individual sessions (max

projections, left). Approaches include concatenation (middle track), patch methods (bottom track), and tracking methods (top track). Concatenation involves

global registration of sessions and concatenation (middle step) followed by fluorescence extraction. Patchmethods divide each session into overlapping patches

in the spatial domain (orange rectangles, first step), which are concatenated, and fluorescence activity extracted for each neuron (black arrow, second step)

followed by merging patches. Tracking methods extract traces for all neurons in each session (first step), followed by identification of neurons across sessions

(second step).

(C) Temporal correlation involves a link session (orange) between consecutive pairs of recordings. High-quality neurons result in a corresponding neuron in the

link session with matching neural signals used to identify cells across sessions.

(D) SCOUT clustering algorithm groups cells from different sessions into clusters. Boxes indicate separate clusters, with the color of each circle indicating the

session. The associated numbers indicate the within-cluster similarity for the given cluster.

(E) Demonstration of the SCOUT algorithm. (1) Several cells (blue) and their neighbors (green) within a session (top left) and between sessions (top right).

Histogram of cell-cell similarity between sessions for a metric (bottom) with overlaid identification likelihood using several models. (2) A single cell (blue) and

its neighbors (top) within and between sessions with sample aggregate (across metrics) identification probabilities (bottom). (3) A sample graph in which nodes

indicate neurons, and edges between nodes denote identification probability exceeding a minimum threshold (min_prob). Colors correspond to sessions. (4) A

possible graph clustering.
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patches, giving extracted footprints and neural signals

throughout the full recording (Zhou et al., 2018); (3) extraction

of neural signals from each session independently, followed by

tracking cells across recordings via spatial similarities in the ex-

tracted neuron footprints (Sheintuch et al., 2017; Cai et al., 2016).

Concatenation and patch methods can be resource intensive

in terms of both computational power and time while requiring
2 Cell Reports Methods 2, 100207, May 23, 2022
neuron spatial footprints to remain in constant position over

time. In terms of scalability, cell-tracking methods may provide

the best option for long-term neural ensemble analysis, but

several factors complicate the cell-tracking task.

First, imperfect motion correction or low signal-to-noise ratio

(SNR) can reduce the quality of neuron extractions, leading to

false discoveries (neurons identified by extraction algorithms
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corresponding to noise or motion artifacts). Second, global

registration can lead to varying centroid distances and overlap

between identified neurons across the field of view (FOV). Third,

variability in neuron position and/or FOV changes can reduce

tracking accuracy across sessions. Finally, some analyses

require analysis of neural signals across all sessions, in which

case lowering the detection threshold for neuron extraction

may allow for the identification of lower signal neurons at the

cost of an increased false discovery rate (FDR) (Video S1). These

factors are compounded when experiments take place over

extended time periods (>30 sessions). An ideal cell-tracking al-

gorithm should therefore be robust to changes in neuron posi-

tion, false discoveries, and missing neurons. To address these

issues, spatial metrics alone are insufficient.

We present SCOUT (Single-Cell spatiOtemporal longitUdinal

Tracking), a method for tracking individual neurons across mul-

tiple sessions using both spatial and temporal metrics. SCOUT

uses the temporal similarity metrics of SNR and fluorescence

decay rate, as well as a new correlation metric that uses con-

necting recording segments to verify the neuron identification

(STAR Methods and Figure 1C) in addition to standard spatial

metrics such as centroid distance, footprint overlap, and Jen-

sen-Shannon (JS) divergence (Kullback, 1997), to improve

neuron identification between sessions. SCOUT also provides

the option of allowing the user to define additional metrics ac-

cording to their use case. SCOUT then uses a combination of

probabilistic models, a novel clustering algorithm, and

consensus clustering to perform cell tracking over multiple ses-

sions (Figures 1D and 1E). This combination of features makes

SCOUT unique among cell-tracking methods.
RESULTS

SCOUT: A single-cell multi-session tracking algorithm
incorporates both spatial and temporal metrics
SCOUT cell tracking consists of four steps: (1) cell-cell iden-

tification probability computation for session pairs; (2) creation

of cell-cell similarity matrices; (3) clustering of the cell-iden-

tification matrices and consensus clustering of the resulting

cell identifications; (4) creation of a cell register defining indices

of identified cells between sessions and associated neural sig-

nals (Figure 1E).

(1) For each metric, SCOUT selects all neuron pairs having

non-zero spatial overlap and footprint centroids within a

user-specified distance (max_dist). Next SCOUT con-

structs a probabilistic model (STAR Methods) dividing

the resulting similarity values into those corresponding

to identified cells between sessions, and those corre-

sponding to overlapping but non-identified cells, assign-

ing identification probabilities to each pair of cells.

(2) SCOUT perturbs a weights vector governing the impor-

tance of each metric and creates an aggregated cell-cell

probability by weighting the cell identification prob-

abilities in step (1). Applying this to each pair of sessions

creates a unique similarity matrix corresponding to each

weight, containing the cell-cell identification probabilities.

These matrices have size (n_cells 3 n_cells), where
n_cells is the combined total number of neurons in all

sessions. Cells with identification probability below a

threshold (min_prob) have similarity set to zero.

(3) SCOUT applies a tailor-made clustering algorithm to each

similarity matrix. Clusters are constrained by the number

of sessions and the requirement that neurons from the

same session belong to different clusters. At each it-

eration of the clustering algorithm, SCOUT computes

the total increase in average similarity between cluster

members (over all clusters) gained by assigning each

neuron to a new cluster (a switch) or by swapping the

cluster assignments of each pair of neurons (a swap) (Fig-

ure 1D). The operation that maximizes the similarity in-

crease is accepted, and the algorithm continues until a

maximum number of iterations is reached or no further

gains can bemade by these operations. Finally, if themin-

imal average cluster similarity falls beneath a chain_prob

parameter, a new cluster is created and populated with

the least similar neuron in the lowest scoring cluster

(ranked by average within-cluster similarity), and the pro-

cess repeats until convergence. Dissimilarity-based clus-

ter initialization and induced bias toward larger cluster

sizes increases accuracy and ensures convergence

(STAR Methods). SCOUT constructs a consensus proba-

bility matrix based on the clustering results from the pre-

vious section. The (i,j) entry gives the probability that the ith

and jth neurons belong to the same cluster, based on the

outputs in step (2) computed for each similarity matrix.

Applying the previously described clustering algorithm

to this consensus matrix creates finalized cluster identifi-

cations.

(4) Cell clusters are placed in a cell register, a matrix in which

each row corresponds to a tracked neuron and each col-

umn to a session. Calcium traces corresponding to each

tracked neuron are concatenated to obtain a neural signal

that traverses each session in the recording.

In this paper we explicitly demonstrate that temporal metrics

are consistent within and across sessions, justifying their inclu-

sion in the algorithm. We then demonstrate the effectiveness of

SCOUT on a set of simulated datasets, consisting of the

Gaussian dataset (control dataset, low background noise levels;

Figure S1A and STAR Methods), the Non-Rigid 1-photon (1p)

dataset (variable sized spatial footprints warped in place by

generated non-rigid transformation, high background noise

levels; Figure S1B), the Non-Rigid 2-photon (2p) dataset (modi-

fied version of the Non-Rigid 1p dataset in which footprint cen-

ters are removed to simulate characteristic ring shapes, salt

and pepper noise; Figure S1C), and the Individual Shift dataset

(spatial footprints individually translated a random distance, no

background noise; Figure S1D). We also test SCOUT on

1-photon experimental data from the visual cortex (VC) (Grieco

et al., 2020), the prefrontal cortex (PFC) (Grieco et al., 2021),

and the hippocampus (Hipp) (Sun et al., 2019) (Figure S1E),

which exhibit strong variation in neural signals due to experi-

mental conditions (STARMethods), as well as three 2-photon re-

cordings taken from the visual cortex (Allen, 2016) labeled VISl,

VISrl, and VISp (Figure S1F), taken as head-fixed mice were
Cell Reports Methods 2, 100207, May 23, 2022 3
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shown various stimuli (STAR Methods) causing neural signal

variability. Finally we test place-field stability of neurons id-

entified by SCOUT on three 1-photon recordings taken from

the hippocampus. Each dataset presents unique difficulties for

cell-tracking algorithms to address.

Usage of temporal metrics improve discrimination
between identified and non-identified neurons across
sessions
We first show that the temporal metrics SNR, decay rate, and

temporal correlation are consistent across and within sessions

and provide additional discriminatory features useful for identi-

fying neurons across sessions (Figures 2A–2C). To demonstrate

within-session consistency, we split the first session of in vivo

recording sessions in half longitudinally and compute SNR and

decay rate metrics on the resulting sessions. For each neuron

in the first half, we compute the absolute difference of the decay

rate and SNR for the same neuron in the second half, and the

nearest non-identified neuron in the second half as comparison

(Figures 2D and 2E).

