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Abstract

Single-cell omics sequencing was first achieved for the transcriptome in 2009, which was followed by fast development of technologies
for profiling the genome, DNA methylome, 3D genome architecture, chromatin accessibility, histone modifications, etc., in an indi-
vidual cell. In this review we mainly focus on the recent progress in four topics in the single-cell omics field: single-cell epigenome
sequencing, single-cell genome sequencing for lineage tracing, spatially resolved single-cell transcriptomics and third-generation
sequencing platform-based single-cell omics sequencing. We also discuss the potential applications and future directions of these
single-cell omics sequencing technologies for different biomedical systems, especially for the human stem cell field.
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Introduction

A single cell zygote at the starting point of our life develops into
37 trillion cells in our body. The huge cellular heterogeneity and
complexity represent a major bottleneck and pose great chal-
lenges for research on human development, stem cell biology
and many other fields. In many organs of an adult individual,
stem cells are continuously self-renewing and differentiating to
maintain the lifelong physiological functions of the organs. Stem
cells are generally rare in organs and are located at specific po-
sitions surrounded and controlled by well-organized niche cells.
They are quite often heterogeneous, containing distinct subtypes
or distinct biological states, such as quiescent and actively pro-
liferating states, and there are also intermediate cell subpopula-
tions during their multi-lineage differentiation processes. In re-
cent years, single-cell omics sequencing technologies have been
resolving many of these issues and revolutionizing the stem cell
field. This starts from the first single cell RNA-seq (scRNA-seq)
technique developed in 2009'. With rapid development of the
technology, including tremendous improvement of throughput,
accuracy, automation, and commercialization, scRNA-seq tech-
niques have been widely applied to address critical biological and
medical questions. In this review, we will discuss recent advances
in single-cell omics sequencing technologies in four topics. First,
epigenetic regulation stands at the center of the gene regulatory
networks, study of which provides important insights into how
transcription is regulated and how epigenetic memory is estab-
lished and maintained in stem cells as well as their differentiated
progenies. The epigenome of a cell is all of the epigenetic informa-
tion stored and maintained in a cell. It is comprised of a variety
of precisely regulated and tightly interconnected epigenetic fea-
tures including chromatin states, 3D genome architecture, DNA
methylation, histone modifications, as well as the specific binding
of transcription factors or non-coding RNAs onto the chromatin.

Single-cell epigenome sequencing techniques for many of these
features have been established and have been routinely used for
stem cell biology studies. Second, another layer of information
crucial for understanding stem cell biology is the trajectory or
lineage ‘history’ of a cell during stem cell self-renewal and dif-
ferentiation. This information is vital to rigorously confirm the
multi-lineage differentiation potentials of stem cells in vivo, which
is one of the defining features of stem cells. Since genetic ma-
nipulation is in general prohibited for humans, endogenous ge-
netic variants in the genome of a cell in human bodies, including
single-nucleotide variants (SNVs), copy number variations (CNVs),
Indels, structure variations (SVs), variations of microsatellites or
other repetitive elements, as well as mitochondrial DNA muta-
tions, provide invaluable information for tracing the developmen-
tal trajectory of stem cells in intact human tissues in vivo. The
rapidly improving single-cell genome sequencing technologies are
satisfying such lineage-tracing requirements for human stem cell
studies. Third, stem cells and their descendants, as well as the sur-
rounding niche cells, are usually well spatially organized in the
tissues. So the spatial organization and interaction information
is important for understanding stem cell biology in vivo. This is-
sue can be addressed by spatially resolved single-cell transcrip-
tome sequencing techniques. Fourth, third-generation sequenc-
ing (TGS) technologies have progressed rapidly in recent years.
Combining TGS and single-cell omics technologies provides novel
information for alternative splicing and other crucial biological
features of an individual cell.

