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Purpose: The purpose of this study was to explore the performance of different
parameter combinations of deep learning (DL) models (Xception, DenseNet121,
MobileNet, ResNet50 and EfficientNetB0) and input image resolutions (REZs) (224 ×
224, 320 × 320 and 488 × 488 pixels) for breast cancer diagnosis.

Methods: This multicenter study retrospectively studied gray-scale ultrasound breast
images enrolled from two Chinese hospitals. The data are divided into training, validation,
internal testing and external testing set. Three-hundreds images were randomly selected
for the physician-AI comparison. The Wilcoxon test was used to compare the diagnose
error of physicians and models under P=0.05 and 0.10 significance level. The specificity,
sensitivity, accuracy, area under the curve (AUC) were used as primary evaluation metrics.

Results: A total of 13,684 images of 3447 female patients are finally included. In external
test the 224 and 320 REZ achieve the best performance in MobileNet and EfficientNetB0
respectively (AUC: 0.893 and 0.907). Meanwhile, 448 REZ achieve the best performance
in Xception, DenseNet121 and ResNet50 (AUC: 0.900, 0.883 and 0.871 respectively). In
physician-AI test set, the 320 REZ for EfficientNetB0 (AUC: 0.896, P < 0.1) is better than
senior physicians. Besides, the 224 REZ for MobileNet (AUC: 0.878, P < 0.1), 448 REZ for
Xception (AUC: 0.895, P < 0.1) are better than junior physicians. While the 448 REZ for
DenseNet121 (AUC: 0.880, P < 0.05) and ResNet50 (AUC: 0.838, P < 0.05) are only
better than entry physicians.

Conclusion: Based on the gray-scale ultrasound breast images, we obtained the best DL
combination which was better than the physicians.

Keywords: breast cancer, deep learning, ultrasound, resolution, artifical intelligence
Abbreviations: AI, Artificial Intelligence; AUC, area under curve; BI-RADS, breast imaging reporting and data system; CI,
confidence interval; DL, Deep Learning; IQR, interquartile range; ML, Machine Learning; ROC, receiver operating
characteristic; ROI, region of interest; SD, standard deviation; SL, supervised learning; SSL, semi-supervised learning;
US, Ultrasound.
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HIGHLIGHTS

1. Different combinations [model_resolution (REZ)] will yield
different performance for the 2D grayscale breast ultrasound
image classification, with Xception_448, MobileNet_224,
EfficientNetB0_320, ResNet50_448, and DenseNet121_448
being the best choices.

2. MobileNet_224, EfficientNetB0_320 and Xception_448 can
achieve equivalent performance as senior physicians.

3. The lightweight model, such as MobileNet_224, is more
dominant in small REZ images, which also indicates that it
is suitable for mobile application scenarios.

4. Image REZ has a slight effect on time consuming for model
prediction, with a slight increase in time consuming for large REZ.
INTRODUCTION

Breast cancer is the leading cause of death among women
worldwide, with the highest incidence and the second highest
mortality rate (1). Detecting and intervening in early stage could
significantly improve 5-year-survival rate (2, 3).

Due to its portability and affordability, ultrasound (US) is
most practical screening modality in different types of breasts,
especially in dense breast (4). Since the fact that US is more
accessible than mammography (5, 6), it is the first choice for
breast early screening. However, the US is not sensitive enough
to detect calcifications (7) and non-mass breast lesions (8, 9).
Diagnose performance of US is highly operator-dependent.
Therefore, there is an urgent need to find a method that is less
operator-dependent and objectively reflects the nature of the
tumor for breast cancer.

