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This work investigates the application of zero-frequency resonator (ZFR) for detecting systolic peaks of photoplethysmogram (PPG) signals.
Based on the authors’ studies, they propose an automated noise-robust method, which consists of the central difference operation, the ZFR, the
mean subtraction and averaging, the peak determination, and the peak rejection/acceptance rule. The method is evaluated using different kinds
of PPG signals taken from the standard MIT-BIH polysomnographic database and Complex Systems Laboratory database and the recorded
PPG signals at their Biomedical System Lab. The method achieves an average sensitivity (Se) of 99.95%, positive predictivity (Pp) of 99.89%,
and overall accuracy (OA) of 99.84% on a total number of 116,673 true peaks. Evaluation results further demonstrate the robustness of the
ZFR-based method for noisy PPG signals with a signal-to-noise ratio (SNR) ranging from 30 to 5 dB. The method achieves an average
Se = 99.76%, Pp = 99.84%, and OA= 99.60% for noisy PPG signals with a SNR of 5 dB. Various results show that the method yields
better detection rates for both noise-free and noisy PPG signals. The method is simple and reliable as compared with the complexity of
signal processing techniques and detection performance of the existing detection methods.
1. Introduction: The photoplethysmography (PPG) is a simple,
inexpensive and non-invasive optical technique for recording and
monitoring blood volume in tissue as a function of time [1–7].
The PPG signal is used in many clinical applications such as
cardiovascular monitoring, vascular assessment, and autonomic
function assessment. The PPG waveform may consist of five
distinct characteristic points such as the pulse onset, the systolic
peak (or the percussion peak), the tidal wave, the dicrotic notch
(or the incisura wave), and the dicrotic wave peak [5–7]. The
pulse onset represents minimum blood volume changes, which
indicates the beginning of ventricular contraction and ejection of
blood into the aorta (early systole). The systolic peak represents
the maximum blood volume changes, which indicates the end of
blood ejection. The tidal wave is the peak of the pulse wave in
the later systole. The dicrotic notch represents the closure of the
aortic valve, i.e. the beginning of the diastole phase. Despite
the different kinds of normal and pathological PPG signals, the
systolic peak instant, which is more prominent in the PPG signal,
is most widely used for measurement of diagnostic markers such
as pulse rate (PR), respiration rate, pulse transit time, cuff-less
blood pressure and arterial stiffness. Furthermore, the pulse peak
instants are used as reference points for determining other
characteristic points of the pulse signal, heart sound (S1/S2)
identification, PPG biometric template extraction, and emotion
recognition. Therefore, automatic detection of the systolic peak
has become one of the essential preprocessing steps in most
automated PPG signal analysis applications.