Single-cell epigenome sequencing

Single-cell epigenome sequencing technology is particularly chal-
lenging since the epigenetic information is scattered in the
genome of a diploid cell, which has only two copies of the
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genomic DNA. As a comparison, single-cell transcriptome analy-
sis is somehow easier with many expressed genes in a diploid cell
having over a dozen copies of the mRNAs. A highly sensitive en-
zyme or chemical reaction is essential for single-cell epigenome
sequencing technology. To make the loss of DNA as minimal as
possible, the experimental steps should be simple. Particularly if
a barcode can be linked to a cell at an early step, hundreds to
thousands of individual cells can be pooled together for subse-
quent operations, which will greatly increase the throughput of
the method. Droplet- and microchip-based methods greatly facil-
itate automation and a combinatorial indexing strategy can in-
crease the throughput in an exponential manner. It is noteworthy
that Tn5 transposase shows excellent performance in sensitivity,
simplicity, early barcoding and throughput, and thus has stood at
the center of technological improvement of single-cell epigenome
sequencing in recent years. Bioinformatics tools have also been
developed to tackle the challenges of the sparse nature of single-
cell epigenomic data. For example, chromVAR measures motifs or
functional annotations together instead of individual open chro-
matin regions, while ArchR uses an iterative dimensionality re-
duction approach?:3.

Chromatin states

Chromatin states represent the active or repressive status of the
regulatory genomic regions in a cell. Practically, the active chro-
matin states can be assessed by accessibility of an enzyme such
as transposase, DNase I, micrococcal nuclease (MNase), or GpC
methyltransferase, by which single-cell chromatin accessibility
sequencing techniques have been established*®. Among these
strategies, the Tn5 transposon-based ATAC-seq (Assay for Tar-
geting Accessible-Chromatin with high-throughout sequencing)
method simultaneously inserts, fragments and adds adaptor tags
to the active chromatin regions in a cell and thus is excel-
lent for low-cost and high-throughput analysis'®. Using plate-,
droplet-, or combinatorial indexing-based methods, recent stud-
les have shown that thousands to hundreds of thousands of in-
dividual cells can be analyzed in a single sample! ' A major
shortcoming of ATAC-seq is that it cannot directly detect the re-
pressive chromatin states that can be reliably detected by the
GpC methyltransferases-based methods. The latter can also si-
multaneously analyze both chromatin states and endogenous
DNA methylation of a cell, and have relatively higher resolution,
as a GpC dinucleotide (GCH) occurs approximately every 25 bp
in the human genome. Both the GpC methyltransferases- and
transposon-based methods have also been shown to be able to
simultaneously analyze CNVs at megabase resolution®®4,

3D genome architecture

While the chromatin state provides information on where the
chromatin opens, 3D genome architecture analysis provides infor-
mation on how a genome is spatially and structurally organized
and compartmentalized, as well as how different genomic regions
interact with each other in a cell. Since the first single-cell Hi-
C technique was established, which detects ~1 000 contacts in
an individual cell, the methodology has been continuously im-
proved, and the latest techniques are able to detect >1 million
contacts in an individual diploid cell"'°. The technological im-
provement includes omitting the biotin enrichment step, usage of
highly efficient single-cell whole genome amplification methods
such as multiplex end-tagging amplification (META) and multiple
displacement amplification (MDA), as well as higher sequencing
depth. This leads to a resolution of ~20 kb for analyzing the 3D

structures in an individual cell, which is capable of distinguish-
ing two parental genomes of a cell and different neuronal sub-
types?®1?. On the other hand, the throughput of the single-cell
Hi-C technique has been increased by using combinatorial index-
ing and Tn5 transposase/plate-based strategies?!22.

Histone modifications and transcription factor
bindings

Histone modifications contribute greatly to the organization of
chromatin structures and regulation of gene transcription. Chro-
matin immunoprecipitation (ChIP) is a widely used method for
detecting modifications of histones in nucleosomes of chromatin.
Realizing that low sensitivity and specificity of antibody capture
is the main obstacle in single-cell ChIP-seq analysis, cell-specific
barcodes are added before aggregating the cells for immunopre-
cipitation?*?>. Among these methods, Drop-ChIP and scChIP-seq
add cell barcodes by MNase digestion and ligation with a droplet
microfluidics workflow, while itChIP adds cell barcodes by Tn5
transposase tagmentation with a chromatin opening step. These
methods are able to detect ~1 000 to ~10 000 unique reads per
cell.

