
fmicb-12-773211 December 3, 2021 Time: 17:40 # 1

REVIEW
published: 09 December 2021

doi: 10.3389/fmicb.2021.773211

Edited by:
Leonard Peruski,

Centers for Disease Control
and Prevention (CDC), United States

Reviewed by:
Alan G. Goodman,

Washington State University,
United States

Laura R. H. Ahlers,
National Institute of Allergy

and Infectious Diseases, National
Institutes of Health (NIH),

United States

*Correspondence:
Adrien Albert Blisnick

adrien.blisnick@pasteur.fr
Anna-Bella Failloux

anna-bella.failloux@pasteur.fr

†These authors share last authorship

Specialty section:
This article was submitted to

Infectious Agents and Disease,
a section of the journal

Frontiers in Microbiology

Received: 09 September 2021
Accepted: 19 October 2021

Published: 09 December 2021

Citation:
Viglietta M, Bellone R, Blisnick AA

and Failloux A-B (2021) Vector
Specificity of Arbovirus Transmission.

Front. Microbiol. 12:773211.
doi: 10.3389/fmicb.2021.773211

Vector Specificity of Arbovirus
Transmission
Marine Viglietta, Rachel Bellone, Adrien Albert Blisnick*† and Anna-Bella Failloux*†

Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France

More than 25% of human infectious diseases are vector-borne diseases (VBDs).
These diseases, caused by pathogens shared between animals and humans,
are a growing threat to global health with more than 2.5 million annual deaths.
Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses,
which greatly affect humans. However, all tick or mosquito species are not able
to transmit all viruses, suggesting important molecular mechanisms regulating viral
infection, dissemination, and transmission by vectors. Despite the large distribution
of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of
arthropods (family, genus, and population) and viruses (family, genus, and genotype)
successfully transmit. Here, we review the factors that might limit pathogen
transmission: internal (vector genetics, immune responses, microbiome including
insect-specific viruses, and coinfections) and external, either biotic (adult and
larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will
demonstrate the dynamic nature and complexity of virus–vector interactions to
help in designing appropriate practices in surveillance and prevention to reduce
VBD threats.
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INTRODUCTION

Vector-borne diseases (VBDs) represent almost one-fourth of annual deaths attributed to infectious
diseases (Jones et al., 2008). In recent decades, growing trade and increased international tourism,
have highly contributed to the expansion of vectors colonizing new territories and thus threatening
new regions with new pathogens (Esser et al., 2019). These changes imply that endemic pathogens
can be transmitted by imported vectors, or newly introduced pathogens can be transmitted by local
vector populations.

To be efficient, the vectorial system requires high densities of competent vectors, a high
vector survival rate, and frequent contacts between vectors and susceptible vertebrate hosts. Taken
together, all these parameters contribute to the vectorial capacity, which is related to the efficiency
of a vector population to transmit a pathogen under natural conditions. The vectorial capacity
encompasses the vector competence, which is defined as the ability of an arthropod to acquire,
sustain replication and dissemination of a pathogen, and then successfully transmit it to new
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susceptible hosts (Monath, 1988). Differences in vector
competence result from specific interactions between genetics
of both vectors (vector genus, species, and population) and
viruses (viral strain and genotype), which are modulated by
external (biotic and abiotic) factors. Due to their worldwide
distribution and their abilities to transmit various human and
animal pathogens such as viruses, protozoans, bacteria, and
microfilariae (Mehlhorn, 2008; Tolle, 2009), both mosquitoes
(Figure 1A) and ticks (Figure 2A) are considered to be the
main vectors of vector-borne pathogens (VBPs) of medical
and veterinary importance. It is clear that ticks and, more
particularly, the hard ticks can transmit a larger class of VBPs
than mosquitoes probably due to the longer and voluminous
blood meal they can absorb. While mosquitoes are not usual
vectors of bacteria, ticks are typical vectors of several bacterial
families such as Anaplasmatacae, Francisellaceae, Bartonellaceae,
Brucellaceae, and Spirochaetaceae (Aubry and Geale, 2011;
Stuen and Longbottom, 2011). In addition, both mosquitoes
and ticks may transmit parasites; e.g., ticks transmit parasites
of Babesiiadae family and mosquitoes transmit protozoans of
Plasmodiidae families including Plasmodium falciparum that
imposes a huge burden of disease. It caused around 229 million
cases in 2019 in Africa, Southeast Asia, and South America.
A total of 409,000 deaths were attributed to malaria in 2019, 88%
of total cases being in Africa (Phillips et al., 2017).

In addition to bacteria and parasites, mosquitoes and ticks
are also vectors of viruses named arboviruses (arthropod-
borne viruses). Around 500 arboviruses are already described
worldwide, but only some of them are pathogenic for animals
and/or humans. Among them, about 50 arboviruses affect
domestic animals and wildlife, and more than 100 could
be pathogenic for humans (Gubler, 2001; Hubalek et al.,
2014). With 390 million cases in 2019, dengue is the most
prevalent VBD in the world (Hubalek et al., 2014; Huang
et al., 2019). However, other arboviruses like yellow fever virus
(YFV), Zika virus (ZIKV), Japanese encephalitis virus (JEV),
chikungunya virus (CHIKV), or West Nile virus (WNV) also
impact periodically human populations (Figure 1B). Regarding
animals, alphaviruses such as eastern equine encephalitis virus
(EEEV), Venezuelan equine encephalitis virus (VEEV), and
western equine encephalitis virus (WEEV), mainly transmitted
by Culex spp. and Culiseta spp. mosquitoes, kill horses [e.g.,
rate of mortality higher than 50% (Hayes et al., 1981; Foster,
2018)], while others such as Middleburg Virus (MIDV) and
Sindbis Virus (SINV) affect horses, cattle, sheep, goats, and, to
a lesser extent, pigs. In addition, the phlebovirus Rift Valley
fever virus (RVFV), mostly transmitted by Aedes and Culex
mosquitoes, is associated with a high mortality rate in young
animals, causes abortions, and could also severely affect humans
(Hubalek et al., 2014). Similar to mosquitoes, ticks are also able
to transmit arboviruses affecting mostly animals and, to a lesser
extent, humans (Figure 2B). Regarding tick-borne viruses (TBV),
the African swine fever virus (ASFV, Asfarviridae family), and
the Nairobi sheep disease virus (NSDv, Nairoviridae family) are
undoubtedly the most pathogenic viruses for pigs and sheep with
up to 100 and 90% of mortality rate, respectively (Labuda and
Nuttall, 2004; Shi et al., 2018). ASFV is transmitted by the soft