1.1. Existing methods: Many methods were presented based on
different signal processing techniques [5–16]. Most methods
include three major stages: (i) preprocessing stage for removal of
background noises; (ii) candidate feature (or envelope waveform)
extraction stage; and (iii) peak finding stage. In [4], three
detection methods were proposed: (i) symmetrical curve fitting
method; (ii) Gaussian curve fitting method; and (iii) adaptive
curve fitting method to reveal the secondary peak of the PPG
signal. Jang et al. [9] presented a method which uses the digital
filter for removal of baseline wanders. The cut-off frequency of
0.5 Hz was based on the PR <40 bpm (0.67 Hz) is practically
uncommon and human respiration, and also the main components
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of baseline wander occur within the bandwidth of 0.15–0.5 Hz.
Then, a slope sum function (SSF) was presented to enhance an
up-slope of the digital volume pulse (DVP) signal and to
suppress its down-slope. The pulse peaks were identified based
on the analysis of the slope, amplitude, and width. In [7], the
fourth-order Chebyshev type I bandpass filter was designed with
a bandwidth of 0.5–16 Hz to remove the noise and baseline
distortion in the PPG signals. The Shannon energy envelope
was extracted from the normalised filtered PPG signal. The onset
and peak-finding were implemented based on the Hilbert trans-
formation, drift removal, zero-crossing point detection, and mini-
mum value detection. In [8], the bandpass filter with a cut-off
frequency ranging from 0.5 to 5.5 Hz was used for removal of back-
ground noises. The pulse wave maxima were extracted with slope
criteria for fining the peaks and onsets. In [9], a modified morpho-
logical filter was employed for removing baseline wanders. The
SSF with an adaptive thresholding scheme is used for detecting
the pulse peaks from a baseline-removed DVP signal. In [10],
knowledge-based rules using the estimated parameters such as
pulse duration, height, area, and previous pulse onsets for detecting
the pulse peaks. In [11], an adaptive threshold approach was pro-
posed using the directional threshold with a fixed slope parameter,
which is updated based on past peak information. In [12], a template
matching approach was proposed using the cross-correlation coeffi-
cients with a three-point peak detection algorithm. The detection
rate of this approach highly relies on the selection of a noise-free
reference template waveform under noisy PPG recording con-
ditions. In [13], a multi-stage mixed detection approach is presented
based on the zero-crossing and local minima and maxima. In [14], a
linear-phase finite impulse response low-pass-differentiator filter
with a transition band between 7.7 and 8 Hz was employed to
emphasise the abrupt slopes of the PPG signal. In [15], a PPG
waveform delineation method was proposed using derivative and
zero crossing schemes on the derivative envelope. In [16], the
singular value decomposition and smoothing using a moving
average filter were used for suppression of baseline wanders and
extraction of the most periodic components. The peak and onset
points were found by finding local maxima and minima on the
selected intrinsic mode functions (IMFs). The spectral information
of noise and PPG signal may be distributed over different IMFs
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under different kinds of pulse and noise patterns. Thus, it is difficult
to automate the process of selection of IMFs for constructing the
candidate PPG signal and suppression of different kinds of noises
and artefacts. In [17], an ensemble empirical mode decomposition
(EMD)-based algorithm was proposed that integrates real-time
atrial blood pressure (ABP) delineation and quality assessment.
The ensemble empirical mode decomposition (EEMD) frequency
selectivity is used for both delineation and artefact detection.
In [18], an automatic method was proposed based on the
Gaussian derivative filtering, non-linear peak amplification,
Gaussian derivative-based peak finding scheme, and peak position
adjustment procedure. In [17], the EMD detrending algorithm was
presented to remove noise and artefacts in the PPG signal. Some of
the past studies showed that EMD is a computationally expensive
algorithm. The failure case of the find peak function of the
MATLAB is demonstrated in Fig. 1 for the PPG signal with
varying pulse amplitudes.

Literature survey shows that most methods employed the
search-back algorithm with sets of decision rules in order to
eliminate over-detected pulse peaks and to re-estimate missed
ones under high-frequency noises and artefacts. These decision
rules are based on the assumption that a difference between two
adjacent pulses cannot be beyond certain range as the pulse is a
slowly time-varying signal. This assumption may not be satisfied
in practice due to the sudden variations in the irregular pulse rates
even within the pulse rates of a human subject. Although the
peak detection is relatively accurate in the case of noise-free PPG
signals, an accurate and reliable determination of systolic peaks is
a still challenging task in the presence of different kinds of pulse
patterns, irregular pulse rates, sudden change in pulse peak
amplitudes and pulse rates, low-amplitude pulses and various
kinds of noise sources.