Deep learning (DL) can extract a large number of quantitative
features frommedical images, including features that are invisible to
human eyes but could greatly improve diagnose accuracy (10–13).
Breast US Artificial Intelligence (AI) can accurately identify breast
masses in relation to the volume of masses (14–16). In addition, it
can improve the diagnosis of early breast cancer, providing a
reference for early diagnosis of non-mass lesions (17),
determining the molecular subtypes (18, 19), pathological types
(20), status of axillary lymph node metastasis (21, 22) and prognosis
(23, 24). However, by analyzing and summarizing the current
studies on intelligent discrimination based on breast US data,
relationship of model_REZ and diagnose performance is not
deeply explored. Lacking systematic review of model and
parameters selection, no comparison between lightweight models
(e.g., MobileNet, Xception, EfficientNetB0, etc.) (25–27) and
heavyweight models (e.g., such as DenseNet121、ResNet50, etc.)
(28, 29), no analysis and comparison of models under different
image input REZs, and lack of comparison with physician diagnosis
results. Therefore, the accuracy and precision of breast cancer
diagnostic models and image combinations can be statistically
determined by cross-comparison of multiple DL models and
multiple image input REZs. Different models have different depth
Frontiers in Oncology | www.frontiersin.org 2
of networks, and the network depths are related to the input
resolution. If we want to guarantee the best results of DL models,
we should study the best combination of model depth and input
REZ to ensure that a reasonably optimal models is used (30, 31).

Therefore, this study performed extensive cross-comparison
of model_REZ and generalization tests: 1. Lightweight models
(MobileNet, Xception and EfficientNetB0) and heavyweight
models (DensNet121, and ResNet50). 2. Three dominant REZs
(224 × 224 pixels, 320 × 320 pixels and 448×448 pixels). The
above scientific hypotheses were verified by cross-comparisons:
the diagnostic accuracy of the AI combinations (model_REZ)
based on breast images is higher than senior physicians.
MATERIALS AND METHODS

Research Objects
This multicenter study retrospectively examined 2D grayscale US
breast images recruited from 2 Chinese hospitals from July 2015
to December 2020 with appropriate approval from the respective
ethics committees. All benign and malignant nodules were
confirmed pathologically after US testing.

Inclusion criteria: a. US-detected breast nodules, which
diameter between 5.0 and 30.0 mm. b. Ability to show at least
3.0 mm of breast tissue around the nodule. c. Nodules must be
Breast Imaging Reporting and Data System (BI-RADS) 0, 2, 3,
4a, 4b, 4c or 5. d. The nodules have not undergone interventional
or surgery prior to the US examination. e. The patient underwent
surgery or biopsy within 1 week of US data collection and
pathology results were obtained.

Exclusion criteria: a. Normal breast. b. History of breast surgery or
intervention. c. Poor image quality. d. without pathological results.

Instruments
The Philips, GE, and Mindray equipment were chosen to
increase the model’s adaptability. The image sources are spread
randomly and uniformly. The details of the instrument are
listed below.

a. LOGIQ E9 (GE Medical Systems Ultrasound and Primary
Care Diagnostics, USA) with ML6-15-D linear array probe.

b. EPIQ 5 (Philips Ultrasound, Inc. USA) with L12-5 linear
array probe.

c. Resonan 7 (Mindray, China) with L11-3U linear array probe.
Data Preparation
To filter the combinations (model REZ) suited for breast cancer US
picture classification, three REZs (224×224、320×320 and 448×448)
and five deep learning models (Xception, DenseNet121, MobileNet,
ResNet50, and EfficientNetB0) were trained and tested (Figure 1).

Image Preprocessing
Image Cropping
The field-of-view (FOV) is extracted from the original image
using image processing techniques by cropping out the device
July 2022 | Volume 12 | Article 869421
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and patient-related information and keeping only the image
window. Each FOV images is filled into a square and scaled to
224 × 224, 320 × 320, and 448 × 448, used as input data for model
training and testing.