tick Ornithodoros spp. mostly in Africa and in Asia and, more
secondarily, in Europe in wild boars (World Health Organization,
2020). NSDv is transmitted by Rhipicephalus and Haemaphysalis
ticks and causes a lethal disease (e.g., hemorrhagic gastroenteritis)
in ruminants with a mortality rate ranging from 30 to 90%
(Hubalek et al., 2014). For humans, the most lethal TBVs are tick-
borne encephalitis virus (TBEV far-eastern serotype) (mortality
rate up to 30% Yoshii, 2019), and the Crimea Congo hemorrhagic
fever virus (CCHFV) (mortality rates ranging from 3 to 40%
Portillo et al., 2021). Among all classes of pathogens transmitted
by mosquitoes and ticks, arboviruses represent undoubtedly
the most significant threat for animal and human health over
these last decades. Ten arbovirus families are described in
mosquitoes and ticks as being important for human and animal
health. Table 1 gives details on virus families, vectors, genome
features (size, polarity), and examples of viruses with human or
veterinary importance (Halbach et al., 2017; Kazimirova et al.,
2017).

Arboviruses transmission by vectors is ensured via two main
mechanisms named vertical (VT) and horizontal transmission
(HT). Although VT maintains the virus from an infected
female to her offspring by transovarian transmission, it is
minor, and only few proportions of arboviruses pass through
VT: California encephalitis virus (CEV) and La Crosse virus
(LACV) in mosquitoes (Lequime et al., 2016) and TBEV
(Rehacek, 1962) and ASFV (Rennie et al., 2001). The main
transmission mode for arboviruses is HT, which is clearly
dependent on the vector feeding mode. After ingestion of the
virus by a vector during blood feeding, the virus replicates
in the vector and infect all tissues including salivary glands
where freshly produced virions can then be transmitted
to a novel vertebrate host via saliva secreted during a
subsequent blood meal. HT is predominant both in ticks
and mosquitoes and is involved in infecting animals and
humans by arboviruses.

However, it is naturally observed and experimentally
demonstrated that although various vector species can bite the
same hosts, only few species may become infected and then
transmit the virus to another vertebrate host. For example,
despite the close phylogenetic relatedness of o’nyong nyong
virus (ONNV) and chikungunya virus (CHIKV), the first one
can be transmitted by both Aedes aegypti and Anopheles gambiae
(main vector of Plasmodium parasites), whereas the second
is only transmitted by Ae. aegypti since CHIKV is unable to
replicate in An. gambiae (Vanlandingham et al., 2005). Moreover,
while some ticks are known to transmit a single arbovirus,
others are more generalist, transmitting several arboviral
families (Tokarz et al., 2018). Therefore, the functioning of a
vectorial system is complex based on various factors, which are
all interconnected.

In this review, we will discuss factors that may explain
vector specificity, making transmission more an exception than
a generality. First, vector internal factors including compatible
genetic combinations of vector (mosquito and ticks) genotype
and viral genotype will be examined as possible prerequisites to
the functioning of the vectorial system. We will then explore
how long-term interactions allow a kind of “tolerance” by the
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FIGURE 1 | Global distributions of mosquito genera of medical importance (A) and arboviruses transmitted by the three main mosquito genera (B). (A) The three
mosquito genera reported on the map are the most prevalent ones around the world representing the principal vectors of arboviruses (Aedes and Culex spp.) and
parasites (Anopheles spp.) of human health importance. The pink, blue, and green areas represent respective presence of Aedes spp., Anopheles spp., and Culex
spp. mosquitoes. The hatched areas represent the distribution of Aedes spp. and Anopheles spp. mosquitoes in the same countries. (B) Map of the main
arboviruses transmitted by Aedes, Culex, and Anopheles spp. including the flaviviruses (YFV, JEV, DENV, ZIKV, and WNV), the alphaviruses chikungunya (CHIKV) and
O’nyong’nyong virus (ONNV), and the phlebovirus Rift valley fever virus (RVFV) (Tiwari et al., 2012; Hanley et al., 2013; Reisen, 2013; Fredericks and
Fernandez-Sesma, 2014; Houe et al., 2019; Noorbakhsh et al., 2019; Pezzi et al., 2019; Centers for Disease Control and Prevention, 2020a,c; European Centre for
Disease Prevention and Control, 2021). The maps were built using the open source map site https://cmap.comersis.com/cartes-Monde-WORLD.html.
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FIGURE 2 | Global distributions of tick genera of medical and veterinary importance (A) and arboviruses transmitted by ticks (B). (A) The five tick genera reported on
the map, namely, Ornithodoros, Ixodes, Rhipicephalus, Dermacentor, and Hyalomma spp., are the most prevalent ones around the world representing the principal
vectors of arboviruses. (B) Map of the main arboviruses transmitted by ticks. The yellow, orange, green, blue, and pink areas represent respective presence of the
tick-borne flaviviruses, namely, tick-borne encephalitis virus (TBEV), Louping ill virus (LIV), and Powasan virus (POWV); the Asfivirus, namely, African swine fever virus
(ASFV); and the Orthonairovirus, namely, Crimean-Congo hemorrhagic fever virus (CCHFV) (Myers, 2015; Dupraz et al., 2016; Diuk-Wasser et al., 2016; DW
Akademie, 2016; de la Fuente et al., 2017; Frant et al., 2017; Galgani et al., 2017; Bakkes et al., 2018; Lindqvist et al., 2018; Andersen et al., 2019; Burrow et al.,
2019; Kemenesi and Banyai, 2019; Wang et al., 2019; Centers for Disease Control and Prevention, 2020b; Gaudreault et al., 2020; World Health Organization,
2020). The map was built using the open source map site https://cmap.comersis.com/cartes-Monde-WORLD.html.

vector immune system to the virus. Second, other internal factors
such as the microbiome and coinfecting arboviruses play a
critical role in modulating the vector competence. Finally, all

these internal factors are shaped by external factors described
as biotic (nutrition and nature of blood) and abiotic factors
(climate/temperature, exposure to chemicals, and topography).
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TABLE 1 | List of arbovirus families transmitted by mosquitoes and ticks.