Ratios of the median difference between the same and

nearest-neighbor neurons are significantly lower than 1.0

(p = 2.9 3 10�33, 1.5 3 10�4, 1.2 3 10�10 for VC, PFC, Hipp,

respectively, Wilcoxon rank-sum test), as aremedian SNR differ-

ence ratios (p = 2.3 3 10�24, 6.9 3 10�4, 4.8 3 10�3). Both SNR

and fluorescence decay exhibit slightly higher ratios on 2-photon

data, although this effect is primarily due to a single recording

(decay: p = 0.02, 0.04, 0.04; SNR: p = 1.4 3 10�7, 4.7 3 10�2,

7.4 3 10�10 for VISl, VISrl, VISp, respectively). Ratios ranged

from 0.5 to 0.65 (i.e., 50%–65% of the difference of non-identi-

fied nearest neighbors), indicating much lower differences be-

tween SNR and decay rate of the same neuron compared with

its neighbors.

Next, we compute similarity of temporal metrics (including

correlation metric) between neurons in the first session (unsplit)

and the second session of in vivo recordings, to demonstrate

that temporal metrics discriminate between identified and non-

identified neurons between sessions. This context adds compli-

cations, as some neurons may not correspond to identified pairs

in the other session, and the ground truth is unknown. We as-

sume that the most similar (based on the current temporal

metric) neurons with overlap exceeding 0.9 are identified, which

are compared with the nearest neighbor below this threshold.

Neurons in the first session with no other spatial footprints within

four pixels in the second session are excluded from the analysis.

On 1-photon data, median absolute difference in decay rates is

significantly lower (p = 4.13 10�9, 8.83 10�5, 2.43 10�5 for VC,

PFC, Hipp, respectively, Wilcoxon rank-sum test), as are differ-

ences in SNR (p = 6.33 10�8, 2.53 10�4, 3.13 10�6), with similar

results on 2-photon recordings (p = 0.006, 0.006, 6.3 3 10�9 for

VISl, VISrl, VISp, respectively). One result did not show significant

SNR differentiation (p = 0.98, 0.03, 0.01). Average correlation

metric values on both 1-photon data (p = 2.2 3 10�22,

2.2 3 10�8, 2.8 3 10�9) and 2-photon data (p = 7.2 3 10�5,

1.13 10�3, 6.83 10�12) show highermedian temporal correlation

for identified versus non-identified neurons.

Ratiosofmedian temporalmetricdifferencearehigherbetween

sessions (i.e., more difference between sessions than within ses-
4 Cell Reports Methods 2, 100207, May 23, 2022
sions), with differences between 60% and 75% those of nearest

neighbors for SNR and decay, and with correlation �1.5 times

higher between identified neurons and nearest neighbors. This

implies that themedian pair of identified neurons has significantly

more similar temporal profiles than nearest neighbors, which

motivates the inclusion of temporal metrics in SCOUT.
Testing SCOUT on simulated multi-session recordings
On simulated recordingswe first consider only neurons identified

through all sessions, as these are the most easily interpreted in

downstream analysis. Cell-tracking quality is defined using the

F1 metric 23PDR3ð1�FDRÞ
ð1�FDR+PDRÞ , which takes values between 0 and 1

(1 being the highest quality). Here, percent discovery rate

(PDR) is defined as the percentage of available neurons tracked

by a method, and FDR is defined as the percentage of tracked

neurons containing at least one false identification. Next, we

consider tracking quality for all sets of identified neurons using

the Jaccard similarity metric (computed as jAXBj=jAWBj, where

A and B represent sets of identified neurons). This analysis in-

cludes all clusters of identified neurons. For testing purposes,

we use neuron footprint centroid distance, spatial overlap, and

JS divergence (spatial metrics), and SNR, fluorescence decay

rate, and correlation (temporal metrics).

We test SCOUT (with and without temporal metrics), cellReg,

and CaImAn multiple times on each dataset with varying param-

eters (max_dist, min_prob, chain_prob for SCOUT, see STAR

Methods, and Figures S2 and S3 for cellReg andCaImAn param-

eters). Here we present results from parameters maximizing the

F1 score across each tested method. Statistical results are

computed using ANOVA and post hoc Bonferroni correction

(Bonferroni 1936) for multiple comparisons. Quantitative results

are presented as mean ± SE where each data point corresponds

to a single recording in the dataset.

We identify significant F1 score differences on the

Gaussian, Non-Rigid 1p, and Individual Shift datasets (Gaussian:

p = 3.06 3 10�12, F = 40.77; Non-Rigid 1p: p = 1.87 3 10�16,

F = 32.92; Individual Shift: p = 3.35 3 10�19, F = 45.14;

ANOVA). Pairwise comparisons show a statistically higher

average F1 score between SCOUT and CaImAn on the Gaussian

dataset (Figures 3A and S1A–S1C), a higher average F1 score be-

tween SCOUT and both cellReg and CaImAn on the Non-Rigid 1p

dataset (Figures 3B and S1D–S1F), no significant differences on

the Non-Rigid 2p dataset (Figures 3C and S2A–S2C), and a higher

F1 score for SCOUT than both cellReg andCaImAnon the Individ-

ual Shift dataset (Figures 3D and S2D–S2F) (CaImAn comparisons

p < 1.163 10�11, cellReg comparisons p < 2.63 10�17). Addition-

ally, SCOUT with temporal metrics outperforms SCOUT without

temporal metrics on both the Non-Rigid 1p dataset and the Indi-

vidual Shift dataset (p < 3.5 3 10�9).

In summary, SCOUT exhibits high-quality cell-tracking perfor-

mance when compared with methods such as cellReg and

CaImAn, particularly on the Non-Rigid 1p and Individual Shift da-

tasets (Table S1; Figures S2 and S3). Comparisons of SCOUT

with and without temporal metrics show that inclusion of tempo-

ral metrics in the analysis results in higher average F1 scores.

We next compute Jaccard similarity on the same data. This

method identifies significant differences in mean tracking quality
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Figure 2. Inclusion of temporal metrics is a key step when there is significant shift between neurons across sessions

(A) Scatterplots compare spatial (overlap) and temporal (SNR, decay, correlation) metrics (x axis) with the centroid distance metric (y axis) for all neuron pairs

(identified, blue; non-identified, red; labeled by ground truth) from two sessions of a recording taken from the Individual Shift dataset. Approximate decision

boundaries for each metric are indicated by the black dashed line.

(B) Scatterplots compare inter-cluster metric similarity on a 1-photon in vivo recording consisting of seven sessions. Correct identifications based on human an-

notated ground truth cell register. Incorrect identifications are simulated by randomly exchanging a neuron in a ground truth cluster with a near neighbor (as

measured by centroid distance). Plotted points indicate average similarity (bymetric) for both correct (blue) and incorrect (red, at least one error) clustering results.

Approximate decision boundaries for each metric are indicated by the black dashed line.

(C) Similarity metrics (as shown in A and B) are aggregated with resulting cell similarities used for clustering. False positives (FP), true positives (TP), false

negatives (FN), and true negatives (TN) are labeled in red, blue, purple, and green, respectively. Results using all metrics (top) and exclusively spatial metrics

(bottom), presented for the simulated (left) and in vivo (right) recordings.

(D) Bar charts compare SNR and decaymetrics between identified neurons, nearest neighbors, and average similarity across all neurons, within and between two

sessions of an in vivo 1p recording. (Top) SNR absolute differences (y axis) after splitting the first recording into two sessions (same), and between sessions

(between) for identified neurons (Closest), nearest neighbors (One NN), and all neuron pairs (All). (Bottom) Absolute signal decay rate differences within and

between sessions. The reduction in value between sessions is due to the use of post-extraction computation decay for thewithin-session data. Error bars indicate

SE across associated neuron pairs. Asterisks indicate significant differences between identified and nearest neighbors/All pairs using Wilcoxon rank sum test

(p < 5 3 10�3).

(E) (Top) Neural traces associated with a single spike from three neurons taken from two sessions of an in vivo 1-photon recording: (blue) a baseline neuron from

the first session, (red) an identified neuron from the second session, (yellow) a non-identified neuron from the second session. (Bottom) Neural traces from the

baseline, identified, and non-identified neurons along with the noise level after normalization to unit peak intensity.

Cell Reports Methods 2, 100207, May 23, 2022 5

Article
ll

OPEN ACCESS



A

B

C

D

E F G

Figure 3. Inclusion of temporal similarity metrics improves cell tracking across sessions on simulated datasets

(Recording Scores) Maximal F1 scores (y axis) using all tested cell tracking algorithms. Statistically significant differences compared with SCOUT (ANOVA,

Bonferroni correction) are marked with an asterisk. Methods (x axis) are SCOUT, spatial (SCOUT using only spatial metrics), cellReg, and CaImAn. (Session

Projection) Max projection of sample individual session from each dataset, across methods. (Ground Truth) Ground truth neurons available for tracking through

all sessions. Colors indicate neurons tracked by eachmethod. The number of correctly tracked (ID) and incorrectly trackedwith at least one error (FID) cell register

entries are labeled below for each method. (Sessions 1 and 2) Tracked and missed neurons superimposed on the max projection of extracted neurons from

sessions 1 and 2 of a sample recording. For all panels, bars indicate mean ± SE and asterisks indicate statistical significance of pairwise comparisons with

SCOUT (ANOVA, Bonferroni correction for multiple comparisons).