1.2. Key contribution and organisation of the Letter: In this Letter,
we investigate the application of zero-frequency resonator (ZFR)
Fig. 1 Illustrates the failure case of the find peak function of the MATLAB
for the PPG signal with varying amplitudes
a Original signal from MIT-BIH SLP: ‘slp41m’

b Peaks detected without post-processing
c Peaks detected using find peak function with minimum peak height
d Peaks detected using find peak function with minimum peak prominence
e Peaks detected using find peak function with minimum peak distance
f Peaks detected using find peak function with minimum peak threshold
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for automatically determining the systolic peaks of the PPG
signal. Based on our studies, this Letter proposes an automated
noise-robust method by combining the smoothing processing and
peak acceptance/rejection rule with the ZFR. The remainder of
the Letter is organised as follows. Section 2 presents the stages of
the ZFR-based method. Section 3 presents evaluation results and
performance comparison with other existing methods for the
same signal databases. Finally, conclusions are drawn in Section 4.

2. Materials and methods:
2.1. Overview of ZFR: The use of ZFR was demonstrated in the
task of detection of glottal closure instants (GCIs) [19]. The ZFR
whose central frequency located at 0 Hz can have the information
of the discontinuities. We also studied the robustness of the ZFR
for detection of GCIs from the electroglottography signal [20].
The output of ZFR is an exponentially growing/decaying signal.
The trend of the signal is removed to extract the relevant
information. In this work, we study the robustness of the ZFR for
detecting the systolic peaks of the PPG signal. The trend removed
signal mainly exhibits the slope portion of the PPG signal. Unlike
other methods, the ZFR-based candidate waveform extraction
approach is much simpler because it includes difference
operation, ZFR, and mean subtraction. A block diagram of the
proposed automated systolic peak detection method is shown in
Fig. 2, which consists of the following major steps:

2.2. Noise suppression: In the first step, removal of the dc or low
frequency baseline wanders from a PPG signal x[n] is performed
using a central differencing, which is implemented as

d[n] = x[n+ 1]− x[n− 1]. (1)

The output of this step is shown in Fig. 3a2 for the PPG signals
recorded using different kinds of sensors. The main objective of
the application of central difference operation is to reduce the
amplitude of the high-frequency noise components and remove
the low-frequency baseline components.

2.3. Zero-Frequency resonator: In the second step, the differenced
signal d[n] is passed twice through a ZFR [19], which is
implemented as

y1[n] = −
∑2

k=1

aky1[n− k]+ x[n], (2)

y2[n] = −
∑2

k=1

aky2[n− k]+ y1[n], (3)

where a1 = −2 and a2 = 1. The output of the ZFR step is shown in
Fig. 3a3. It has been noted that the ZFR is an exponentially
growing/decaying signal, y2[n].
Fig. 2 Block diagram of the ZFR-based systolic peak detection method
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Fig. 3 Results of each of the steps of the ZFR-based peak detection method
a1 Original PPG signal
a2 Central differencing
a3 ZFR
a4 Mean subtraction
a5 Moving averaging
a6 Peak determination
a7 Detected peaks
2.4. Mean subtraction: In the third step, the trend in the ZFR output
y2[n] is removed by subtracting the mean of the short-term window
of the signal y2[n]. In this study, a window with a duration of
1000 ms at each sample location is fixed to remove the trend
from a signal y2[n]. The resulting mean subtracted signal is called
the zero frequency filtered signal (ZFFS) [19], which is
implemented as

z[n] = y2[n]−
1

2N + 1

∑N

m=−N

y2[n+ m], (4)

where the window size is chosen based on the pulse interval range.
The output of the mean subtraction step is shown in Fig. 3a4.
Results show that the ZFFS is the oscillating waveform with local
periods approximately equal to the local pulse periods. From the
preliminary studies, it has been noted the presence of spurious
spikes, which may lead to more false positives under high-level
high-frequency noises. Furthermore, the presence of the multiple
and/or unsymmetrical local peaks (around the systolic peak
portion) in the ZFFS signal z[n] can lead to an inaccurate
measurement of time instants of the systolic peaks. Therefore, the
smoothing of the ZFFS is performed in this study.