Image Enhancement
Prior to training the model, all image enhancements were
performed using Python 3.9 as an automatic pre-processing
process. This included Gaussian noise probability: 0.3, left-right
flip probability: 0.5, rotation angle: -0.1: 0.1, X-axis shift: -0.1: 0.1,
Y-axis shift: -0.1: 0.1, scaling. 0.7: 1, gamma correction. 0.6 to 1.6,
stretching (left-right 50px, down 100px) and non-local average
denoising (filter strength = 3, template window size = 7, search
window size = 21).
Model Training and Validation
The data were divided into training, validation and test set in a
ratio of 8:1:1. Also, it was ensured that all images of the same
patient appeared in the same set.
Frontiers in Oncology | www.frontiersin.org 3
The default setting of training 100 epochs, while setting
EarlyStop, 15 epochs of validation set loss does not drop will
end the training early. The default setting of batch_size is (32).

Model Testing
Internal and external tests were included in the test set. Three
hundred images were randomly chosen from the test set for a
comparison test of physicians and AI models, with the goal of
determining not only the clinical usefulness of the models, but
also whether the models’ diagnostic capabilities exceed those of
physicians. The physcians did not known the results of AI and
pathology. The process is as follows:

a. The AI combinations (model_REZ) make diagnoses
independently.

b. Two physicians each from entry (<2 years), junior (2-5 years),
and senior (>5 years) levels performed the diagnosis based on
BI-RADS (33), which includes features such as size, shape,
orientation, margin, echo pattern, posterior features,
calcification and associated features.
FIGURE 1 | Architecture diagram. US, ultrasound; REZ, resolution.
July 2022 | Volume 12 | Article 869421
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Statistical Analysis
Python 3.9 was applied for statistical analysis. The significance
level was set at P = 0.05. In physician-model test, P = 0.1 was
considered statistically significant.

The Kolmogorov-Smirnov test was used as a normality test. If
the normal distribution was matched, variables were expressed as
mean ± standard deviation (SD). If not, the median and
interquartile range (IQR) are reported. The values of categorical
variables are expressed as number (%). Within-group differences
were compared using the paired-samples to test for continuous
variables conforming to a normal distribution, and the Mann-
Whitney U test for non-normal continuous variables. The
Wilcoxon test was used to compare the error between
physicians and AI combinations. The Kappa test was used to
determine the intra-group consistency among different levels of
physicians. The Specificity, sensitivity, accuracy, receiver operating
characteristic curve (ROC), area under the curve (AUC) and 95%
confidence interval (95% CI) were used for evaluation.
RESULT

A final total of 13,684 grayscale US images from 3,447 female
patients were included according to the inclusion and exclusion
criteria from July 2015 to December 2020. On average, 4 valid
grayscale US images were available for each patient. Of these, 2457
were benign tumors (9102 images) and 990 were malignant
tumors (4582 images). The training set, validation set, and
internal test set are 10,806, 1,293, and 1,585 images, respectively,
according to the 8:1:1 of the number of patients. The external
testing set are 440 images respectively. Table 1 show the
distribution of baseline characteristics of the collected patients.
Appendix Tables 1, 2 demonstrate the distribution of the study
sample across trials. The flow chart is shown in Figure 2.

Diagnosis of AI Models
Internal Test
For MobileNet, 448 REZ achieve the best AUC (0.886), with
sensitivity 80.59%, specificity 80.97% and accuracy 80.59%. For
Xception, 224 REZ achieve the best AUC (0.896), with sensitivity
Frontiers in Oncology | www.frontiersin.org 4
77.31%, specificity 87.74, accuracy 83.53%. For EfficientNetB0,
320 REZ achieve the best AUC (0.887), with sensitivity 80.28%,
specificity 83.30% and accuracy 82.08%. For DenseNet121, 224
REZ achieve the best AUC (0.867), with sensitivity 77.46%,
specificity 81.40% and accuracy 79.81%. For ResNet50, 448
REZ achieve the best AUC (0.851), with sensitivity 72.61%,
specificity 82.88% and accuracy 78.74%. The detailed results
were summarized in Table 2.