Enzyme-tethering represents a non-immunoprecipitation
chromatin profiling approach that is becoming increasingly
popular and has been adapted to single-cell analysis?®3!. In
these techniques, TnS transposase, MNase, or adenine methyl-
transferase is tethered to protein A that binds to the antibody,
directly to the antibody, or directly to the target chromatin pro-
tein, which allows marking of the genomic regions with specific
histone marks. ChIC, CUN&RUN, and scChIC use MNase, while
scCUT&Tag, COBATCH, ACT-seq, and ChlL-seq use Tn5 trans-
posase. A key cation-activation step, Ca’* for MNase and Mg**
for Tn5 transposase, allows activation of the enzyme activity in a
short time window after washing off the nonspecifically-bound
enzyme and drastically increases the signal-to-noise ratio. As
the Tn5-based method simultaneously adds tagged sequences, it
is more convenient for high-throughput single-cell epigenomics
analysis. The current enzyme-tethering single-cell techniques
are able to detect several thousand unique reads per individual
cell.

DNA methylation

DNA methylation comprises another critical epigenetic layer
showing cell-type-specific patterns. Single-cell DNA methylome
sequencing techniques have been established using various
strategies including the reduced representation bisulfite sequenc-
ing (RRBS)- and the post-bisulfite adaptor tagging (PBAT)-based
methods®7*. The mapping efficiency and throughput of PBAT-
based methods can be increased by using 3’ tagging techniques
such as adaptase and TdT tailing; yet since only one round of
random amplification is used, the coverage is decreased®3®. A sci-
MET method has applied a combinatorial indexing strategy for in-
creasing the throughput, with the first and second rounds of bar-
codes being incorporated by Tn5 transposon and random priming,
respectively®’. Conventional RRBS enriches CpG-containing re-
gions by selecting genomic regions between a pair of Mspl (CCGG)
sites, but also covers the whole genome with many randomly
fragmented genomic fragments. Recently, a single-cell extended-
representation bisulfite sequencing (scXRBS) method uses an al-
ternative approach by ligating the adaptor to a single Mspl site,
and thus achieves a new balance between coverage and enrich-
ment of functionally relevant genomic regions®®.
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Uniformity Accuracy Coverage Operation Reference
DOP-PCR +++ + + +++ 46
MDA ++ o +++ o 47
eMDA +++ +++ +++ ++ 50
SISSOR +++ +++ ++ ++ 49
MALBAC +++ ++ ++ +++ 52
LIANTI ++++ +++ ++++ ++ 48
META-CS +++ ++++ +++ +++ 51

Joint analysis of chromatin states and
transcriptome

Methods for joint analysis of multiple omics in the same indi-
vidual cell have been achieved by physical separation of differ-
ent omics molecules, parallel indexing, or parallel capturing®. In
recent years, several methods have been reported for jointly de-
tecting chromatin accessibility and transcriptome in an individ-
ual cell, which use various strategies for barcoding and separat-
ing two types of information*®#*, sci-CAR uses well-specific bar-
codes to perform in situ reverse transcription and Tn5 transposi-
tion separately*’. The scCAT-seq method physically separates the
nucleus and cytoplasmic RNA by centrifugation*?. Both Paired-seq
and SHARE-seq use a combinatorial indexing strategy, in which
two to three rounds of barcoding are performed, adding barcodes
to the 5" ends of both the Tn5 and RT primers by split-and-pool. To
separate the chromatin accessibility and transcriptome libraries,
Paired-seq uses a restriction enzyme strategy, while SHARE-seq
uses a biotin affinity pull-down strategy**#*. SNARE-seq is a
droplet-based method; it uses a barcoded oligo(dT)-bearing splint
oligonucleotide for simultaneously performing a reverse tran-
scription reaction for capturing the transcriptome and a ligation
reaction for capturing the chromatin accessibility information®*'.

Single-cell lineage tracing

Single-cell lineage tracing techniques have recently been devel-
oped by using a combination of transposons or CRISPR/Cas9
genome editing and single-cell transcriptome sequencing®. How-
ever, these genetic manipulation-based methods are not suitable
for in vivo study of humans. Genome sequence information is con-
tinuously changing during development of the human from zy-
gote to adult and further ageing processes due to stochastic ge-
netic mutations. So the genetic mutations are intrinsic and ideal
‘markers’ for lineage tracing of a cell in the human body. In fact,
they have been widely used for lineage tracing of tumor cells at
bulk levels for many years and are the basis for tumorigenesis
studies. Recent studies have reported the use of these endogenous
changes of genome and mitochondrial DNA (mtDNA) information
for lineage tracing of human stem cells in development and age-
ing, using clones derived from single cells or single-cell genome
sequencing technologies.