(A–D) F1 scores, session projections, ground truth, and identified neurons bymethod for the Gaussian (A), Non-Rigid 1p (B), Non-Rigid 2p (C), and Individual Shift

(D) datasets.

(E) Maximal Jaccard similarity scores (y axis) from each recording and session in the simulated datasets (x axis). Bars indicate mean ± SE. Asterisks indicate

statistically significant differences.

(F) JS divergence (y axis) of identified cluster sizes for eachmethod (x axis) with the ground truth for each recording in the Non-Rigid 1p dataset using parameters

producing highest F1 scores.

(G) y axis: the ratio of neurons tracked through all sessions by each method to the ground truth number of neurons available for tracking using parameters

producing highest F1 scores.

See also Figures S2 and S3; Table S1.
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on all datasets except for the Non-Rigid 2p dataset (Gaussian:

p = 2.1 3 10�15, F = 127.8; Non-Rigid 1p: p = 1.64 3 10�15,

F = 46.6; Individual Shift: p = 7.83 10�13, F = 39.6; ANOVA, Fig-

ure 3E). Post hoc Bonferroni tests show that SCOUT exhibits

higher Jaccard similarity than CaImAn on the Gaussian dataset

(p = 2.2 3 10�14), higher Jaccard similarity than both CaImAn

and cellReg on the Non-Rigid 1p dataset (p < 1.4 3 10�11),

and higher Jaccard similarity than both cellReg and CaImAn on

the Individual Shift dataset (p < 4.83 10�9). These results corre-

spond with F1 score results and show that SCOUT exhibits

higher cell-tracking quality across all proposed clusters, not

just neurons tracked across all sessions (Table S1).

To identify possible biases toward large cluster sizes with

SCOUT, we compute the JS divergence between projected

cluster distributions and ground truth cluster distributions for

eachmethod on the Non-Rigid 1p dataset (the dataset exhibiting

the largest difference with more than two sessions per

recording), using the parameters giving the best average F1

score for each method (Figure 3F). ANOVA shows significant

differences between average JS divergence across methods

(p = 4.5 3 10�9, F = 22.9), with post hoc comparisons exhibiting

lower average JS divergence for SCOUT compared with CaImAn

(p < 2.5 3 10�9; JS: SCOUT 0.051 ± 0.003, cellReg 0.057 ±

0.003, CaImAn 0.083 ± 0.005). Computing the ratio of neurons

tracked through all sessions for each method to the ground truth

demonstrates comparable results for all methods when consid-

ering the statistic absð1 � ratioÞ (Figure 3G).

We next compute Jaccard similarity, JS distribution similarity,

and percentage of tracked neurons after removing 30% of neu-

rons from each session (and the associated ground truth cell reg-

ister) to determine whether significantly reducing the available

neurons per session affected cell-tracking quality. This analysis

shows that SCOUT exhibits significantly higher similarity with

the ground truth distribution compared with cellReg and

CaImAn (ANOVA: F = 22.8, p = 4.93 10�9, pairwise comparisons

p < 0.03) while exhibiting lower overdetection rates of neurons

through all sessions when compared with cellReg (ANOVA:

F = 5.9, p = 3.63 10�3, pairwise comparisons p = 0.020, statistic

abs(1 � ratio)) (Figures S4A–S4C). This implies that inferred

tracking registers produced by SCOUT exhibit close similarity

to ground truth distribution on similar scales with other methods,

while also being robust to neuron deletion.

Next, we repeatedly perform cell tracking with SCOUT using

the spatial metrics and a single temporal metric on the Non-Rigid

1p and Individual Shift datasets, as these datasets exhibit signif-

icant variation upon inclusion of temporal metrics. On the Non-

Rigid 1p dataset, inclusion of each individual additional temporal

metric results in higher average F1 scores, with similar results on

the Individual Shift dataset, except for the SNR metric, which is

expected because no background noise is simulated in this da-

taset (Figures S2D–S2F and S3D–S3F). Combining temporal

metrics increases the average F1 score in most instances.

Finally, we run speed tests (24 core, 128 GB pc, 2.2 GHz

processor) by duplicating simulated data sessions to produce

recordings with up to 30 sessions. We compare SCOUT, cell-

Reg, and CaImAn on 50 simulated recordings. Both cellReg

and SCOUT exhibit quadratic time increase in the number

of sessions (Figure S4D), compared with linear time increase
for CaImAn. However, the quadratic coefficient for SCOUT

is lower than for cellReg, and SCOUT significantly outper-

forms cellReg in terms of runtime while maintaining compara-

ble results with CaImAn for recordings of length up to 20

sessions.

Using both F1 and Jaccard metrics, SCOUT scores higher

than alternative methods on the Non-Rigid 1p and Individual

Shift datasets. JS divergence shows that the distribution of iden-

tified neuron cluster sizes is significantly closer to the ground

truth using inferred cell registers from SCOUT, while the percent-

age of neurons tracked through all sessions is largest with

SCOUT. Inclusion of temporal metrics increases average F1

score and shows that SCOUT typically runs faster than cellReg,

with speed comparable with CaImAn for recordings of length up

to 20 sessions.

SCOUT successfully tracks cells on in vivomulti-session
recordings
We evaluate SCOUT on in vivo 1-photon recordings (Figure S1E)

taken from the visual cortex, prefrontal cortex, and hippocampus

of mice consisting of 4–7 sessions (4,000–9,000 frames each)

from each region, compared with annotated cell registers (see

STAR Methods for annotation criteria).

On the visual cortex dataset, optimal parameters (among

those tested) give F1 scores of 0.736 and 0.590, tested on

SCOUT with and without temporal metrics, respectively. This re-

solves to PDR of 78.0% and 61.0% and FDR of 30.3% and

42.9% (Figures 4A and S5A). On the prefrontal cortex dataset,

optimal parameters give F1 scores of 0.701 and 0.468, with

PDR 71.1% and 47.4% and FDR 30.8% and 53.9%

(Figures 4B and S5B). On the hippocampus dataset, optimal pa-

rameters give F1 scores of 0.481 and 0.367 with PDR of 58.5%

and 35.4% and FDR of 59.2% and 62.0%, respectively

(Figures 4C and S5C). Average F1 scores and PDR with

SCOUT (0.639 ± 0.080 and 69.2%, respectively) exceed those

of cellReg (0.431 ± 0.107 and 48.9%) and CaImAn (0.368 ±

0.123 and 34,0%), and individually exceed both methods on all

1-photon datasets.

The three 2-photon recordings (Figure S1F) consist of three

sessions, one taken from the VISl (Figures 5A and S6A), the VISrl

(Figures 5B and S6B), and the VISp (Figures 5C and S6C).

Optimal parameters give average F1 scores and PDR for

SCOUT (0.875 ± 0.025 and 91.1% with temporal metrics,

0.862 ± 0.024 and 89.5% without temporal metrics), cellReg

(0.816 ± 0.038 and 85.2%), and CaImAn (0.803 ± 0.04 and

78.0%).

Together, SCOUT exhibits F1 scores �50% higher than cell-

Reg and CaImAn on 1-photon data, while median place-field

consistency for neurons identified exclusively by SCOUT is com-

parable with consistency of neurons identified by both methods

on the three additional hippocampus datasets, and significantly

lower than the consistency between random pairs of neurons.

While the difference is smaller, SCOUT also produces top-

ranked F1 scores on the 2-photon dataset.

Testing performance via place cell stability analysis
We test SCOUT and cellReg on three additional 1-photon re-

cordings of the hippocampus to verify cell-tracking results via
Cell Reports Methods 2, 100207, May 23, 2022 7
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Figure 4. Inclusion of temporal metrics boosts cell-tracking performance on 1-photon in vivo data

(A–C) (Parameter Scores) F1 scores (y axis) computed based on human annotation for in vivo 1-photon datasets obtained from the visual cortex (A, seven ses-

sions), prefrontal cortex (B, seven sessions), and hippocampus (C, four sessions). Violin plots with median values constructed using F1 scores across parameters

after outlier removal and computed using kernel density estimation. Asterisks indicate statistically significant differences compared with SCOUT (ANOVA,

Bonferroni). (Session Projection) Maximum projection of the first session of each recording from all datasets. (Sessions 1–3) Identified neurons from cellReg

and SCOUT overlaid on max projection of the human annotated neurons tracked through all sessions.