Order Family Genus Genome Main vector Major importance for Examples

Mosquito Tick Human Animal

Unassigned Flaviviridae Flavivirus ss RNA+ X X X X West Nile virus (WNV), Dengue virus
(DENV), Tick-borne encephalitis virus
(TBEV), Yellow fever virus (YFV)

Togaviridae Alphavirus ss RNA+ X 5 X X Chikungunya virus (CHIKV), Eastern equine
encephalitis virus (EEEV), O’nyong’nyong
virus (ONNV), Sindbis virus (SINV)

Unassigned Reoviridae Coltivirus ds RNA 5 X X X Colorado tick fever virus (CTFV)

Orbivirus ds RNA X X 5 X African horse sickness virus (AHSV)

Unassigned Asfarviridae Asfivirus ds DNA 5 X 5 X African swine fever virus (ASFV)

Bunyavirales Nairoviridae Orthonairovirus ss RNA− 5 X X X Crimean-Congo hemorrhagic fever virus
(CCHFV), Nairobi sheep disease virus
(NSDv)

Phenuiviridae Phlebovirus ss RNA− 5 X 5 X Rift Valley fever virus (RVFV), Lihan tick virus
(LTV)

Peribunyaviridae Orthobunyavirus ss RNA− X 5 5 X California encephalitis virus (CEV), La
Crosse virus (LACV), Batai virus (BATV)

Articulavirales Orthomyxoviridae Thogotovirus ss RNA− 5 X 5 X Thogoto virus (THOV), Dhori virus (DHOV)

Quaranjavirus ss RNA− 5 X X X Quaranfil virus (QRFV)

Mononegavirales Rhabdoviridae Vesiculovirus ss RNA− X X 5 X Malpais spring virus (MSPV)

Nyamiviridae Nyavirus ss RNA− 5 X 5 X Nyamanini nyavirus (NYMV), Midway
nyavirus (MDWV)

ssRNA−, single-stranded negative sense RNA; ssRNA+, single-stranded positive sense RNA; dsRNA, double-stranded RNA; dsDNA, double-stranded DNA.

ROLE OF INTERNAL FACTORS IN VIRUS
TRANSMISSION BY MOSQUITOES AND
TICKS

The performance of the vectorial system results from long-term
interactions between vectors and pathogens without substantial
deleterious effects on vector’s fitness. In this section, internal
factors that influence viral transmission by mosquitoes and ticks
will be discussed.

Origins of Vectors and Viruses
The diversification of Culicinae and Anophelinae lineages (both
emerged from Africa) have been dated by molecular approaches
to approximatively −226 Ma, meaning that the origin of
mosquitoes was in the Jurassic Era (−200 to −145 Ma) (Borkent
and Grimaldi, 2004; Reidenbach et al., 2009). Similarly, as
Nuttalliella ticks are considered as ancestral and “live fossil” tick
species, the tick origin has been estimated to be approximately
−260 to −270 Ma (de la Fuente, 2003; Mans et al., 2011).
Mosquitoes and ticks cohabited with the prehistorical hosts
including birds, dinosaurs, and some small vertebrates for a
long period. Anophelinae contains three main genera—Anopheles
Meigen, Bironella Theobald, and Chagasia Cruz—whose ranking
and relationships are still debated nowadays, since previous
classifications, based on morphological characteristics, are not
confirmed by molecular tools used in recent studies (Foster
et al., 2017). To date, among the lineage of Anophelinae, the
genus Anopheles counts up to 480 species, but only 40 are really
considered as vectors of Plasmodium spp. parasites (Sinka, 2013).

Moreover, Aedes mosquitoes represent a group with species
having the most significant impact on human health. The
cosmopolitan “domestic” Ae. aegypti derived from Ae. aegypti
formosus mainly found in African forests, Ae. aegypti having
left Africa 1,000 years ago to colonize the rest of the world
(Soghigian et al., 2020).

Today, Aedes mosquitoes are known to be the more efficient
vector of arboviruses. It is partly explained by mosquito genetic
differences based on the natural history of Ae. aegypti sp. (Linné,
1862). This species originated from a sub-Saharan African sylvan
ancestor that moved to West Africa late in the eighth century
and then invaded the new world along with the African slave
trade from the fifteenth to the seventeenth century. Then, around
1,800, this mosquito species was introduced in the Mediterranean
basin and established in the port cities. From 1869, the Suez
Canal facilitated commercial exchange and also participated to
the large dissemination and the global invasion of Ae. aegypti
into Asia (Smith, 1956), Australia (1887), and the South Pacific
region (1904) (Powell et al., 2018). On the other hand, Aedes
albopictus native to tropical forests of Southeast Asia, was mainly
limited to Asia, India, and several islands in the Indian Ocean
region, such as La Réunion (Mattingly, 1953) and the Seychelles
(Metselaar et al., 1980), and in the Pacific region, the Mariana
and Papua New Guinea islands, until the late 1970s (Elliott,
1980). Ae. albopictus took three decades to globally colonize
the world, while Ae. aegypti took centuries to cover the tropical
regions. In addition to genetic differences between populations,
these two mosquito species are distinguished by the diversity
of vertebrate hosts and pathogens they may transmit. Thus,
the outcome of vector–host–pathogen interactions result from
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a long-term adaptation between those three partners of the
vectorial triad. This adaptation could be measured by quantitative
genomics and via quantitative trait loci (QTL) and transposable
elements (TEs) analysis.

Vector Genetics and Viral Transmission
It is well known that within the vectorial system, pathogen
transmission results from a compatible interaction between viral
genotype and vector genotype. Genotype× genotype interactions
imply that phenotypic variation in vector competence is not only
modulated by independent, additive effects of both vector and
virus genotypes but also by a genetic component that is specific
to each virus–vector combination (Lambrechts, 2010).