2.5. Moving averaging: In the fourth step, in order to reduce the
effects of spurious noise spikes and multiple peaks, a moving
average is applied with a window of 200 ms to obtain the
smoothed peak signal. The moving average is implemented as

s[k] = 1

2K + 1

∑K/2

k=−K/2

z[k], (5)

where K denotes the window size. The output of the moving average
is shown in Fig. 3a5. From the results, it has been noticed that the
Healthcare Technology Letters, 2019, Vol. 6, Iss. 3, pp. 53–58
doi: 10.1049/htl.2018.5026
presence of a true systolic peak is in between the positive and
negative zero-crossing points of the smoothed ZFFS signal s[n].
Therefore, the zero-crossing points are detected and used as
guides in determining the true systolic peaks in the PPG signal.

2.6. Peak determination: In the fifth step, the systolic peak of the
PPG signal is determined by finding the maximum of a
windowed PPG segment extracted within the locations of positive
zero-crossing point and negative zero-crossing point of the ZFFS
signal. The time instants of the detected peaks are shown in
Figs. 3–5. From the detection results, it is noted that the method
produces more false positives for the PPG signals with long
pauses between two consecutive systolic peaks, as shown in
Fig. 5. Therefore, the peak-amplitudes between the zero-crossing
points are compared with a predefined threshold.

2.7. Peak acceptance/rejection rule: From our preliminary studies,
it is noted that the ZFFS signal has the minimum peak amplitude
ranging from −5 to 5 for a wide variety of PPG signals including
low-amplitude systolic peaks, time-varying peak-amplitudes and
wave shapes, different slope variations (from pulse onset to peak)
and other local waves such as the tidal wave, the dicrotic notch,
and the dicrotic wave. Thus, a predefined peak-amplitude
threshold of 1 is chosen to accept/reject a detected peak. If the
peak-amplitude is >1 then the detected peak is considered as a
true positive otherwise it is considered as a noise peak which can
be discarded in the detection process.

3. Results and discussion: The accuracy and robustness of
the ZFR-based systolic peak detection method is validated using
a large scale of PPG signals taken from the standard such
as MIT-BIH polysomnographic database (SLP) (http://www.
physionet.org/physiobank/database/slpdb/) [21] and Complex
Systems Laboratory (CSL) database [22] and the recorded PPG
signals in our Biomedical System Lab.

3.1. Experimental set-up: In this study, we created the PPG signal
databases using the commercially available PPG acquisition
hardware modules such as Pulse Oximeter TMS320C5515
Medical Development Kit [23], and our finger pulse sensing
module. The TI pulse oximeter system monitors the oxygen
saturation of a patient’s blood non-invasively. The magnitude of
the PPG signal depends on the amount of blood ejected from the
heart during the systolic cycle, the optical absorption of blood,
the absorption by the skin and various tissue components, and the
specific wavelengths used to illuminate the vascular tissue bed
[23]. The fully integrated TI analogue front sensing module end
consists of trans-impedance amplifier gain, ambient light
compensation, additional stage 2 gain, and light-emitting diode
(LED) current, an analogue-to-digital converter, an LED transmit
section, diagnostics for sensor and LED fault detection, a sensing
probe, a wireless module and an ultra-low power microcontroller
for calculating an oxygen saturation (SpO2) level. The PPG
signals are collected from 20 subjects for performance validation
purpose. The acquired PPG signals are resampled to a sampling
rate of 125 Hz. The PPG signals are often corrupted with
different kinds of motion artefacts, power-line interference, and
other high-frequency noises.