See also Figure S5.
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place-field stability. These recordings consist of four sessions

with 10,795 frames each (at 30 Hz), taken as mice run on a

1-m linear track. Sessions are extracted via CNMF-E, and both

SCOUT and cellReg are used to compute cell registers for

each recording set, using the best average parameters on the

1-photon data from the previous analysis (see STAR Methods

for exact values). For each neuron in each session, information

scores and place fields are computed, and information percen-

tiles are computed via random shuffling of the position vector.

To reduce noise, we remove all register entries consisting of

neurons identified in only two sessions and analyze results for

all identified cell pairs (e.g., a cell tracked through four sessions

produces six identified cell pairs). We place identified cell pairs in

three categories: cell pairs identified by both methods, cell pairs

identified by SCOUT, and cell pairs identified by cellReg. This re-

sults in an average of 558 ± 208 pairs identified by bothmethods,

327 ± 182 pairs identified exclusively by cellReg, and 122 ± 48

pairs identified exclusively by SCOUT. The high variance is due

primarily to fewer extracted neurons in the third recording.

For each cell pair, we compute statistics for average JS

divergence between place fields, percentage of identified cells

with JS divergence below assignment threshold (i.e., consistent

place fields), and the percentage of identified neurons in which

either place cells are matched with place cells, or non-place

cells are matched with non-place cells. We analyze results at

a variety of information percentiles (range [0.95, 0.99]) and in-

formation score thresholds (range [0.5, 1.5]). For each

threshold, we restrict analysis to only neuron pairs in which at

least one member exhibits information percentile or information
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score exceeding the specified thresholds. Prior to analysis, we

verify for each recording that the average JS divergence rate

for identified cells by both SCOUT and cellReg is significantly

lower than the average between random cell pairs

(p < 2.6 3 10�9, two-sample t test), implying that a significant

number of identified neuron pairs exhibit place-field stability

across sessions (Figure 6A).

Computing statistics for average JS divergence between place

fields, percentiles exceeding 0.95 and information score thresholds

in range ½0:8; 1:5� result in statistically lower JS divergence be-

tween place fields exclusively identified by SCOUT compared

with those identified exclusively by cellReg (min p = 0.0079, max

p = 0.0488, linear mixed effects model with fixed cell-tracking

method grouped by recording, Figure 6B). This range of values

matches that of a previous study (Grijseels et al., 2021) that sug-

gestsapercentile thresholdof 0.95–0.99ofplacecells,while exper-

imentation showed that neurons with information score threshold

exceeding 1.0 showed strong spatially localized firing activity.

Setting a threshold of 0.95 for percentile and 1.3 for info score

threshold, we compute the percentage of identified neurons with

JS divergence below an acceptance threshold (range [0.025,

0.1]) for neuron pairs containing place cells, a range that typically

implies strong place-field overlap. For percentile and information

score thresholds, SCOUT exhibits a larger fraction of identified

neurons below the acceptance threshold across the entire range

when compared with cellReg (average difference, percentile:

0.086 ± 0.065; threshold: 0.098 ± 0.06; mean ± SE, Figure 6C).

Similarly, the fraction of SCOUT-identified pairs is more likely

than those identified by cellReg to identify place cells with place
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Figure 5. SCOUT accurately tracks neurons across 2-photon in vivo recordings

(A–C) (Parameter Scores) F1 scores (y axis) computed based on human annotation for in vivo 2-photon datasets obtained from the visual cortex (A, VISl; B, VISrl;

C, VISp) consisting of three sessions each. Violin plots with medians constructed using F1 scores across parameters after outlier removal and computed using

kernel density estimation. Asterisks indicate statistically significant differences compared with SCOUT (ANOVA, Bonferroni). (Session Projection) Max projection

of the first session of each recording. (Sessions 1–3) Identified neurons from cellReg and SCOUT overlaid on max projection of the human annotated neurons

tracked through all sessions for sessions 1–3 of each recording.

See also Figure S6.
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cells (and non-place cells with non-place cells) across sessions

(average difference across datasets and thresholds, percentile:

0.150 ± 0.106; percentile threshold range = [0.95, 0.99];

threshold: 0.068 ± 0.070; information score threshold range =

[0.5, 1.5]; mean ± SE, Figure 6D), although the threshold result

is biased by the third recording.

In summary, neuron pairs identified exclusively by SCOUT

exhibit higher average place-field similarity while also exhibiting

a larger fraction of pairs with highly similar place fields. Addition-

ally, SCOUT-identified pairs are more likely to lie within the same

categorization of either place cells or non-place cells. Although

at the specified thresholds SCOUT identified fewer neurons

than cellReg, the average JS divergence for SCOUT pairs iden-

tified by SCOUT is lower than for cell pairs identified by both

methods (in two out of three recordings), while the opposite is

true for cellReg (Figure 6B). This indicates the significant possi-

bility of a higher false identification rate for cellReg as is seen

in the previous 1-photon datasets.

Effects of parameter selection on cell-tracking results
Computingmean normalized SDof F1 scores on 1-photon in vivo

datasets (after outlier removal) gives 0.067 ± 0.0072, 0.066 ±

0.0087, and 0.090 ± 0.0144 (mean ± SE) for SCOUT, cellReg,
and CaImAn, respectively. Computing mean normalized SD on

the 2-photon datasets gives 0.041 ± 0.0098, 0.032 ± 0.012,

and 0.12 ± 0.11 for SCOUT cellReg, and CaImAn, respectively.

This suggests comparable parameter stability between SCOUT

and cellReg, with somewhat higher variability using CaImAn.

Computing the percentage of SCOUT parameters producing

higher F1 scores than the maximum produced by CaImAn and

cellReg on each dataset gives an average of 99.1% ± 0.9% on

the 1-photon dataset and an average of 48.7% ± 20% On the

2-photon datasets.

We compute the ratio of F1 score to maximum F1 score for

each method and dataset across all parameters. Higher values

indicate results closer to the optimum. Averaging across data-

sets, we find that SCOUT (median 0.921) exhibited significantly

higher ratios than cellReg (median 0.851) and CaImAn (median

0.852) (p < 1.2 3 10�5, Wilcoxon rank-sum test), implying that

SCOUT produces highly consistent results across parameters

when averaging across datasets. Only 11% of cellReg parame-

ters and 0%of CaImAn parameters produce F1 ratios exceeding

the median SCOUT value. We also identify a parameter range

(labeled on Figures 7A–7C) that consistently produces strong re-

sults (average 0.950 ± 0.0014, F1 ratio to optimal). These param-

eters emphasize a low threshold for individual identification of
Cell Reports Methods 2, 100207, May 23, 2022 9
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Figure 6. Testing cell-tracking results using place-field stability

(A) Sample place fields ordered from left to right (indexed via the first session) after normalization by peak intensity.

(B) Boxplot of JS divergence (y axis) for each recording computed for identified neuron pairs by each method in which either one neuron exceeded the 95th

percentile (top) or a hard threshold of 1.3 (bottom).

(C) The weighted average (across recordings) of the fraction of identified cell pairs (y axis) which exhibit pairwise JS divergence lower than a specified threshold (x

axis), computed using cell pairs in which one neuron exceeded the 95th percentile (top) or a hard threshold of 1.3 (bottom).

(D) The weighted average (across recordings) of the fraction of identified cell pairs (y axis) which consisted of either both place cells or both non-place cells for

information percentile thresholds (top) and information score thresholds (bottom).
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neurons across sessions (min_prob, range 0.55–0.75), com-

bined with a high threshold for the acceptance of identified clus-

ters (chain_prob, 0.75).

In summary, SCOUT exhibits comparable or higher parameter

stability compared with other methods while consistently return-

ing top F1 scores. On the 1-photon recordings, virtually every

tested parameter choice produces higher F1 scores than

competing methods, while nearly 50% of 2-photon results also

outperforms the top-line CaImAn and cellReg F1 scores. Finally,

averaging results across all datasets, the median F1 score

(across parameter choices) exceeds 90% of the maximum,

and we identify a parameter range on which average F1 scores

consistently exceed 95% of the maximum.

DISCUSSION

Here we present SCOUT, a novel cell-tracking method applicable

to both 1-photon and 2-photon recordings. SCOUT exhibits
10 Cell Reports Methods 2, 100207, May 23, 2022
robust performance on all of the tested datasets, generally

exceeding the performance of commonly used methods such

as cellReg and CaImAn in simulated situations involving signifi-

cant spatial/morphology shifts or high noise levels, and in vivo

recordings in general. SCOUT retains strong performance even

in the presence of confounding variables such as non-rigid spatial

shifts and poor signal extraction quality by incorporating temporal

metrics, a novel clustering algorithm, and consensus clustering.

While SCOUT was initially motivated for use with 1-photon

recordings, we also demonstrate robust performance on

2-photon recordings, although the inclusion of temporal metrics

here does not significantly improve results on the tested data.

The significant difference between 1-photon and 2-photon re-

sults are likely due to the stronger signal quality in 2-photon

data, which may reduce the discriminatory power of some tem-

poral metrics such as SNR in this context.