Quantitative Genomics
Quantitative trait locus (QTL) is a portion of a genome that
controls the variation of a quantitative trait phenotypically
measurable, such as insecticide resistance (Saavedra-Rodriguez
et al., 2008) or vector competence (Bosio et al., 2000).
Interbreeding Ae. aegypti and Ae. aegypti formosus generated
progeny with QTLs on chromosomes 2 and 3 that affect midgut
infection barrier and midgut escape barrier for DENV (Bosio
et al., 2000). Other QTLs were also identified on the same
chromosomes as associated with both midgut infection and
dissemination of DENV in Ae. aegypti (Gomez-Machorro et al.,
2004; Merkling et al., 2020). These results clearly suggest the
importance of QTL and, more broadly, the genetic background
of mosquito in the vector competence.

More recently, new-generation sequencing (NGS) techniques
allowed the exploration of vector genomes: 1,380 MB for
Ae. aegypti (Nene et al., 2007), 1,900 MB for Ae. albopictus
(Chen et al., 2015; Dritsou et al., 2015), 579 MB for Culex
quinquefasciatus (Arensburger et al., 2010), 278 MB for Anopheles
(Holt et al., 2002), and 2.1 GB for Ixodes scapularis (Gulia-
Nuss et al., 2016). The genome sizes reflect the long evolution
from their common ancestor to the current large diversity of
vector populations. The size differences observed in mosquito
genomes could be explained by the presence of transposable
elements (TEs), considered as intragenomic parasites (McLain
et al., 1987). These elements could also serve as an evolutive
clock, allowing to order and classify species in relation to each
other (Wu and Lu, 2019). TEs are ubiquitously found in living
organisms and are integrated into the host genome from where
they are able to replicate independently and to move from one
chromosomal location to another by transposition (Finnegan,
1992). Transposition events can occur in all arthropod cell
lines and may depend on some signals such as P elements in
Drosophila melanogaster (Kaufman et al., 1989). Transposons
are classified in two distinct classes. The class I relies on RNA
intermediates, giving the name of retrotransposons to this class,
also subdivided into long terminal repeat (LTR) retrotransposons
and non-LTR retrotransposons (Finnegan, 2012) depending on
the transposition mode. The class II elements are called DNA
elements containing terminal-inverted repeats (TIRs) and are
subdivided into three groups in eukaryotes: classic transposons
(Craig et al., 2015), helitrons (Kapitonov and Jurka, 2001),
and mavericks, sometimes called politrons (Pritham et al., 2007).

Transposons tend to modify the number of copies of genomic
elements in the genome and, subsequently, could dysregulate
gene expression, recombination, and chromosome crossing overs
leading to chromosomal rearrangements. Thus, TEs are the
major molecular mechanisms driving host genome evolution
(Houe et al., 2019). The insertion of TEs into an exon
may change the gene open reading frame (ORF) resulting
in the coding of non-functional protein or in missense/non-
sense mutations. However, transposition could also modify the
alternative splicing and, therefore, the protein synthesis leading
to produce protein isoforms or introduce polyadenylation signal,
which both facilitate evolution and adaptation to environmental
changes (Capy et al., 2000; Konkel and Batzer, 2010).

Comparison of Ae. aegypti and Ae. albopictus genomes,
highlights a large difference in quantity and diversity of TEs
elements; TEs cover 1,343 MB in Ae. albopictus and 988 MB in
Ae. aegypti. In addition, 20% of TEs present in Ae. albopictus
are absent in Ae. Aegypti, confirming the divergence of the
two mosquito species 71 million years ago (Chen et al., 2015).
Endogenous viral elements, TEs integrated into the DNA
of germline, constitute the fossil records of past infections
(Emerman and Malik, 2010). RNA viruses are characterized by
a rapid rate of evolution close to 10−3 substitutions/site/year
(s/s/y). However, once they are endogenized, the rate of evolution
drastically declines to 10−9 (s/s/y) in mammals but remains
relatively comparable in insects [10−7 (s/s/y)] (Duffy et al., 2008;
Ballinger and Taylor, 2019).

Comparatively, I. scapularis genome is approximately 13
times bigger than Aedes mosquito genome (2.1 GB for
I. scapularis) (Gulia-Nuss et al., 2016). This difference could
be explained by the presence of repetitive DNA representing
70% of the genome and reflecting large accumulation of
tandem repeats and TEs (Gulia-Nuss et al., 2016). However,
high TEs quantity could be also explained by the time of
divergence (∼ millions of years) between ticks and mosquitoes.
Interfering RNAs actively modulates the activity of TEs, which
may influence the competence of mosquitoes for arboviruses
(Biryukova and Ye, 2015).

Close Genetic Interactions of Vectors and Viruses
Because most viruses transmitted by mosquitoes and ticks
have positive sense RNA genomes, most integrated transposons
in vector genome may belong to retrotransposons elements.
However, the production of viral-derived double-stranded DNA
(vDNA) is under the control of the RNA interference (RNAi)
pathways, as suggested by the presence of vDNA in RNAi-
deficient Ae. albopictus C6/36 cells compared to RNAi-competent
Ae. aegypti Aag2 cells. Mosquito tolerance to high viral loads is
believed to occur in Aedes mosquitoes by generating viral-derived
DNAs, which impair vector immune responses (Goic et al., 2016).
It was also reported that after infection of Aedes mosquitoes,
vDNA had been found in wings and legs revealing the possible
production and dissemination of vDNA from infected tissues or
the production of vDNA by all mosquito cells (Goic et al., 2016).
However, since non-retroviral viruses are not able to encode their
own reverse transcriptase or integrase, they require endogenous
enzymes to achieve transpositions. This critical process could
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be divided into three different steps: (i) reverse transcription
of the non-retroviral RNA in vDNA, (ii) importation of these
intermediates into the nucleus, (iii) and integration of non-
integrated retroviral sequences (NIRVS) in the host genome
(Hindmarsh and Leis, 1999). The initial step of transposition
is the production vDNA from non-retroviral RNA virus, which
surprisingly can only be partial, leading to the production of
partial RNA genome. It is likely due to a switch of the reverse
transcriptase from the original RNA template to a close viral
genome leading to numerous reverse transcription events or to
a misconduct of the reverse transcriptase (Geuking et al., 2009).