3.2. Description of the PPG databases: The MIT-BIH SLP database
is a collection of recordings of multiple physiologic signals during
sleep [21]. The SLP database was created for the evaluation of
chronic obstructive sleep apnea syndrome and the effects of
medical intervention. The PPG records ‘slp01a’ and ‘slp01b’ are
segments of one subject’s polysomnogram, separated by a gap of
about 1 h. The PPG records ‘slp02a’ and ‘slp02b’ are segments
of another subject’s polysomnogram, separated by a 10-min gap.
The remaining 14 records are from different subjects [21]. The
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Fig. 5 Performance of the proposed method
a Original PPG
b ZFFS signal
c Detected candidate peak location
d Detected systolic peaks for (i) the noisy PPG signal with corrupted AWGN, with SNR= 5 dB; and (ii) the PPG signal with baseline wander and long pause. It is
noted that the ZFR-based method results in some peaks for the long pause portion but the proposed peak acceptance/rejection rule improves the detection
performance by discarding the detected peaks with peak-amplitudes which are <1

Fig. 4 Performance of the proposed method
a Original PPG
b ZFFS signal
c Detected candidate peak location
d Detected systolic peaks for (i) the PPG signal with time-varying systolic peak amplitudes, the baseline wander and high-frequency noises; and (ii) the PPG
signal with varying pulse shapes and baseline wander
recordings were digitised at a sampling interval of 250 Hz and
12 bits/sample.

The CSL database contains 60 min manually annotated record-
ings from six patients that were acquired by a data acquisition
system in the CSL [22]. The benchmark CSL database made it
openly accessible for beat detector evaluation. The CSL database
is most widely used to evaluate the performance of the systolic
peak detection methods. The ABP signals were obtained from
two paediatric cases in the paediatric intensive care unit. These
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signals were sampled at 125 Hz, band-pass filtered and auto-scaled.
The CSL database contains manual beat annotations from two inde-
pendent experts and the automatic annotation from the CSL
Reference algorithm [5]. The annotations of the expert with identi-
fication ‘DT’ are chosen as reference beats in this study. The beat
annotations are provided in the database. We manually annotated
the systolic peak locations for our real-time PPG signals that are
recorded using the Bioradio, TI Pulse oximeter, and other commer-
cial available PPG sensing hardware. In addition with the noises
Healthcare Technology Letters, 2019, Vol. 6, Iss. 3, pp. 53–58
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Table 2 Peak detection performance on the IITBBS database

Record TP FP FN DER,% Se,% Pp,% OA,%

subj01 923 4 4 0.87 99.57 99.57 99.14
subj02 802 0 0 0 100 100 100
subj03 767 0 0 0 100 100 100
subj04 880 1 0 0.11 100 99.89 99.89
subj05 797 2 0 0.25 100 99.75 99.75
subj06 725 0 0 0 100 100 100
subj07 880 0 0 0 100 100 100
subj08 932 0 0 0 100 100 100
subj09 852 0 0 0 100 100 100
subj10 854 0 0 0 100 100 100
subj11 677 0 0 0 100 100 100
subj12 921 3 3 0.65 99.68 99.68 99.35
subj13 760 0 0 0 100 100 100
subj14 954 0 0 0 100 100 100
subj15 687 1 0 0.15 100 99.85 99.85
subj16 685 0 0 0 100 100 100
subj17 737 0 0 0 100 100 100
subj18 633 1 1 0.32 99.84 99.84 99.69
subj19 695 0 0 0 100 100 100
subj20 1083 0 0 0 100 100 100
overall 16,244 12 8 0.12 99.95 99.93 99.88

Table 1 Peak detection performance on the MIT-BIH SLP database

Record TP FP FN DER,% Se,% Pp,% OA,%

slp01am 4206 0 0 0 100 100 100
slp01bm 4195 42 1 1.03 99.98 99.01 99
slp02am 6021 10 4 0.23 99.93 99.83 99.77
slp02bm 5298 9 4 0.25 99.92 99.83 99.76
slp03m 4402 1 0 0.02 100 99.98 99.98
slp04m 5345 0 0 0 100 100 100
slp14m 4176 2 2 0.10 99.95 99.95 99.90
slp16m 5605 2 0 0.04 100 99.96 99.96
slp32m 4475 2 0 0.04 100 99.96 99.96
slp37m 5592 0 0 0 100 100 100
slp41m 4599 17 13 0.65 99.72 99.63 99.35
slp45m 5019 0 0 0 100 100 100
slp48m 4548 5 0 0.11 100 99.89 99.89
slp59m 4960 0 0 0 100 100 100
slp60m 4863 0 0 0 100 100 100
slp61m 4926 6 2 0.16 99.96 99.88 99.84
slp66m 4517 3 2 0.11 99.96 99.93 99.89
slp67xm 4567 0 0 0 100 100 100
overall 87,314 99 28 0.15 99.97 99.89 99.85
introduced to the PPG signals while recordings, the noisy PPG
signals are also created by adding the simulated additive white
Gaussian noise (AWGN), powerline interference and motion arte-
facts to the recorded PPG signals.