External Test
For MobileNet, 224 REZ achieve the best AUC (0.893), with
sensitivity 81.59%, specificity 82.09% and accuracy 81.82%. For
Xception, 448 REZ achieve the best AUC (0.900), with sensitivity
79.92%, specificity 88.56% and accuracy 83.86%. For
EfficientNetB0, 320 REZ achieve the best AUC (0.907), with
sensitivity 91.63%, specificity 72.14% and accuracy 82.73%. For
DenseNet121, 448 REZ achieve the best AUC (0.883), with
sensitivity 66.95%, specificity 94.53% and accuracy 79.55%. For
ResNet50, 448 REZ achieve the best AUC (0.871), with
sensitivity 79.92%, specificity 81.09% and accuracy 80.45%.
The statistical results in detail are outlined in Table 3.

Physician-AI Test Set
The consistency and accuracy of the diagnosis improved with the
clinical experience of the physicians. The above results are shown
in Appendix Table 3.

The 320 REZ for EfficientNetB0 (AUC: 0.896, P < 0.1) is
better than senior physicians. The 224 REZ for MobileNet (AUC:
0.878, P < 0.1), 448 REZ for Xception (AUC: 0.895, P < 0.1) are
better than junior physicians. The 448 REZ for DenseNet121
(AUC: 0.880, P < 0.05) and ResNet50 (AUC: 0.838, P < 0.05) are
only better than entry physicians. The more detailed findings are
presented in Figures 3, 4.

Time Consuming
Time Consuming to Training Models
Each Epoch took 11.06 ± 1.26 min (P < 0.0001); each Batch
required 1.97 ± 0.22 s (P < 0.0001), and theoretical training of 50
Epochs took 9.22 ± 1.05 h (P < 0.0001), with statistically
significant variations (Appendix Table 4).
TABLE 1 | Distribution of baseline characteristics of patients.

Variables Benign (n=2457) Malignant (n=990) P

Age, year, mean ± SD 42.0 ± 11.7 46.0 ± 10.5 <0.001
Size, mm, mean ± SD 18 ± 6.9 21 ± 8.7 <0.001
Pathology, n
Fibroadenoma 1161 –

Adenosis of Breast 501 –

Intraductal Papilloma 92 –

Other Benign Tumors 703 –

Infiltrative Non-specific Type of Carcinoma – 560
Ductal Carcinoma in Situ – 49
Infiltrating ductal carcinoma – 17
Infiltrating lobular carcinoma – 21
Other malignant tumors – 343
July 2022 | Volume 12 | Article
SD, standard deviation.
Parametric continuous variables are represented by mean ± SD and non-parametric variables are represented by median (IQR).
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The Average Time of Predicting an Image
The difference in the average time taken by different models to
predict an image is statistically significant. MobileNet_224 and
320 are the fastest models, both predicting within 0.02 s. The
frame rate can reach 50 Frame/s, which is almost 1/4-1/3 of the
Frontiers in Oncology | www.frontiersin.org 5
Densenet121 time (Figure 5). REZ had an effect on the elapsed
time of the model. A slight increase in elapsed time was observed
for high REZ model predictions, with statistically significant
differences within groups (Table 4; Figure 5).
TABLE 2 | The results of all combinations (Model_REZ) in internal test set.

Models AUC (95%CI) Sen (%) Spe (%) Acc (%)

Xception
224×224 0.896 (0.880-0.913) 77.31 87.74 83.53
320×320 0.883 (0.866-0.899) 81.22 81.08 81.14
448×448 0.887 (0.869-0.904) 83.41 82.14 82.65

MobileNet
224×224 0.877 (0.859-0.895) 80.75 81.40 81.14
320×320 0.867 (0.849-0.886) 81.38 78.54 79.68
448×448 0.886 (0.870-0.903) 80.59 80.97 80.59