While integration of vDNA generated from DNA viruses
have been largely described, little is known about integration
of NIRVS into the host genome. Three different mechanisms
allow the integration of vDNA from DNA viruses: non-
homologous end joining (NHEJ) (Bill and Summers, 2004), non-
homologous DNA recombination mediated by adeno-associated
DNA virus (Deyle and Russell, 2009), or telomeric recombination
(Morissette and Flamand, 2010). It has been reported that vDNA
are produced early in mosquitoes following viral infection and are
critical to trigger mosquito immune responses, leading to viral
tolerance rather than viral resistance (Goic et al., 2016). More
precisely, the production of vDNA, which has been detected in
mosquitoes or in Drosophila after challenge with CHIKV or Flock
House virus (FHV), respectively, promotes the viral tolerance
(Goic et al., 2013). This process has been likely linked to RNAi
pathways, considered as the most important immune pathways in
arthropod vectors (Liu et al., 2019). One class of interfering RNA
(PIWI)-interacting RNAs, are involved in regulating insertion
of TEs (Arensburger et al., 2011; Akbari et al., 2013) and in
mosquito antiviral defenses (see next section) (Morazzani et al.,
2012; Vodovar et al., 2012). Interestingly, in mosquito and tick
genomes, NIRVS are often located in clusters of this interfering
RNA class (Olson and Bonizzoni, 2017; Palatini et al., 2017; Russo
et al., 2019): 50% of NIRVS are integrated near this particular
RNAi clusters in Ae. aegypti, 12.5% in Ae. albopictus (Ter Horst
et al., 2019), and 99% in I. scapularis ticks (Russo et al., 2019),
suggesting a potential link with P element-induced wimpy testis
(PIWI)-interacting RNAs (piRNAs) pathway, making NIRVS a
possible actor of antiviral response.

Finally, at the protein level, the NIRVS could be translated
into proteins that may act as direct antiviral elements by affecting
viral polymerase activity and blockade of viral replication
(Fujino et al., 2014).

In addition to vector genome modifications, coevolution of
vectors and the pathogens they transmit can positively modulate
specific gene expression to maintain the vector fitness and
secure pathogen transmission. In Ae. aegypti mosquitoes, a
positive selection of RNAi genes [microRNA (miRNA) and
small-interfering RNA (siRNA)] was observed in presence
of DENV, since silent mutations of Dicer-1, Dicer-2, Ago-
1, Ago-2, R3d1, and R2d2 genes were positively selected in
field-collected mosquitoes (Bernhardt et al., 2012). It is now
admitted that long-term contacts between vectors and pathogens
presume strong molecular interactions, which allow efficient
pathogen transmission with limited impact on vector fitness;
this suggests a subtle balance between vector infection with

a certain tolerance for the pathogen and the vector survival
(Lambrechts and Saleh, 2019).

Molecular Interactions of Viruses With Vectors
Primary Defenses to Pathogen Infection
In mosquitoes and ticks, efficient transmission of pathogens
corresponds to the successful crossing of different physical
barriers that are midgut epithelium, hemocoel, and salivary
glands, and the excretion of viral particles in saliva secreted
during the feeding. First, the midgut includes different parts:
the anterior region dedicated to the sugar absorption and the
posterior part to the blood absorption. Upon acquisition of
the blood meal, the midgut secretes a chitinous sac called the
peritrophic matrix, which confines the blood meal facilitating
the action of digestive enzymes. For example, in mosquitoes,
some pathogens are able to modify the composition of the
peritrophic matrix to more easily pass through it and infect the
Anopheles mosquitoes (Dong et al., 2009). But independently
of the vectors, infection of the midgut may depend on viral
load of the blood meal absorbed by the vector (Kramer et al.,
1981; Pesko et al., 2009). Second, after crossing the midgut
epithelium, the pathogen disseminates into the hemocoel. There,
immune cells named hemocytes are involved in pathogen
recognition and elimination, similarly to macrophages in
vertebrates by secreting pattern recognition receptors (PRRs),
and to proteins involved in phagocytosis, nodulation, and
melanization processes in arthropods. Hemocytes are also able
to trigger signal transduction, stress response pathways, and
produce antimicrobial peptides (AMPs) (Hernandez-Martinez
et al., 2002; Castillo et al., 2006; Bartholomay et al., 2007). Third,
the pathogen reaches the salivary glands where it replicates. By
secreting the saliva during their blood feeding, vectors facilitate
the uptake of blood and indirectly the transmission of pathogens.
Vector saliva usually contains compounds to overcome host
immune reactions by controlling local inflammation, cellular
recruitment, and secretion of proinflammatory molecules
by sentinel cells. Structurally, mosquito salivary glands are
composed of lobes connected to a main salivary canal, whereas
in ticks, they are grape-like and branched where different types
of spherical acini (three types were described in Ixodid ticks,
while in argasid tick, only two types are present) are directly
attached either to a main or accessory salivary duct, which dump
tick saliva into a single salivarium close to tick mouthparts.
Some arboviruses including DENV-2 and CHIKV seem to exploit
preferentially some lobes of mosquito salivary glands (Salazar
et al., 2007; Tchankouo-Nguetcheu et al., 2012). To conclude,
the efficiency of viral transmission clearly depends whether
the viral load ingested during the blood meal is sufficient to
overcome midgut barrier and primary vector’s responses to the
viral infection first and then the capacity of novel virions to infect
and replicate in salivary glands tissues (Paulson et al., 1989; Scott
et al., 1990; Turell et al., 2006).