3.3. Performance metrics: In this study, detection results are
evaluated using the standard benchmark metrics such as
sensitivity (Se), positive predictivity (Pp), detection error rate
(DER) and overall accuracy (OA) [15–18] that are computed as

Se = TP/(TP+ FN)× 100%, (6)

Pp = TP/(TP+ FP)× 100%, (7)

DER = (FP+ FN)/TS× 100%, (8)

OA = TP/(TP+ FP+ FN)× 100%, (9)

where TP denotes the true positive when a systolic peak is correctly
detected, FN denotes false negative when a systolic peak is
not detected, FP denotes the false positive when a noise peak
is detected as a systolic peak and TS denotes the total systolic
peaks. These detection parameters are found by comparing the
detected peak locations with the expert beat-beat annotations
given in the PPG database. The detected systolic peaks are
considered true positives if the peaks are within a predefined
acceptance interval of 10 ms otherwise the detected peaks are
considered as false positives.

3.4. Detection performance evaluation: The main objective of this
study to investigate the accuracy and robustness of the ZFR-based
method for detecting the systolic peaks of the PPG signal. The
method is tested using a wide variety of PPG signals and
different kinds of noises and artefacts. The detection performance
of the method is summarised in Tables 1 and 2 for the MIT-BIH
SLP database and IITBBS database. From the results of Table 1,
it is noted that the method yields a Se of 99.95–100% for most
test records except the record ‘slp41m’ and Pp of 99.85–100%
for most records except the records: ‘slp01bm’, ‘slp02am’,
‘slp02bm’, and ‘slp41m’. Based on the visual inspection of
detection results, it is noted that these records have severe motion
artefacts. The method has a FN of 13 peaks due to the presence
of very small local PPG waves. Results show that the method has
a DER of 127 peaks for a total of 87,342 peaks taken from the
18 PPG records of the MIT-BIH SLP database. The performance
of the method is further evaluated using the real-time PPG signals
that are recorded in the Biomedical System Laboratory at IIT
Bhubaneswar. The detection results are summarised in Table 2
for 20 PPG signals taken from the IITBBS PPG databases.
Results demonstrate that the method achieves a Se of 100% for
most test PPG signals and a Pp of 100% except for six subjects.
However, the method has an OA ranging from 99 to 100%. For a
total of 16,244 peaks taken from the 20 subjects of the IITBBS
PPG database, the method yields an average Se of 99.95%, Pp of
99.93% and OA of 99.88% for different kinds of PPG waveform
patterns and noises. The detection results are shown in Figs. 3–5
for different kinds of PPG signals with irregular pulse rates, pulse
shapes and long pause and also corrupted with baseline wanders
and AWGNs.