Single-cell genome sequencing

Single cell whole genome amplification (scWGA) techniques such
as degenerated oligonucleotide primer (DOP)-PCR* and MDAY
have long been reported. More recently, several new methods,
including MALBAC, eMDA, LIANTI, SISSOR, and META-CS, have
been developed*®~>2. The general characters of these methods are
shown in Table 1. MDA uses Phi29 for isothermal single-cell whole
genome amplification?”. As Phi29 is of high fidelity with about one

nucleotide per 108 error rate, MDA has relatively high accuracy
for calling SNVs, and has been applied to single-cell genome lin-
eage tracing®?. One disadvantage of MDA is its exponential-like
manner of amplification of genomic DNA, which results in ampli-
fication of initial extension errors and dampens coverage unifor-
mity. LIANTI uses T4 RNA polymerase to linearly amplify the orig-
inal template hundreds of times, which increases uniformity and
accuracy*®. Further, META-CS and SISSOR acquire information
from both strands (Watson and Crick strands, or duplex) for re-
ciprocal corrections, which gives even higher accuracy for calling
SNVs*?51 The duplex information can also be recalled in MDA by
using single-nucleotide polymorphism (SNP) information, though
the number of informative SNVs is reduced>*. Further investiga-
tions are needed to reach the extremely challenging requirement
of single-cell genome sequencing-based lineage tracing.

Uniformity is measured by the coefficient of variation of the
sequence-dependent bias along the genome. At a bin size of 1 000
kb, LIANTI shows the highest uniformity with a value of ~0.03,
while eMDA, MALBAC (normalized), META-CS, and DOP-PCR show
a range between 0.1 and 0.15, and MDA shows a value >0.21; the
value of SISSOR has not been described and is expected to be sim-
ilar to eMDA.

Accuracy is measured by the false positive rate (FPR). META-
CS and SISSOR, which give strand-specific information, have the
highest accuracy with the lowest FPR (<2.4 x 1078). LIANTI mea-
sures the linear amplification product many times and has the
second highest accuracy with a FPR of 5.4 x 10°. MDA and eMDA
rank third with a FPR of 1.3 x 10™. MALBAC and DOP-PCR show
FPRs of 3.8 x 107* and 9.6 x 107, respectively.

Coverage of LIANTI is the highest, covering 95% of the genome
of a human diploid cell by sequencing 83 Gb data, while META-CS
(64% by 18 Gb data), MDA (87% by 85 Gb data), and eMDA (72% by
30 Gb data) rank second, followed by MALBAC (Yikon, 73% by 94
Gb data), SISSOR (64% by 195 Gb data), and DOP-PCR (45% by 84
Gb data).

Experimental operations of DOP-PCR, MDA, MALBAC, and
META-CS are easier than those of eMDA, SISSOR, and LIANTI.

Genome sequence information in a cell for
lineage tracing

Different types of genetic variants have different characters for
the purpose of lineage tracing. Nucleotide substitution changes
are estimated to occur at a frequency of ~1 per cell division in
a human cell. As expected, the number of SNVs increases with
accumulating cell divisions during development and ageing. A
fetal hematopoietic stem cell has tens of somatic SNVs while a
hematopoietic stem cell from a middle-aged adult has ~1 000 so-
matic SNVs>°¢. Similarly, adult stem cells of colon, small intes-
tine, and liver have a few thousands somatic SNVs, with an accu-
mulation of ~36 mutations per year®’. Thus SNVs represent a rich
source of endogenous genetic polymorphisms for lineage tracing.
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Microsatellites are expected to be an even richer source of en-
dogenous polymorphism as the mutation rate of a microsatellite
is as high as 107 to 10°/locus/cell division. It is estimated that 50
microsatellite mutations occur per cell division in humans and
the complete cell lineage tree can be reconstructed using this in-
formation®®. Obstacles for full application of this information in-
clude error-prone sequencing, difficulty in capturing, and short
read length.

The repetitive elements including long interspersed repeat el-
ements (LINEs), short interspersed nuclear elements (SINEs), and
long terminal repeats (LTRs) comprise a large portion of the hu-
man genome. A number of LINEs such as LINE1 and SINEs such
as Alus are still active in humans, and transposition of LINE1 and
Alus occurs at a rate of about 1 per 140 generation and 15 per gen-
eration, respectively®®. Low-rate somatic mutations of LINE1 have
been reported in individual neurons at rates ranging from <0.1
to >10 insertions per cell®®:61. Also, insertions have been detected
in normal gastrointestinal tissues and occur very early during the
development of gastrointestinal tumors®. Though the frequency
is low, the unique insertion sequences of new transposon ele-
ments can be definitely verified and detected, which facilitates
using them as good markers for lineage tracing®?.