As the primary organ that intervenes in the blood digestion,
the midgut plays a crucial role in the immune responses of vectors
to pathogens. Various host-derived molecules named pattern
recognition receptors (PRRs) bind to pathogens-associated
molecular patterns (PAMPs). While most of PRRs are secreted
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proteins harboring adhesive domains interacting with the
PAMPs, some others are intracellular such as Dicer-2 and cGAS
(Martin et al., 2018), but all play a significant role in vector
immune responses (Buchon et al., 2009; Sterba et al., 2011).
Similar to vertebrates, arthropods have multiple protein families
that can play PRRs’ role (Hajdusek et al., 2013; Kumar et al.,
2018). Among them, the thioester-containing proteins (TEPs) are
generally found in the hemolymph and are associated to pathogen
neutralization in Drosophila, mosquitoes, and ticks (Lagueux
et al., 2000; Cheng et al., 2011; Urbanova et al., 2015). Some
proteins of this family act as phagocytosis enhancers as TEP1,
also able to form with the LRIM and APL1C (leucin rich repeat
proteins), a complex capable of binding bacteria and parasites
in Anopheles mosquitoes (Fraiture et al., 2009; Povelones et al.,
2009). However, ticks are unique invertebrates that harbor all the
major classes of known TEPs both in vertebrate and arthropods
including α-macroglobulins, C3-components of complement
system, insect TEPs, and macroglobulin complement-related
proteins (MCRs) (Buresova et al., 2006).

Another PRR-like molecule, the fibrinogen-related protein
family (FREP), is particularly active in the maintenance of vector
immune homeostasis and the degradation of various pathogens
including bacteria, fungi, and Plasmodium (Ferguson and Read,
2002; Rego et al., 2006; Waterhouse et al., 2007). C-type lectins
are also involved in the pathogen recognition both in the midgut
and the hemocoel and are critical in antibacterial responses in
mosquitoes (Osta et al., 2004; Schnitger et al., 2009). Finally,
Gram-negative binding proteins (GNBPs), expressed in midgut,
hemocytes, and salivary glands, are important in the immune
responses to parasite and bacterial infections in mosquitoes
(Dimopoulos et al., 1997; Warr et al., 2008).

Finally, PRRs lead to the activation of all immune signaling
pathways, to the production of AMPs such as defensins and
lysozyme, and to the activation of the three main immune
pathways: the Toll pathways, the IMD pathways, and the
JAK/STAT pathway (Figure 3).

Mosquito and Tick Immune Pathways
Toll Immune Pathway. Both in ticks and in mosquitoes, this
pathway is induced after fungi or Gram + bacterial infections,
leading to the proteolytic cleavage of Spaëtzle ligand (Spz)
that might also activate the nuclear factor kappa B (NF-kB)
(Parker et al., 2001; Weber et al., 2003; Kumar et al., 2018).
Then, the gene activation in the Toll pathway is controlled
by a NF-kB transcription factor, Rel1. The Toll pathway
activation leads to the production of AMPs including defensins,
cecropins, gambicin, diptericin, and attacins (Chalk et al., 1995;
Lowenberger et al., 1995; Cho et al., 1996; Xiao et al., 2014). The
melanization process is dependent on serine protease, serpins,
and phenoloxydase and corresponds to an enzymatic cascade,
which ends up killing the pathogen by surrounding it with a layer
of chitin-restricting nutritive uptake; the signal is given by the
increase in reactive oxygen species (ROS). In mosquitoes, the Toll
pathway can also be repressed by a negative regulator, Cactus,
while ticks have two supplementary negative regulators named
TOLLIP and SARM (Fogaca et al., 2021). Besides, it is clearly
established that, in mosquitoes, the Toll pathway is important in

the regulation of viral infection, as observed for DENV in Aedes
(Xi et al., 2008) or for ONNV in Anopheles (Waldock et al., 2012).
In ticks, this pathway is not fully characterized, but several studies
corroborate the importance of Toll pathway in the regulation
of viral infection as flavivirus infections upregulated Toll genes
(Mansfield et al., 2017).

Immune Deficiency Pathway. The immune deficiency (IMD)
pathway overlaps the responses triggered by the Toll pathway,
such as the melanization and the production of AMPs including
cecropin1. The activation of this pathway also requires the
binding of PRRs by Gram-negative bacteria (Leulier et al., 2003)
or viruses (Costa et al., 2009). Similarly to the Toll pathway,
Rel2 is a protein belonging to the family of NF-kB transcription
factors; it activates the IMD pathway modulated by the negative
regulator Caspar. However, IMD pathway activation is also
regulated directly by midgut microbiota, which plays a critical
role both in the vector and pathogen transmission (Ramirez et al.,
2012).

In mosquitoes, it was observed that a blood meal leads to the
activation of the IMD pathway through nutriment and induces
growth of microbiota, which ends to the upregulation to the
Rel2 protein, likely to control microbiota levels in the midgut
facilitating viral infection (Barletta et al., 2017). This upregulation
of Rel2 and the IMD pathway activation negatively modulates the
malaria parasites in anopheles mosquitoes (Meister et al., 2009).

Interestingly, genomic studies revealed that ticks lack most
of the Drosophila orthologs described as acting in IMD pathway
such as the peptidoglycan recognition proteins (PGRPs), the Fas-
associated with death domain (FADD), the adaptor molecule
IMD, and the death-related ced-3/Nedd2-like protein (DREDD)
(Fogaca et al., 2021). The absence of these defense orthologs is
apparently not restricted to ticks, since it is also reported for
arachnids or hemipterians (Palmer and Jiggins, 2015; Nishide
et al., 2019) but may be mainly due to the limited genomic
data available (Gulia-Nuss et al., 2016). Nevertheless, in ticks,
as in other vectors, the IMD pathway is strongly activated
after bacterial infection and recognition by the PGRPs of
A. phagocytophilum and B. burgdorferi (Shaw et al., 2017). After
bacteria recognition, the X-linked inhibitor of apoptosis (XIAP)
complexes with Bendless and ubiquitylates its P47 substrates
leading the phosphorylation of the IKKβ, an inhibitor of NF-
kB kinase. Then, Rel2 is translocated into the nucleus. Likewise,
growth factor-β-activated kinase 1 (TAK1) and TAK1 adaptor
protein 1 (TAB1) may also activate the ortholog JNK signaling
pathways as in Drosophila (Silverman et al., 2003).