SCOUT exhibits strong performance even on recording

sessions impacted by experimental conditions. Application of
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Figure 7. SCOUT F1 scores by parameter for each dataset

Heatmaps denote F1 scores across parameters. Each parameter in the ‘‘All’’ rows are obtained using SCOUT with all metrics, while the ‘‘Spatial’’ rows use only

spatial metrics. Each box contains vertical parameter changes corresponding to themax_dist parameter, and horizontal parameter changes corresponding to the

min_prob parameter. Movement horizontally across boxes corresponds to the chain_prob parameter. Parameter ranges discussed in the text are labeled in red.

(A) SCOUT F1 score averages for the (top to bottom) Gaussian, Non-Rigid 1p, Non-Rigid 2p, and Individual Shift datasets.

(B) SCOUT F1 scores for 1-photon recordings labeled as (top to bottom) visual cortex, prefrontal cortex, and hippocampus.

(C) SCOUT F1 score for 2-photon recordings from the visual cortex labeled as (top to bottom) VISl, VISrl, and VISp.
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ketamine, NRG1, or CNO as is present in the 1-photon datasets

produces significant impact on the signal intensity of individual

neural signals (Grieco et al., 2020; Sun et al., 2019), but inclusion

of temporal metrics still significantly improves overall results.

Testing SCOUT on 1-photon hippocampal recordings, we

have analyzed cell-tracking output using place-field stability as

measured by three separate metrics for which SCOUT produces

strong performance. Neuron pairs identified exclusively by

SCOUT exhibit lower JS divergence between place fields, while

a higher average percentage of SCOUT-identified neuron pairs

exhibited consistent place fields and a higher average percent-

age of SCOUT-identified neuron pairs are of the same type

(place cell to place cell or non-place cell to non-place cell)

when compared with cellReg.

SCOUT quickly identifies neurons across multiple sessions,

with cell tracking taking less than 10 min across up to 30 ses-

sions (depending on the number of neurons). Increasing the

number of sessions or neurons per session can significantly in-

crease the runtime, which can be addressed using a combina-

tion concatenation-cell-tracking methodology (see STAR

Methods) or by thresholding the neuron footprints to reduce

spatial overlap, thereby decreasing the component size when

clustering.

In conclusion, SCOUT shows strong cell-tracking perfor-

mance on both simulated and in vivo datasets. We have shown

that inclusion of temporal metrics when identifying cells across

sessions significantly increases the quality of cell tracking. We

have also shown that SCOUT exhibits strong parameter consis-

tency over a relatively large parameter range across all datasets.
We foresee that the new concepts and techniques used in

SCOUT will improve capabilities for long-term cell-tracking-

related experiments, particularly in complex situations where

SCOUT retains strong performance compared with alternative

methods.

Limitations of the study
While temporal metrics can improve the identification of similar

neuron pairs across sessions, strong temporal correlation ex-

hibited between nearby neurons may affect the overall discrimi-

natory power of the temporal correlation metric. In studies

involving the functional stability of cells, this may lead to a higher

observed stability than true stability, as temporal correlation may

lead to the identification of different but functionally similar cells.

SCOUT automatically computes the discriminatory power of

each metric, which may guide the user in adjusting weight

values. In any case, the correlation metric may be disabled (by

setting the associated weight to zero).
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Detailed methods are provided in the online version of this paper
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1-photon hippocampus recordings for

place field analysis (3 recordings)

This paper https://doi.org/10.5281/zenodo.6407203

1-photon visual cortex

recording (1 recording)

(Grieco et al., 2020) https://doi.org/10.5281/zenodo.6407203

1-photon prefrontal cortex

recording (1 recording)

(Grieco et al., 2021) https://doi.org/10.5281/zenodo.6407203

1-photon hippocampus

recording (1 recording)

(Sun et al., 2019) https://doi.org/10.5281/zenodo.6407203

2-photon visual cortex

recordings (3 recordings)

(Allen, 2016) https://doi.org/10.5281/zenodo.6407203

Software and algorithms

SCOUT This Paper https://github.com/kgj1234/SCOUT,

https://doi.org/10.5281/zenodo.6407315

CaImAn (Giovannucci et al., 2019) https://github.com/flatironinstitute/CaImAn

cellReg (Sheintuch et al., 2017) https://github.com/zivlab/CellReg

NoRMCorre (Pnevmatikakis and

Giovannucci, 2017)

https://github.com/flatironinstitute/

NoRMCorre

image-registration (Forsberg, 2015) https://github.com/fordanic/

image-registration

CNMF-E (Zhou et al., 2018) https://github.com/zhoupc/CNMF_E

Visual Coding: Allen Brain Map (Allen, 2016) https://portal.brain-map.org/explore/

circuits/visual-coding-2p

Miniscope Data Acquisition Software UCLA miniscope.org

MATLAB Mathworks www.mathworks.com

Other

Miniscope UCLA miniscope.org

GRIN Lens Edmund Optics #64-519
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Qing Nie (qnie@uci.edu).

Materials availability
This study did not generate new materials.

Data and code availability
d Data (analysis and raw recording files) can be accessed at Zenodo (https://doi.org/10.5281/zenodo.6407296, https://doi.org/

10.5281/zenodo.6407242, https://doi.org/10.5281/zenodo.6407203).
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d Code is publicly available on Github (https://github.com/kgj1234/SCOUT) and at Zenodo (https://doi.org/10.5281/zenodo.

6407315).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

1-Photon recordings (visual cortex, prefrontal cortex, hippocampus)
Recordings were taken from the visual cortex, prefrontal cortex, and hippocampus. The visual cortex recording was subject to the

following protocol (Grieco et al., 2020). An initial pair of baseline sessions were taken on consecutive days. After baseline collection

on the second day, the animal received a ketamine wash treatment followed by a second recording session. Day 3 consisted of a

baseline recording session, followed by NRG1 wash and a second recording session. A single recording session was taken on

days 4 and 5. The 7 individual sessions consisted of 4,000–9,000 frames. All tested animals were male.

The prefrontal cortex recording was subject to the following protocol (Grieco et al., 2021). An initial pair of baseline recordings were

taken on consecutive days. After baseline collection on the second day, the animal received a ketamine wash treatment followed by a

second recording session. Further recordings were taken 2hr, 24hr, 48hr and 72hr after ketamine treatment. The 7 individual sessions

consisted of 4,000–9,000 frames.

The hippocampus recording was subject to the following protocol (Sun et al., 2019). Two baseline control recordings taken on

consecutive days, were followed on the following day by treatment with CNO (clozapine-N-oxide) and a third session. A post control

session was taken after 4 days. Sessions consisted of 7,000–9,000 frames.

Recordings were obtained from and used with permission of the Xu lab (https://sites.uci.edu/xulab/). Recordings previously pub-

lished in (Grieco et al., 2020; Grieco et al., 2021; Sun et al., 2019).

1-Photon hippocampus recordings for place field stability
C57BL/6 mice were obtained from the MODEL-AD center at the University of California, Irvine. Mice were housed under a controlled

environment with temperature maintained at 21 - 23�C and humidity at 40%–70%. Mice had free access to water and diet except

water restriction during linear track test. The age was 8–10 months at the time of test, both sexes were included since we didn’t

observe difference of behavior and calcium activity between male and female mice. All the experimental protocols were approved

by the IACUC of the University of California, Irvine.

Surgery was performed as described previously (Sun et al., 2019). Briefly, AAV1-CaMKIIa-GCaMP6f-WPRE-SV40 was purchased

fromAddgene. Micewere anesthetizedwith 1.5–2% isoflurane and placed on a stereotaxtic instrument (Stoelting). Virus was injected

into dorsal CA1 (AP -1.94, L 1.4, DV -1.38mm, relative to bregma) of the right hemisphere using a glass micropipette. The diameter of

the pipette tip was 20 - 30 um. The virus titer was 13 1013 GC/mL and injection volume was 0.3 mL. Mice were treated with carprofen

(3 mg/kg) as analgesia for 3 days after surgery.

To record CA1 neurons, a GRIN lens was implanted two weeks after virus injection. Mice were anesthetized with isoflurane, and

carprofen and dexamethasone (2 mg/kg) were administered. A 2-mm-diameter cranial window was drilled over CA1, centered at AP

-2.3, L 1.75 mm. Then dura was removed with ultrafine forceps, and cortical tissue above the target CA1 area was carefully aspirated

using a 29-G blunt needle connected to vacuum, until the vertical striations of corpus callosum appeared. Sterile saline was applied

during aspirating. After bleeding was completely ceased, a GRIN lens (1.8mmdiameter, 4.3mm length, 0.25 PITCH, EdmundOptics)

was lowered to contact the corpus callosum (depth�1.55 mm) for CA1 imaging and secured with superglue and dental cement. The

skull and lens were covered with Kwik-Sil silicone elastomer (WPI), and mice were allowed to recover for 2–3 weeks.