It is well known that CNVs occur in high frequency during hu-
man early development, although most of them lead to death of
the embryo or are self-corrected by elimination of the aneuploid
cells in chimeric embryos; how frequently the early CNVs result in
human chimeras is not known. In recent years, somatic chimeric
CNVs have been identified in many cell types including neurons,
blood cells, and fibroblasts®*%°. The advantage of CNVs as an en-
dogenous marker for lineage tracing is that they can be detected
by relatively low-depth single-cell genome sequencing. However,
the disadvantages include low frequency and difficulty of verifi-
cation.

mtDNA, which is a ~16 kb long circular genome, is also a part
of the cellular genome in addition to the nuclear genome. mtDNA
mutation occurs 10-100 times more than genomic mutation, and
there are hundreds of copies of mtDNAs in an individual cell. Also,
mtDNA can be detected in other single-cell omics data, includ-
ing scATAC-seq, scRNA-seq, and single-cell genome sequencing.
These features make mtDNA a unique marker for simultaneous
lineage tracing and cell-state detection’®.

Several recent studies have reported lineage tracing using
single cells, clones derived from single cells, or microdissec-
tion’17/3:63,55,53.74.56 [ ee-Six et al. analyzed 140 colonies derived
from single hematopoietic stem cells of a 59-year-old male indi-
vidual and identified an average of 1 023 SNVs and 20 small inser-
tion/deletions in each clone. They constructed a phylogenetic tree
that revealed clonal relationships among these 140 colonies. The
results showed a rapid population expansion of hematopoietic
stem cells during early life and estimated that there are between
50 000 and 200 000 hematopoietic stem cells actively making
white blood cells at any specific time*. In another study, Spencer
Chapman et al. analyzed 511 colonies derived from haematopoi-
etic stem cells of two human fetuses and identified 25.5 and 41.9
SNVs per clone in the 8 and 18 post-conception week fetuses, re-
spectively®®. These SNVs allowed for reconstructing phylogenetic
trees for early human embryonic development, which revealed
several interesting findings, including an unequal contribution of
each of the two-cell stage blastomeres to the blood compartment,
a higher mutation rate in the first three cell divisions, and hy-
poblast origin of the extra-embryonic mesoderm and primitive
blood.

Cells like neurons are post-mitotic and not able to prolifer-
ate, limiting the use of clone amplification and bulk sequenc-
ing strategies. Evrony et al. analyzed 16 cerebral cortex neu-
rons by MDA and whole genome sequencing, which allowed for
identification of two new L1 retrotranspositions and one poly-
A microsatellite mutation. They designed a custom droplet dig-
ital PCR (ddPCR) assay and analyzed these mutations in var-
ious brain regions, which revealed one clone limiting to the
left middle frontal gyrus and another distributing over the en-
tire left hemisphere®. In another study by the same group, 36
neurons were analyzed for SNVs and custom ddPCR was used
for revealing the polyclonal architecture of the human cerebral
cortex>.

The field of lineage tracing at single-cell resolution is develop-
ing rapidly. The approach can be used to reconstruct the develop-
mental history of stem cells, showing their precursors and proge-
nies. It can also be used for estimating the number of stem cells
that give rise to the differentiated cells, and whether or not they
give equivalent contributions to these progeny cells. For example,
Spencer Chapman et al. showed that two blastomeres in a two-
cell stage embryo contribute unequally to the body®®. Also, dur-
ing tissue injury, it is important to know which types of cells con-
tribute to repair the injured tissue and recover its physiological
functions, as has been studied in mice by genetic lineage tracing.
Single-cell multiple-omics sequencing for genome and epigenome
or transcriptome may help in elucidating the situation in
humans.