EfficientNetB0
224×224 0.878 (0.861-0.895) 79.34 81.92 80.88
320×320 0.887 (0.870-0.904) 80.28 83.30 82.08
448×448 0.875 (0.857-0.893) 74.49 89.01 83.15

ResNet50
224×224 0.781 (0.758-0.804) 72.46 70.08 71.04
320×320 0.847 (0.827-0.866) 77.93 76.96 77.35
448×448 0.851 (0.832-0.870) 72.61 82.88 78.74

DenseNet121
224×224 0.867 (0.849-0.885) 77.46 81.40 79.81
320×320 0.849 (0.829-0.869) 79.34 78.54 78.86
448×448 0.866 (0.848-0.884) 79.03 80.97 80.19
July 2022 | Volume 12 | Articl
REZ, resolution; AUC, area under the curve; CI, confidence interval; Sen, sensitivity; Spe, specificity; Acc, accuracy.
FIGURE 2 | Study flow chart depicting patient enrollment at two hospitals.
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DISCUSSION

This study used 15 models to classify breast cancers at a higher
degree than previous studies (32–35). The results showed that
MobileNet_224, Xception_448 and EfficientNetB0_320 models
showed the best diagnostic ability in tests set and physician-AI
test set. This is the first study that we are aware of that specifically
describes intra/intergroup comparisons of multiple models and
REZs based on grayscale US breast images.

End-to-end philosophy of DL has benefited a lot for reducing
the heavy workload preparing datasets. Only pathological findings
Frontiers in Oncology | www.frontiersin.org 6
were used as markers in this investigation, with no annotation of
US pictures. It significantly reduces the initial workload. This
study and a previous study (36) of our team found that, not only
did this DL method produce good diagnostic results, but the
diagnostic idea was similar to that of the physician.

The 224×224, 320×320 and 448×448 pixels were adopted in
this study because these three REZs are commonly used in
engineering (18, 22, 37). They are both obtained after scaling
on the original size, and the different REZs react to the same
model affecting the size of the convolutional kernel field of
FIGURE 3 | The ROC of the AI models and physicians. ROC, receiver operating characteristic; AI, Artificial Intelligence; AUC, area under curve.
TABLE 3 | The results of all combinations (Model_REZ) in external test set.

Models AUC (95%CI) Sen (%) Spe (%) Acc (%)

Xception
224×224 0.885 (0.855-0.915) 74.48 87.56 74.48
320×320 0.832 (0.795-0.869) 69.46 82.59 75.45
448×448 0.900 (0.872-0.928) 79.92 88.56 83.86

MobileNet
224×224 0.893 (0.864-0.922) 81.59 82.09 81.82
320×320 0.869 (0.836-0.902) 76.99 82.59 79.55
448×448 0.871 (0.839-0.903) 64.44 94.03 77.59

EfficientNetB0
224×224 0.869 (0.836-0.901) 75.31 84.58 79.55
320×320 0.907 (0.880-0.934) 91.63 72.14 82.73
448×448 0.874 (0.842-0.906) 81.17 80.60 80.91

ResNet50
224×224 0.788 (0.747-0.830) 68.20 77.11 72.27
320×320 0.838 (0.801-0.875) 75.31 80.60 77.73
448×448 0.871 (0.838-0.904) 79.92 81.09 80.45

DenseNet121
224×224 0.801 (0.759-0.842) 58.16 92.54 73.86
320×320 0.848 (0.812-0.883) 75.31 80.60 77.73
448×448 0.883 (0.852-0.913) 66.95 94.53 79.55
July 2022 | Volume 12 | Articl
REZ, resolution; AUC, area under the curve; CI, confidence interval; Sen, sensitivity; Spe, specificity; Acc, accuracy.
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perception (38). In convolutions, images with small REZs do
consume less computation time than large REZ, but may lose
more information and produce misleading results (39). In this
research, we found an increase in the consumption time of the
model fed by high-REZ images, which is consistent with what
has been reported in the literatures (40).