Mice were anesthetized again, Kwik-Sil was removed and a miniscope (UCLA) mounted onto a baseplate was placed on the GRIN

lens to search the imaging area. After cells being in focus, the baseplate was attached on the skull with dental cement, miniscopewas

removed and a plastic cap was placed on the baseplate to prevent dust.

Mice were water restricted until their bodyweight reached 85–90%of the initial weight, then they were trained to run back and forth

on a 1-meter-long linear track to obtain 10–20 mL of water reward on either end of the track. After 5 days of training, miniscope was

tethered and mice were trained for another 5 days. The testing consisted of two trials at 30 min apart each day and was repeated for

3 days. On the first day, the linear trackwas placed in the initial orientation of training. On the second day, the track remained the initial

orientation in the first trial and rotated for 90� in the second trial. On the third day, the orientation was 90-degree rotated in the first trial

and back to the initial orientation in the second trial. Mice were tested for 30 laps in each trial, usually finishing in 10–15 min. Calcium

activity of CA1 neurons was recorded by miniscope, and mouse behavior was recorded by a Logitech webcam simultaneously.

Linear track was cleaned with 70% ethanol before each recording. Place field consistency analysis was computed on recordings

taken only with the initial orientation, resulting in four sessions.

Mouse IDs (in archived data) are 533 (Female), 536 (Male), and 545 (Female). Data not previously published.

2-Photon recordings
2-photon recordings were obtained from the Allen Brain Observatory AWS archive (Allen, 2016). Recordings consisted of three ses-

sions. Recordings were temporally downsampled by a factor of 2, and the first 5,000 frames of each session were used for testing.
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Experiments consisted of showing head fixed mice separate visual protocols on three separate days. Protocols consisted of

drifting gratings, static gratings, sparse noise, natural scenes and natural movies. See Allen brain observatory documentation for

additional information (https://help.brain-map.org/display/observatory/Documentation).

Allen Brain Atlas access information. VISl: Experiment ID 564425775, Genotype: Emx1-IRES-Cre/wt; Camk2a-tTA/wt; Ai93(TITL-

GCaMP6f)/wt. VISrl: Experiment ID 660510591, Genotype: Cux2-CreERT2/wt; Camk2a-tTA/wt; Ai93(TITL-GCaMPf)/wt VISp: Exper-

iment ID 642651896, Genotype: Rorb-IRES2-Cre/wt; Camk2a-tTA/wt; Ai93(TITL-GCaMP6f)/wt. Gender not noted in Allen API.

METHOD DETAILS

Simulated recordings
For all simulated datasets, neuron footprints were simulated as 2-dimensional Gaussian probability distributions, with diagonal

covariance matrices. Spatial footprint width was between 20 and 25 pixels. Spikes were simulated from a Bernoulli distribution

with probability of spiking per timebin 0.01, and then convolved with a temporal kernel g(t) = exp(�t/td) � exp(�t/tr), with fall time

td = 6 timebins, and rise time tr = 1 timebins. Local background spatial footprints were simulated as 2-D Gaussians, but with larger

covariance entries than for the neuron spatial footprint. Blood vessel spatial footprints were simulated using a cubic function, which

was convolved with a 2-D Gaussian (Gaussian width: 3 pixels). A random walk model was used to simulate temporal fluctuations of

local background and blood vessels. 23 background sources were used throughout all simulated experiments, except for the Indi-

vidual Shift dataset, in which no background sources were present.

Four sets of recordings were simulated for testing purposes. The Gaussian dataset consisted of 11 recordings with 2000-10,000

frames each, with a 256 x 256-pixel FOV. Each recording was simulated using 50–200 neurons. The Non-Rigid 1-photon dataset con-

sisted of 39 footprint recordings consisting of four sessions of 2000 frames each. Each simulated spatial footprint was transformed

with a different individual non-rigid transformation in each session. This transformation was primarily in place, with little translational

effect (<2 pixels). The Non-Rigid 2-photon dataset consisted of a copy of the Non-Rigid 1p dataset, in which Gaussian noise was re-

placed with salt and pepper noise, to portray 2-photon conditions more closely. Spatial footprints were converted into characteristic

ring shapes via the following transformation. Pixel intensity values were scaled to lie in the [0,1] interval. All pixels with intensity higher

than 0.5 were then replaced by the same intensity subtracted from one. The Individual Shift dataset consisted of 29 recordings con-

sisting of two 3000 frame sessions, with a 1003 100-pixel FOV. Each recording was simulated using 50–100 neurons. The individual

spatial footprints were shifted independently by between 5 and 7 pixels (�30%–40% neuron width) in the second session.

Information score computation and place cell identification
The method for identifying place cells is based on a previous study (Sun et al., 2019). For each neuron, peak activity locations of

neuron activity (neuron.S) were identified, and associated peak intensities were computed. As CNMF-E can produce a significant

number of outlying peak intensity values, low outliers were removed by setting a threshold of (0.5)*median(peak intensity), and

peak intensities exceeding a threshold equal to three median absolute deviations from the median peak intensity (the MATLAB

default) were set to this upper bound. Finally, the output was smoothed using a Gaussian kernel (width 0.5).

Next, we identified time points where the mouse was within 10% of the distance from either end of the linear track, or when mouse

speed was lower than an estimated movement threshold, and the corresponding neural signal was removed from the analysis.

Finally, we divided the interior region (i.e. the middle 80% of the track) into 20 bins (horizontal axis only) and computed the ratio

of the neural signal measured in each bin to the amount of time the mouse spends in each bin to produce the place field.

For each neuron, the mutual information between position and neural activity (information score) was computed as
P

pili log2ðliÞ,
where pi denotes the probability of the animal being in each bin, and li denotes the ratio of the probability of firingwhile in the bin to the

mean probability of firing. The sum is taken across all bins.

Information percentiles were computed for each neuron by recomputing the information score after randomly shifting the position

by at least 3 seconds a total of 500 times. The information percentile was then assigned as the percentile of the non-translated in-

formation score in the distribution of translated information scores.

Preprocessing recordings
In vivo recordings were preprocessed using NoRMCorre image registration for motion correction (Pnevmatikakis and Giovannucci,

2017). For experiments taking place over more than one recording, alignment between sessions was performed either manually, by

using max projections in imageJ (Schindelin et al., 2012), or automatically using image registration libraries created for Matlab (Fors-

berg, 2015). SCOUT provides an interface for automatic image registration, as well as manual feature selection-based registration.

When tracking cells on simulated data, no global session registration was performed prior to recording extraction, as no global

spatial shifts or deformations were introduced into these datasets. Individual cell tracking methods also had their automatic session

registration disabled prior to tracking to remove bias due to global registration method.

Optical recording extraction algorithms
Calcium imaging extraction produces two outputs from each session: a set of spatial footprints (consisting of pixel intensity values

corresponding to each neuron for a given recording session), and the temporal signal (extracted calcium traces; DF/F). The spatial
e3 Cell Reports Methods 2, 100207, May 23, 2022
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footprints are the primary input for most cell tracking algorithms, while the temporal neural signals are primarily used for downstream

analysis.

One class of methods for signal extraction involves semi-manual ROI selection (Pnevmatikakis, 2019). Such methods include

manual ROI selection of individual neuron footprints, and subsequent deconvolution of the neural trace, as well as methods such

as convolutional neural networks (CNNs) which use a corpus of identified footprints to train a neural network to identify footprints

in future experiments (Apthorpe et al., 2016), followed by a second step in which temporal fluorescence traces are extracted based

on the proposed footprints. However, suchmethods become computationally intractable when considering large cell population and

become less accurate when considering neurons exhibiting strong spatial overlaps between footprints.

Another class ofmethods involves automated ROI construction, where both fluorescent traces, and spatial footprints are extracted

simultaneously. The simplest such example is PCA/ICA (Mukamel et al., 2009), in which PCA and ICA are successively used to isolate

and extract spatial footprints and calcium activity from optical recordings. These methods rely on linear demixing and can produce

significant error when neuron footprints exhibit strong spatial overlaps (Pnevmatikakis et al., 2016).

The most recent major advance in 1-photon optical recording extraction (as far as the authors are aware) is CNMF-E (Zhou et al.,

2018). As this is the primary method adapted in this paper, we will briefly describe the algorithm.

Given a recording, let d represent the number of pixels in the field of view, T the number of frames observed, and K, the number of

neurons in the field of view. Then let Y ˛Rd3T
+ represent the initial calcium fluorescence recording; let A˛Rd3K

+ , the spatial footprints

of the neurons, with each column representing the footprint of a single neuron; let the rows of C˛RK3T
+ represent the fluorescent

signal of each neuron at each frame; and let B˛Rd3T
+ represent the background fluctuation. The goal is to find A,B,C such that

kY � ðAC+BÞkF is minimized, which can be interpreted as determining the optimal spatial footprints, fluorescence traces, and back-

ground noise, in order to reconstruct the recording.