Single-cell spatial transcriptome

Spatial localization is essential for determining cellular fate. Sin-
gle cell spatially resolved transcriptome technologies have been
developed and improved rapidly in recent years, and are partic-
ularly useful for human study for which genetic labeling tech-
niques are not applicable’>. The methods of spatially resolved
transcriptomics are listed in Table 2. Among them, two types
of technologies, single-molecule FISH (smFISH)-based ones and
in situ sequencing-based ones, provide single-cell resolution. The
first one, including seqFISH and MERFISH, uses combinatorial bar-
codes for smFISH’®”7. seqFISH labels each RNA by a combina-
torial set of colored probes, through multiple rounds of sequen-
tial hybridizations and clearance of the probes’”’. MERFISH uses
a similar combinatorial labeling strategy with the use of readout
probes instead of direct labeling probes’®. The latest versions of
both methods are able to image mRNAs for up to 10 000 genes in
a single cell’®.79.

The second set of methods is in situ sequencing (ISS, FISSEQ,
STARmap, ExSeq)®%-#3, All these methods use rolling cycle ampli-
fication for signal amplification before in situ sequencing analysis.
ISS and STARmap are targeting methods. ISS uses padlock probes
for targeting®®, and STARmap uses designed nucleic acids for di-
rectly targeting RNAs that bypass the reverse transcription step
and increases detection efficiency®®. FISSEQ and ExSeq are un-
targeted methods, and ExSeq is an improved technique of FISSEQ
that adapts the chemistry of expansion microscopy to allow high
spatial resolution mapping of RNAs®?8%.

Another set of spatial transcriptomics techniques use in
situ capturing strategies®®-#>. These techniques are approaching
single-cell resolution with the high density of on-slide captur-
ing®’ 88,
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Single-cell

Full name Strategy Targeting resolution References
seqFISH Sequential fluorescence in Combinatorial barcodes Yes Yes 78,77
situ hybridization (FISH) for single-molecule FISH
MERFISH Multiplexed error-robust Combinatorial barcodes Yes Yes 76,79
(FISH) for single-molecule FISH
ISS In situ sequencing In situ sequencing Yes Yes 80
FISSEQ Fluorescence in situ In situ sequencing No Yes 81
sequencing
ExSeq Expansion sequencing In situ sequencing with No Yes 82
expansion microscopy
STARmap Spatially-resolved In situ sequencing Yes Yes 83
transcript amplicon
readout mapping
TIVA Transcriptome in vivo Photoactive tag Yes Yes 84
analysis
Spatial Transcriptomics ~ Spatial transcriptomics Gene ChIPs with No No 85
immobilized
reverse-transcription oligo
(dT) primers
Slide-seq Slide-seq Spatially resolved No Nearly 86,87
DNA-barcoded beads
Stereo-seq Spatial enhanced Spatially resolved DNA No Yes/nearly 88
resolution nanoball
omics-sequencing
iTranscriptome In silico spatial Combination of the No No 89
transcriptome low-input RNA
sequencing with serial
cryosection and laser
capture microdissection
Tomo-Seq RNA tomography Combination of the No No 90
sequencing low-input RNA sequencing

with serial cryosection

Third-generation sequencing

Third-generation/real-time single molecule sequencing (TGS)
methods have been developing especially fast in recent years.
These include Nanopore sequencing (ONT) introduced by Oxford
Nanopore Technologies, and single-molecule real-time (SMRT) se-
quencing by Pacific Biosciences (PacBio)’!. Emerging as a new
field of single-cell omics sequencing, TGS has several unique ad-
vantages and applications, some of which have been achieved
(Fig. 1).

First, TGS-based scRNA-seq techniques are powerful for de-
tecting alternative splicing or DNA rearrangements by directly se-
quencing the full-length intact cDNAs. Several studies including
ours have recently developed TGS-based scRNA sequencing tech-
niques including SCAN-seq, R2C2, ScISOr-Seq, ScNaUmi-seq, and
RAGE-seq” . SCAN-seq is able to detect >8 000 genes in an in-
dividual mouse embryonic stem cell (mESC), exhibiting a simi-
lar sensitivity to the next-generation sequencing (NGS) platform-
based scRNA-seq techniques such as SMART-seq?, and SUPer-
seq. A large number of unannotated novel transcripts have been
detected. SCAN-seq detected 6 487 unannotated transcripts cor-
responding to 3 834 genes in mESCs, and 27 250 unannotated
transcripts corresponding to 9 338 genes in mouse preimplan-
tation embryos®. ScISOr-Seq detected 18 173 known and 16 872
novel isoforms in mouse cerebellum®. In addition, RAGE-seq has
shown the ability of the TGS-based approach for detecting fusion

transcripts from somatic DNA rearrangements of T-cell-receptor
(TCR) and B-cell-receptor (BCR) transcripts®.