In both the external and physician-AI tests, MobileNet_224,
EfficientNetB0_320, and Xception_448 surpass the other four
models and all physicians. MobileNet can be a vision model built
on handheld and mobile equipment. Although small image REZ
has its own drawbacks (39), we can appropriately reduce the
image REZ to increase speed to benefit portable US devices while
Frontiers in Oncology | www.frontiersin.org 7
having good accuracy and efficiency (25). While the high REZ of
the input image (320×320) may increase computational cost,
EfficientNetB0 uses an efficient convolutional neural networks
architecture to process slightly larger images at a relatively
similar cost to smaller images (41, 42). Using depth-segmented
convolution in Xception provides similar properties to the
original module, while being as easy to use as a normal
convolutional layer. The convergence process is faster and
more accurate when the nonlinear activation function is not
used (43). Thus, when the input REZ is further increased to 448 ×
448, Xception_448 is the best. This study found some difficulties
in the selection of image inputs for ResNet50 and DenseNet121.
In physician-AI test set, ResNet50_448 and DenseNet121_448
had only higher AUCs than those of entry physicians.

More data and richer data types are obvious ways to improve
the efficiency of model diagnosis (44). The imbalance of the
sample has an effect on the model. If all the data are trained
together, it may appear balanced on the surface, but this can be
masked in the real world. Sample imbalance at different aspects
can have an impact on the final results of the model (45).
Therefore, developing “one model for all situations” may still
be a long process. Currently, more breast AI experiments of US
with targeted and multimodal have been designed to address
some problems on a smaller scale. They may become a more
achievable goal in the short term, such as the prediction of lymph
node metastasis, molecular subtypes and pathological types of
breast cancer (18–22).

The hypothesis of this study is that AI is superior to
physicians. And in order to reduce the type 2 errors in
statistics and prevent the result that AI dominates the
physician’s diagnosis, we argue that setting P to 0.1 is critical
in the physician-AI test set. This is because AI is supposed to be
an assistant not a decision maker that substitutes the doctor. If
the type 2 error is too large, it will lead to more reliance on AI,
A B

FIGURE 5 | (A), the consuming time of predicting an image of models (sec/frame). (B) the frame rate of models (sec/frame).
FIGURE 4 | The heat map showed the p value of the physician-AI test set.
July 2022 | Volume 12 | Article 869421
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which is a bad news for medicine, especially for hospitals in
remote areas or less experienced physicians.

Numerous breast AI of US studies have demonstrated the
amazing utility and reliability of this technique (14–24). But
previous efforts have focused more on what AI can do and how
far it can go, ignoring the differences in models across REZs,
devices, and even users. Therefore, a study of these combinations
(model_REZ) is necessary. It balances the efficiency, accuracy
and reliability of breast AI of US, and provide a theoretical basis
for specific equipment demands in future.

The data is often divided into training, validation and test
sets following a ratio of 8:1:1 and 7:1:2 (46–48). When the
sample size is small and the test set needs more, 7:1:2 is
preferred. In this study, the sample size is 13,684, which is
relatively large in ultrasound AI researches, thus we choose the
ratio of 8:1:1. The sample size of the study by Ren was close to
our study (47).

There are some limitations to this research. a: The study’s
sample size was small, and the pathology was unevenly
distributed. The origin of the instruments was not
differentiated. Subsequently, more subgroups could be added
for analysis. b: This study is a retrospective analysis with only a
small amount of external validation data. c: Only static images
were analyzed in this study. Video data and a multi-omics data
can be added later to improve the richness of training.
CONCLUSION

Based on unlabeled 2D grayscale images of breast US, this study
obtained the optimal combinations (model_REZ) and
outperformed the entry, junior and senior practitioners. This
study also reveals the promising application of unlabeled ROI in
medical imaging of DL, which greatly reduces the cost and time.
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Models REZ
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P 0.0124 <0.0105 <0.0102
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