The ith row ofC is represented as an autoregressive process, where ciðtÞ =
Pp

j = 1

g
ðiÞ
j ciðt � jÞ+ siðtÞ, and siðtÞ represents the number

of spikes fired by the i-th neuron in the tth frame, and S, the matrix of spikes, is constrained to be sparse. The footprint matrix A is also

constrained to be sparse, and B is constrained to be a nonnegative matrix decomposable as B = Bf +Bc where Bc models the con-

stant baseline background, and Bf models fluctuating background activity. Initialization for neuron centers uses a greedy algorithm,

such that a proposed pixel satisfies two criteria: a minimum threshold on peak-to-noise ratio (calculated as peak signal strength

divided the standard deviation of the noise), and a sufficiently high temporal local correlation (implying strong similarities in temporal

signal for pixels surrounding the proposed center) (Smith andHäusser, 2010). Initialization of variablesC andB, as well as updates for

the background B are discussed in the original paper (Zhou et al., 2018, see also Pachitariu et al., 2018).

Neuron spatial footprints and neural signals for this paper were extracted using CNMF-E.

Calculation of temporal correlation similarity metric across sessions
Given two preprocessed optical recording sessions S1 and S2, we construct a connecting recording Sc by concatenating the last n

frames of the first recording with the first n frames of the second, where n is some number less than theminimum number of frames in

S1 and S2. Next, we extract spatial and fluorescence traces from S1, S2, and Sc.

Given N1, a neuron from S1, and N2, a neuron from S2, we start by setting a maximal distance threshold m, which defines neigh-

boring neurons. If the distance between the centroids N1 and N2 exceeds m, N1 and N2 are not considered neighbors. Only neigh-

boring neurons can be identified as the same between sessions. We eliminate from our calculations any neuron in the connecting

session exhibiting neural activity in frames overlapping only one of the sessions, as such neurons will not allow comparison between

sessions.

For temporal correlation similarity, a similarity score is obtained for each neighboring neuron pair (N1 and N2) in the two recording

sessions, by ranging over the full set of neighboring neurons (Nc) in the connecting recording (i.e. across the set ofNc coming from Sc

such that N1 is a neighbor to Nc, and Nc is a neighbor to N2). The choice Nc that maximizes the average of the correlation between N1

and Nc, and Nc and N2, is considered the connecting neuron, and the correlation similarity between N1 and N2 is the mean of the

maximal correlation across choice of connecting neuron Nc (Figure 1C).

Spatial similarity measures for calculating neuron similarity across sessions
Currently, three methods for spatial similarity are included with SCOUT: centroid distance, spatial overlap, and Jensen-Shannon

divergence. Centroids of neuron spatial footprints are calculated using the usual formulae x =
P

i;j

xiaij, y =
P

i;j

yjaij, where i,j range

across the number of pixels in the field of view, in the horizontal and vertical directions respectively, and aij is the footprint intensity

at the ith horizontal pixel, and the jth vertical pixel. Centroid distance between to footprints is calculated as the Euclidean distance

between their centroids. Spatial overlap between footprints a, b is calculated as a,b
jjajj2 jjbjj2, where a and b, are binarized column vectors

representing whether each footprint has positive pixel intensity. Jensen-Shannon divergence between two (normalized) footprints

P,Q, is calculated as 1
2 (DKL(P||M) + DKL(Q||M)), where M = 1

2 (P + Q), and DKL is the Kullback-Liebler divergence: DKL(P||Q) = E(log

[dP/dQ]), where dP/dQ is the radon-nikodym derivative of P with respect to Q.
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Temporal similarity measures for calculating neuron similarity across sessions
In addition to temporal correlation on connecting recordings, several additional temporal similarity measures can be deduced from

properties of the fluorescence traces of each neuron. SCOUT has implemented temporal similarities based on signal-to-noise ratio

(SNR=Var(Signal)/Var(Noise)), and the fluorescence trace decay rate for each neuron. Signal decay rate is computed automatically in

CNMF-E, by fitting exponential models (among other options) to the neural signal. We have provided a similar algorithm for

computing signal decay rate directly from the raw neural signal to ensure SCOUTworks with other pipelines. This algorithm identifies

peak locations, normalizes the signal height at each peak, and fits an exponential decay function to the average signal. This function

can fail if fewer than three peaks were detected for a given neuron.

For SNR, similarity between neurons is calculated as absðlogðSNR1Þ � logðSNR2ÞÞ where SNRi is the signal-to-noise ratio for

neuron i (taking the logarithm produces a more centralized distribution of values). Signal decay similarity is calculated as

absðdec1 � dec2Þ, where deci is the signal decay rate for neuron i.

Assigning identification probabilities with SCOUT
To assign probability scores between sessions for a given metric, we detail two approaches. First, we can simply assign the percen-

tile as the probability score for each metric. If the distance between N1 and N2 for a given a metric, is less than p% of distances

between all possible neighbor pairs, then p is the percentile assigned to the pairing. This method has several drawbacks. First, it

is sensitive to the choice of maximum distance parameter. If the parameter governing the maximum distance between neighbors

is increased, the probability assigned to any neighboring pair will increase. Second, when few neuron pairs exist, similarity metric

values can accumulate near 0, so that even relatively small metric values can be associated to low probabilities.

Another paradigm is to assume that for eachmetric, the distances between neighboring pairs come from amixture of distributions:

a distribution of distances corresponding the neurons that should be identified between sessions, and a set of neighbors that are

distinct ((Sheintuch et al., 2017)). Before fitting the mixture of distributions, a probability density function is constructed, by applying

kernel density estimation to the normalized histogram of distances, using reflected boundaries near theoretical maximum and min-

imum values (such as 0 or 1 for correlation metrics). Next, we construct a model consisting of the weighted sum of two probability

distribution functions, which is then fit to the approximated pdf, using nonlinear regression (Matlab nlinfit).

Given a mixture model consisting of a weight w, a model for identified neurons between sessions, f, and a model for unidentified

neurons between sessions, g, themixturemodel approximates the probability distribution function h, obtained via kernel density esti-

mation from the initial distribution of distances, as hðxÞ = wfðxÞ+ ð1 �wÞgðxÞ: Given a proposed distance x, the probability that x is

sampled from the distribution with pdf f, is given by wfðxÞ
wfðxÞ+ ð1�wÞgðxÞ, using Bayes theorem. We have primarily used Gaussian mixture

models (Everitt, 2014).

We can also apply soft K-means clustering (Dunn, 1973), an adaptation of K-means in which data points are assigned identification

probabilities for each cluster, and a ‘‘fuzzifier’’ is introduced to govern the spread of identifications probabilities, adjusting the crisp-

ness of the clusters. Similarly to mixture models, this algorithm separates similarities into identified and non-identified categories,

with associated probabilities (Figure 1E (1)). This algorithm frequently identified the most neurons, but with a higher false discovery

rate. This is the default algorithm for SCOUT.

Generally, little difference is seen between results with soft K-means and mixture models, except for recordings with only two ses-

sions, for which Gaussian mixture models typically exhibit stronger results. GMM distribution fitting is typically slower than K-means

and produces a sharper decision boundary. We recommend using K-means except in the case where the recording consists of only

two sessions.

Clustering algorithm
After computation of temporal metric similarity for all neuron pairs in each pair of sessions, we assign identification probabilities for

each metric using a probabilistic model (i.e., soft K-means, GMM). To combine the metric identification probabilities into a single

identification probability, we use a weight vector (a 1 3 n vector where n is the number of metrics, such that the sum of entries is

1) which governs the emphasis each metric receives. Multiplying this weight vector by the associated identification probabilities

for each vector and summing the result results in a single identification probability for each pair of cells in each pair of sessions. These

probabilities are placed in a similarity matrix of size n_cells x n_cells, where n_cells is the total number of neurons extracted across all

sessions and entries are the identification probabilities between cell pairs. Cells in the same session are assigned a low similarity

(�10,000) to prevent clusters from containing more than one neuron from the same session.

This similarity matrix is decomposed into connected components, and each component is clustered according to the following

algorithm. Clusters are initialized by placing the least similar neurons in separate clusters. Remaining neurons are added to each clus-

ter based onwhich addition decreases average cluster inter-neuron similarity the least. If no option is available that keeps the average

cluster similarity above the user provided chain_prob threshold, a new cluster is created. The process continues until all neurons are

assigned a cluster. Similarities between neurons in the same session are set to some high magnitude negative number, to prevent

assignment to the same cluster.

At each iteration, we calculate the total increase in average similarity between cluster members (over all clusters) gained by

assigning each neuron to a new cluster (a switch) (Figure 1D). We also calculate the total increase in average similarity between
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cluster members derived by swapping the cluster assignments of each pair of neurons (a swap). The operation that maximizes the

similarity increase is chosen, and the algorithm continues until a maximum number of iterations is reached, or no further gains can be

made by these operations. Finally, theminimal average cluster similarity (across clusters) is compared with the chain_prob threshold.