Second, while small variants such as SNVs and short indels
can be accurately detected using NGS-based short reads, larger
structural variations (SVs) are more challenging to detect and
characterize. TGS-based methods have been developed rapidly
to increase the reliability and resolution of SV detection®”. Our
group has recently developed a TGS-based single-cell genome se-
quencing technique SMOOTH-seq?®. For individual cells, the tech-
nique gets long sequencing reads with an average length of 6
kb, and reaches 19% genome coverage by 0.4X sequencing depth.
Except for insertions, deletions, duplications, and translocations,
the technique also effectively detects extra-chromosomal circu-
lar DNAs (ecDNA), being able to cover the full-length ones of <10
kb in a single read.

Third, single molecular nanopore sequencing is able to directly
detect epigenetic modifications such as 5mC and 6mA. Combining
such power with the enzyme accessibility of N6-methyladenosine
(m6A) methyltransferase or GpC methyltransferase, three groups
have recently reported TGS-based enzyme accessibility tech-
niques for detecting chromatin state along single-molecules over
a long distance (SMAC-seq, Fiber-seq, and nanoNOMe)*>-101, Al-
though they have not been adapted to single-cell analysis, these
methods display the value of TGS for investigating coordination
between the states of neighboring regulatory elements over large
genomic regions, which opens a new avenue for future study.
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Figure 1. TGS-based single cell sequencing technologies. Red and green indicate the aspects that have been achieved, while the red indicates those
where TGS-based methods have advantages over NGS-based methods. *The Nanopore-based technology may be used for directly sequencing the
protein in the future®®. Note the differences between NGS-based and TGS-based single-cell omics sequencing technologies (compare this figure to

Fig. 1 of Ref. 39)

Prospective

Single-cell omics sequencing technology has already made fruit-
ful progresses in the stem cell biology field. However, the cur-
rent techniques are still not ideal for human in vivo stem cell
studies. We expect that the techniques will further be developed
and improved within the next few years. The current single-cell
omics sequencing technology has both strong (developed) and
weak (developing) characteristics (Fig. 2). The technology has high
universality as it is applicable in a wide range of biological re-
search fields from plants to medicine. It gives high sensitivity
and accuracy, but still requires improvement. The throughput, au-
tomation, and speed of the technology have increased greatly with
the cost decreasing, but have not met clinical requirements. Par-
ticularly for stem cell studies, the temporal and spatial resolu-
tion of the technology is not satisfactory and is being improved.
With its weaknesses being improved, single-cell omics sequenc-
ing technology will be routinely used to dissect the biology of
stem cells, including (1) their self-renewal abilities or multiple
lineage differentiation potentials under physiological conditions
or under pathological conditions, (2) their premature differentia-
tion or delayed leaving from self-renewal mode in diseased situ-
ations, (3) their microenvironments, (4) the consequences of their
genetic perturbations, and (5) short-term responses to environ-
mental changes or long-term maintenance of their fates.

Further, it will be ideal if genome, epigenome, and transcrip-
tome can be simultaneously analyzed for an individual cell.
The transcriptome will permit identifying and separating differ-
ent types of cells. It will also act as a functional readout of
the global transcriptional activity. Then how different layers of
epigenomes regulate the organization of the genome and tran-
scriptional activity of every gene can be delineated. Finally, the
genome information can also be used to construct the lineage
relationship. In addition, how genetic changes contribute to the
abnormal behavior of a stem cell can be analyzed. If a genetic
change perturbs the expression of a gene, it may change the
physiological function and phenotype of a cell. In the future it
is possible that through single-cell multi-omics sequencing we
will identify genetic changes in the stem cells in our body and
their potential connections to the phenotypic changes of a stem
cell.

Of course, single-cell omics sequencing techniques are just
a series of technologies and they cannot answer every ques-
tion that arises in stem cell biology. Nevertheless, by integrat-
ing properly with other sets of powerful technologies such as
gene editing tools and organoid 3D culture systems and bio-
logical concepts, they will definitely accelerate the transforma-
tion of our rich and deep knowledge of stem cells in animal
models into more clinically relevant knowledge of stem cells in
human.
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characteristics, with the more developed state of the character indicated by its being positioned more peripherally (right panel).
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