3.5. Performance comparison: In this study, the detection rates of
the method are compared with the existing methods on the
MIT-SLP and CSL databases. Since the design parameters of
the existing methods are not available for implementation
purpose, the detection results of existing methods are considered
for performance comparison. In this study, we have taken a total
of 87,342 systolic peaks from the records of the MIT-BIH SLP
database. Furthermore, the performance of the method is
Healthcare Technology Letters, 2019, Vol. 6, Iss. 3, pp. 53–58
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evaluated on a total of 13,079 systolic peaks of the CSL
database. Evaluation results of the detection methods on both
benchmark PPG databases are summarised in Table 3. Results
show that the method yields better detection rates as compared
with the existing methods and CSL Reference methodologies
for both PPG signal databases [15, 17, 18]. Unlike other
derivative-based methods, the ZFFS signal can be used as a
better candidate waveform for determining the peaks in the PPG
signal by detecting the zero-crossing points. The proposed
method is straightforward in the sense that our method does not
include any search-back algorithms for including or rejecting the
missed or noise peaks.
3.6. Robustness evaluation: The robustness of the method is
evaluated on the standard CSL databases by adding the synthetic
AWGN. Table 4 summarises the detection rates of the method
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Table 4 Robustness of the ZFR-based peak detection method

Record TP FP FN Se (%) Pp (%) OA (%)

original 13,057 9 22 99.83 99.93 99.76
SNR= 30 dB 13,056 9 22 99.83 99.93 99.76
SNR= 25 dB 13,052 9 24 99.82 99.93 99.75
SNR= 20 dB 13,055 10 25 99.81 99.92 99.73
SNR= 15 dB 13,047 12 28 99.79 99.91 99.69
SNR= 10 dB 13,047 17 28 99.79 99.87 99.66
SNR= 5 dB 13,047 21 32 99.76 99.84 99.60

Table 3 Performance comparison of peak detection methods

Database (method) TP FP FN Se,% Pp,% OA,%

IITBBS (our method) 16,244 12 8 99.95 99.93 99.88
MIT-BIH SLP (our
method)

87,314 99 28 99.97 99.89 99.85

MIT-BIH SLP [18] 67,055 264 70 99.89 99.59 99.49
CSL [15] 13,055 21 24 99.82 99.84 99.66
CSL [16] 12,979 110 100 99.24 98.48 98.41
— — — — — — —

CSL [17] 13,050 32 20 99.85 99.76 99.6
CSL (our method) 13,057 9 22 99.83 99.93 99.76
for noisy PPG signals with signal-to-noise ratio (SNR) values of 30,
25, 20, 15, 10 and 5 dB. In this study, we observed that the
ZFR-based method results in more false positives due to the
spurious spikes present in the ZFFS signal under low SNR
conditions. Therefore, we implement the moving average to
smooth out the spurious spikes in the portions of the
zero-crossing points of the ZFFS signal. Results also show that
the smoothing process reduces the peak-amplitudes for very
low-amplitude PPG signals. Therefore, the method had more false
negatives than false positives for very-small pulse amplitudes.
However, the detection rates of the method demonstrate that the
method is robust in detecting the peaks under noisy PPG signals
with low SNR conditions. Evaluation results show that the
ZFR-based method achieves an average Se of 99.76%, Pp of
99.84%, and OA of 99.60% for the PPG signals with SNR of
5 dB. By comparing the different signal processing techniques, it
is noticed that the ZFR-based systolic peak detection method is
simple as compared with the current state-of-the-art detection
methods based on the wavelet transform, EMD, Hilbert
transforms and filtering methods with multiple detection results.
4. Conclusion: This Letter presents a simple ZFR-based systolic
peak detection method without using the search back mechanism
to reject or include the noise or missed peaks. The method is
evaluated using different kinds of PPG signals taken from the
standard MIT-BIH-Polysomnographic and CSL databases and the
real-time PPG signals recorded at our Biomedical System Lab.
The method had an average Se of 99.95%, and Pp of 99.89% on
the total number of 116,673 peaks. Results further show that the
method had an average Se = 99.76%, Pp = 99.84% and
OA= 99.60% for noisy PPG signals with a SNR of 5 dB.
Evaluation results demonstrate the robustness of the ZFR-based
method under severe noisy PPG signals. As compared with
different signal processing stages of existing detection methods,
the ZFR-based peak detection method is simple and reliable in
achieving better detection rates under different kinds of PPG
signal patterns and noises.
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