JAK/STAT Pathway. The JAK/STAT pathway is composed of
an unpaired peptide ligand (Upd), a transmembrane protein
receptor (Dome), Janus kinase (JAK), and STAT proteins. The
binding of Upd to the extracellular terminal of the Dome induces
JAK/STAT pathway receptors, then initiating the dimerization
of these receptors and the phosphorylation of JAK associated
with receptor dimers. Then, activated JAK phosphorylates the
receptor dimers C-terminus, inducing the production of binding
pockets where STAT proteins are phosphorylated by the JAK–
Dome complex, resulting in both activation and dimerization
of the STAT. Once activated, STATs are translocated into the
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FIGURE 3 | Vector immune pathways to fight against viral infections. The vector immune responses to pathogen infections, composed of four different pathways,
allow vectors to neutralize entomopathogens, such as fungi, bacteria, or virus, and are involved in viral infection, replication, dissemination, and transmission along
vector life cycle. siRNA (in green), JAK/STAT (in pink), IMD (in orange), and Toll (in blue) immune pathways are represented (Schonhofer et al., 2016; Terradas et al.,
2017; Lee et al., 2019). Created with BioRender.com.

nucleus; target genes are transcriptionally regulated (Agaisse
and Perrimon, 2004). The JAK/STAT implication was already
confirmed in the DENV replication in Ae. aegypti, as the silencing
of the inhibitor of activated STAT decreased viral replication,
and conversely, the silencing of the receptor JAK increased viral
replication (Jupatanakul et al., 2017).

In ticks, the 5,3-kDa AMP is regulated by the
JAK/STAT pathway and plays an important role in limiting
A. phagocytophilum infection in tick salivary glands (Liu et al.,
2012) and B. burgdorferi infection (Ribeiro et al., 2006), or LGTV
infection (McNally et al., 2012). I. scapularis hijacks immune
molecules secreted by vertebrates by stimulating the JAK/STAT
pathway, the interferon gamma (IFN-γ) acting as an effector of
the tick pathway and the production of AMPs (Smith et al., 2016;
Capelli-Peixoto et al., 2017).

More recently, the JAK/STAT pathway has been found to be
activated not only by pathogens but also via oral absorption of
nutrients, and especially blood compounds. Initially identified in
Drosophila, the extracellular signal-regulated kinase (ERK)
pathway was documented as mechanistically linked to
nutrient uptake and antiviral innate immunity in insects

(Christophides et al., 2002; Katsuma et al., 2007; Sabin et al.,
2010). In blood ingested by hematophagous insects, growth
factors such as insulin are shown to trigger ERK signaling in the
mosquito gut (Surachetpong et al., 2009). The insulin peptide
was identified in different mosquito tissues (including head,
thorax, and abdomen) in its integral form for at least 48 h after
blood ingestion (Drexler et al., 2013). Triggering ERK pathway
restricts several viral infections including human arboviruses;
the canonical ERK signaling components dSos, dRas (Ras85D),
dMek (Dsor1), dErk (rl), ksr, and cnk regulate insulin sensitivity
(Zhang et al., 2011) and arbovirus infection (Xu et al., 2013).
Activation of the ERK pathway resulting in an increase in
phosphorylated ERK can take place < 30 min after the exposure
to the insulin stimulus (Kang et al., 2008; Surachetpong et al.,
2009). The ERK signaling pathway restricts orally acquired viral
particles in enterocytes of the mosquito digestive tract. The
antiviral action seems to be triggered independently of the RNAi
pathway (Ahlers et al., 2019). Moreover, the microbiota may
affect the insulin response of vectors; Wolbachia downregulates
Aedes InR expression and reduces DENV and ZIKV replication
in mosquitoes (Haqshenas et al., 2019).
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RNA Interference. Compared to vertebrates, invertebrates lack
adaptive immunity, which produce effective response to viral
infection. RNAi pathway could, from a certain point of view,
be considered as adaptive immune response, since the siRNAs
produced target specifically nucleic acids of the pathogen
genome. First described in plants, siRNAs are the hallmark of
antiviral RNAi response (van Rij and Andino, 2006; Ding and
Voinnet, 2007; van Rij and Berezikov, 2009). The RNAi pathway
was later deciphered in Drosophila melanogaster (Galiana-
Arnoux et al., 2006; Wang et al., 2006), and the RNAi
pathway inhibitor FHV B2 was discovered in flies inoculated
with Drosophila C virus (DCV) (Cherry and Perrimon, 2004).
The RNAi pathway is physiologically activated by double-
stranded RNA (dsRNA), leading to the production of small
RNAs harboring different features. First, the endogenous siRNAs
initially discovered in C. elegans in 1995 (Guo and Kemphues,
1995), are naturally involved in cellular process regulation in
addition to play critical roles in antiviral immunity by processing
the exogenous viral RNA. This pathway is present not only
in mosquitoes but also in other arthropods as ticks where
orthologs play the same role that of Dicer2, R2D2, and Ago2
(Argonaute-2) (de la Fuente et al., 2007; Belles, 2010). Briefly, the
dsRNA viral replication intermediates are recognized by Dicer-
2 via the RNA-binding site and then cleaved into siRNAs of
22nt length fragments. The antisense strand binds to the RNA-
induced silencing complex (RISC) composed by TRBP, Ago2,
and Dicer, which select the guide strand. The activation of the
RISC complex by the C3PO enzyme in the cytoplasm ends with
the degradation of the complementary viral RNA sequence to
RNA guide. Second, miRNAs are involved in the regulation of
endogenous gene expression. While the siRNA pathway occurs
in the cytoplasm, the miRNA pathway has both nuclear and
cytoplasmic phases (Donald et al., 2012). Their structural stem
loop allows their processing by Drosha (in the nucleus), which
results in the production of miRNA precursors (Yeom et al.,
2006). Once in the cytoplasm, these precursors are processed
by Dicer-1 cutting their loop, creating miRNA duplex, which is
charged on the RISC complex. From there, processes of miRNA
and siRNA are similar with the formation of the RISC complex,
the production of the RNA guide serving to target the mRNA and
to affect the gene expression. Many replication and dissemination
of arboviruses in mosquitoes are controlled by these pathways,
as it was reported for ONNV in Anopheles (Keene et al., 2004),
CHIKV in Aedes (McFarlane et al., 2014), or flaviviruses such
as ZIKV and DENV, and in tick-borne flavivirus Langat virus
(Sanchez-Vargas et al., 2009; Schnettler et al., 2014; Saldana
et al., 2017). Nevertheless, the role of miRNA in the antiviral
responses in ticks remains elusive. The piRNAs, mainly known
for its role in the germ line protection from TEs insertion, are
present in mosquitoes and ticks (Arensburger et al., 2011; Akbari
et al., 2013). However, this RNAi pathway is Dicer independent
and causes gene silencing by antisense binding. The antisense
transcript arose from piRNA clusters and is loaded on the PIWI
protein, which, in the cytoplasm, interacts with the endonuclease
to process the 3′ end of the piRNA. They are cleaved, loaded on
the complex, and transported back to the nucleus (Ross et al.,
2014). An alternate mechanism leads to selective amplification