If the cluster similarity falls beneath this value, a new cluster is created and populated with the least similar neuron in the lowest

scoring cluster (ranked by average within cluster similarity), and the process repeats until convergence.

To correct the propensity toward the creation ofmedium sized clusters (and thus against tracking neurons through all sessions), we

add a bias term to the switch and swap scores as follows. First, a switch that increases the maximal cluster size of the clusters

involved is rewarded with the addition of a constant bias term, while the reverse is penalized by the subtraction of the bias term.

A swap is penalized via subtraction of a bias term if the swap causes the cluster with the larger size to decrease its average identi-

fication probability, and vice versa if the cluster with the larger size were to increase the average identification probability. Swaps and

shifts that decrease the size of a cluster with inter-neuron similarity exceeding the chain_prob threshold are ignored. By placing a limit

on the number of times any individual neuron can be swapped or shifted between groups, the algorithm converges inmost instances,

and usually within a few iterations (<25).

Discrepancies between clustering results due to initial clustering assignments, as well as the problematic usage of a single weight

variable for aggregating identification probabilities motivates a consensus clustering framework. We generate random perturbations

of theweight vector by adding a random value produced by from anN(0,0.12) distribution (0.12 is 3/4 the individual weight if all metrics

are used).Weight values below zero are set to zero, and the vector is renormalized. In the implementation, 29 perturbations are gener-

ated (resulting in 30 vectors), which are then used to create similarity matrices which are clustered via the previously described

algorithm, but using the connected components defined by the initial weight vector.

Next, we construct a consensus matrix for each component of size n_cells x n_cells, where n_cells is the number of cells in the

component, and the entry is the percentage of instances in which the associated cell pair were placed in the same cluster. This

consensus matrix was then clustered using the same algorithm described above to produce the final cell register.

Ground truth cell register: simulated data
As SCOUT requires extracted data both from individual and connecting sessions, we cannot directly use the ground truth cell reg-

ister. Instead, we use the session extractions to construct a cell register as follows. After dividing each recording into sessions, for

each session, if a neuron extracted from that session had spatial correlation greater than 0.65, and temporal correlation greater than

0.8 with the neural signal of a ground truth neuron over the correct frames, the extracted neuron was identified with the ground truth

neuron. From this we create the ground truth cell register consisting of identified neurons across all sessions.

Annotated cell register: in vivo data
A human annotated ground truth was determined as follows 1) Neurons identified with visibly recognizable common features on the

correlation image of each session are identified; 2) The identified neurons were visually checked, and false identifications were

eliminated; 3) If multiple identifications in a single session are still available, all such identified neurons with SNR less than 2 were

removed from the ground truth cell register. While filtering neurons with SNR less than 2 may bias the result toward SCOUT, neurons

with high SNR showed greater variance in SNRmagnitude between sessions than did lowSNR neurons, whichmay reduce the power

of this metric.

Long-term cell tracking with SCOUT
For long term cell tracking, we propose a combination of concatenation and cell tracking. In thismethodology, recordings are concat-

enated into batches of uniform length, with overlapping portions of each batch used to calculate spatiotemporal similarity. This

method decreases the number of connecting recordings required but requires spatial footprint stability over each batch.

Algorithm parameter settings
CNMF-E parameters were set as min_pnr = 5, min_corr = 0.3 merge_thr = [0.65,.7,-1] on in vivo recordings), and dmin = [1.5, 15]. All

other parameters were left as defaults.

SCOUT parameters were left as defaults, except formin_prob: the minimum cell-cell similarity probability for identification, chain_

prob: the minimum inter-cluster similarity (measured as average cell-cell similarity between all cells in the cluster),max_dist (maximal

distance between identified cells), andweights: the baseline weight each metric is assigned when computing similarity probabilities.

The variables min_prob and chain_prob were assigned values of [0.45,.0.55,.0.65,0.75,0.85], max_dist took values [5,20,35,50]

(except for the Individual Shift dataset which had one additional increment of 15), and weights took values [1/6,1/6,1/6,1/6,1/6,1/

6] corresponding to correlation, footprint centroid distance, footprint overlap, footprint KL divergence, signal SNR, and signal decay

respectively, except for the Individual Shift dataset tests where the SNRmetric was dropped, as this dataset contained no simulated

noise. SCOUT without spatial metrics had identical weights for the spatial metrics (centroid distance, overlap, KL divergence), with

zeros for the temporal metrics ([0,1/3,1/3,1/3,0,0]). On the 2-photon in vivo data, temporal metrics were set at 1/3 the value of the

spatial metrics. When computing results for individual temporal metrics, weights were set equally for all used metrics, with the

rest left as zeros (i.e. [1/4,1/4,1/4,1/4,0,0] for the correlation metric tests). Computing results for each distinct choice of metrics

yielded 500 results per dataset, or 100 per weight choice.
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For cell tracking via cellReg on the simulated recordings, we varied p_same_threshold across the range [0.2,0.4,0.5,0.6,0.8], and let

maximal_distance (maximal distance between neighbors) vary between 10 and 50 by increments of 5. For cell tracking via CaImAn,

we varied the max_dist parameter from 5 to 45 by multiples of 5, and threshold from 0.4 to 0.9 by multiples of 0.1.

On the hippocampal place field datasets, we set all metric weights equal for SCOUT, and used a min_prob and chain_prob

threshold of 0.75, with maximal_distance parameter 20 (pixels). For cellReg we used a p_same_threshold value of 0.6, and a max-

imal_distance parameter of 15 (pixels). These were determined via the best average parameters across the 1-photon data obtained

in the section SCOUT successfully tracks cells on in vivo multi-session recordings.

QUANTIFICATION AND STATISTICAL ANALYSIS

Metric usage
Primary metrics used in this paper are F1 score, Jaccard similarity, and Jensen-Shannon divergence. The F1 metric is defined as
23PDR3ð1�FDRÞ
ð1�FDR+PDRÞ , where PDR is defined as the percentage of available neurons tracked by amethod and FDR is defined as the percent-

age of tracked neurons containing at least one false identification. Jaccard similarity metric is computed as jAXBj=jAWBj, where A

and B represent sets of identified neurons. If more than one neuron is acceptable in the annotated/ground truth cell register, then

Jaccard similarity discards the extraneous neuron before computing the final value. Jensen-Shannon divergence is defined as 1
2

(DKL(P||M) + DKL(Q||M)), where M = 1
2 (P + Q), and DKL is the Kullback-Liebler divergence: DKL(P||Q) = E(log[dP/dQ]), where dP/dQ

is the radon-nikodym derivative of P with respect to Q.

Computation of statistics
All statistical tests were performed using MATLAB built in functions (namely ANOVA1, ttest, ttest2, multcompare, fitlme, ranksum).

Unless stated otherwise, results in text are supplied asmean +/� std. error. Statistical significance was definedwith a p value of 0.05.

Statistical tests are labeled for each initial comparison. Repeated uses are not labeled. Associated statistical tests are labeled in each

figure.

Statistical specifications by section
In Usage of temporal metrics improve discrimination between identified and non-identified neurons across sessions section, all sta-

tistical tests were performed using Wilcoxon rank sum test. Tests were performed individually for each recording. Total neurons in

first session: (262, 138, 293 for VC, PFC, Hipp. respectively), (191, 220, 288 for VISl, VISrl, VISp respectively). Median ratios were

computed as the ratio of the median values for identified and nearest neurons.

In Testing SCOUT on simulated multi-session recordings, ANOVA followed by Bonferroni multiple comparison test correction was

used for identification of significant differences between methods in all cases. Datapoints used are the maximal F1/Jaccard score/

JS_divergence/abs(1-tracking_ratio) for each recording, grouped by methods. This consists of 11 datapoints per method on the

Gaussian dataset, 39 datapoints per method on the Non-Rigid datasets, and 29 datapoints per method on the Individual Shift

dataset.

In SCOUT successfully tracks cells on in vivo multi-session recordings, statistics reported in figures (Figures 4 and 5) test the dis-

tribution of results across parameters betweenmethods for each recording using ANOVA and Bonferroni pairwise comparisons after

elimination of outlying results from the distribution.

In Testing performance via place cell stability analysis, the primary statistical test was a Linear Mixed Effects model withMATLAB

equation consistency�method + (method|recording), tested on neuron pairs identified exclusively by either SCOUT or cellReg after

discarding neurons tracked through only two sessions. This results in an average of 558 ± 208 pairs identified by bothmethods, 327 ±

182 pairs identified exclusively by cellReg, and 122 ± 48 pairs identified exclusively by SCOUT. Additionally a two-sample t-test is

used to validate place field stability (in comparison with all possible identifications).

In Effects of parameter selection on cell tracking results, we test the median F1 scores for each method after averaging across all

datasets using a Wilcoxon rank sum test. Data points correspond to the number of parameters tested for each method (100 for

SCOUT, 45 for cellReg and CaImAn).
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