of piRNA, called the ping-pong cycle, and targets TEs. However,
the piRNA from the primary pathway combines with the PIWI
protein forming the PIWI/piRNA complex, which binds to the
TEs and leads to the cleavage of piRNA (Kumar et al., 2018).
In ticks, as in non-mosquito arthropods, piRNAs are very likely
present, but it is still unclear whether they contribute to the
antiviral mechanism (Russo et al., 2019; Talactac et al., 2021).

Finally, pathogen–vector interactions are really complex
and involve past genetic elements as NIRVS and TEs, which
occurred during the natural history of the vector and are
inserted in the vector genome. Past common history of vectors
and pathogens influences the outcome of vector infection by
a pathogen. Thus, vector genetics appear to be one of the
main determinants controlling their interactions. Vector genetic
factors involved in the viral transmission resulting in long-term
interactions appeared as critical for the success of pathogen
transmission, but closer environment is also determinant as we
will demonstrate just after.

Non-genetic Factors Modulating Viral
Transmission
Throughout their life, arthropod vectors directly interact with
their environment since their feeding and reproduction require,
respectively, the presence of hosts and specific locations
to lay eggs. In addition, symbiotic microorganisms, mainly
commensals, colonize the vector during immature lifecycle stages
modifying vector metabolism, behavior, and immune system. It
has been proven that these interactions can consequently impact
pathogen transmissions.

Role of Microbiota
The microbiota represents a set of microorganisms living in
symbiosis within the vector, which can affect pathways such as
blood digestion, reproduction, general metabolism, and innate
immunity of vectors (Engel and Moran, 2013). In arthropods,
microbiota evolves throughout the life of the vector (Colman
et al., 2012; Zolnik et al., 2018). Mosquito gut microbiota varies
a lot not only between the aquatic and terrestrial phases but
also between males and females. In An. gambiae, the bacterium
Cyanobacteria predominates in the midgut of immature stages
(40%), while at the adult stage, Proteobacteria and Bacteroidetes
are the most abundant (up to 61.7%) (Wang et al., 2011).
Female mosquitoes are hematophagous, while males mostly feed
on flower nectar. This diet difference impacts the composition
of the gut microbiota because, in females, the oxidative stress
produced by blood assimilation releases ROS that is generally
toxic and results in an indirect selection of the gut flora. Thus,
the bacterial diversity of female mosquitoes is reduced compared
to males and is mainly composed of Enterobacteriaceae (resistant
to this environment) (Wang et al., 2011). In Ae. albopictus
females, a majority of Proteobacteria is observed, whereas in
males, Actinobacteria is dominant, which could be explained
by the different sources of flower nectar absorbed by males
(Valiente Moro et al., 2013). In ticks, characterization of the
role of the microbiome in pathogen transmission is less studied
than in mosquitoes, although its composition is becoming better
determined (Narasimhan and Fikrig, 2015; Aivelo et al., 2019).
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For example, in the tick midgut, the main genera identified
were Acinetobacter spp., Enterorobacter spp., Sphingobacterium
spp., Pseudomonas spp., and Stenotropomonas spp. (Narasimhan
and Fikrig, 2015). As demonstrated, the microbiota composition
depends on which organs of the tick are studied, since the well-
known Wolbachia spp. have been isolated from ovaries and
salivary glands as for mosquitoes, but not in the gut. Moreover,
it has been shown that many parameters modulate the tick
gut microbiota such as geographical location, developmental
stages, or even the feeding mode (Van Treuren et al., 2015;
Berhanu et al., 2019).

The vector microbiome affects the transmission of
certain pathogens such as bacteria, parasites, or arboviruses.
Therefore, midgut microbiota takes part in vector infection
and subsequently in dissemination and transmission. As
previously mentioned, the typical bacteria-colonizing vector
guts are Wolbachia spp., which are found in over 66% of
arthropods (Hilgenboecker et al., 2008). It is detected in many
vectors of arboviruses such as Ae. albopictus, Ixodes spp., or
C. quinquefasciatus (Hilgenboecker et al., 2008). Interestingly,
two phylogenetically close mosquito species, Ae. albopictus
and Ae. aegypti present distinct profiles of gut microbiota:
Wolbachia is present in Ae. Albopictus, while it is absent in Ae.
aegypti. Wolbachia is an intracellular bacterium located in the
cytoplasm of many cells such as intestinal or ovarian cells. It
has been shown that the presence of this bacterium may limit
the transmission of arboviruses such as DENV, ZIKV, and YFV
and also Plasmodium parasites (Brownstein et al., 2003; Moreira
et al., 2009; van den Hurk et al., 2012). Interestingly, the level
of antiviral inhibition depends on the density of Wolbachia in
mosquito tissues as observed in DENV-infected Ae. albopictus
Aa23 cells with high bacterial densities where the DENV was
reduced compared to Wolbachia-cured cells (Rainey et al., 2014).
Due to its importance in pathogen transmission, Wolbachia is
one of the most promising ways to replace insecticides in vector
control (McGraw and O’Neill, 2013).

In Ae. albopictus, Wolbachia induces distortions of host
reproduction via a form of sterility known as unidirectional
cytoplasmic incompatibility, which make sterile any Wolbachia-
free females mating with a Wolbachia-infected male (Blagrove
et al., 2012). Thus, the transmission of arboviruses is altered by
the decrease in mosquito population.

Vector microbiota (including Wolbachia) triggers basal
expression of the Toll pathway, consequently reducing the vector
capacity to transmit arboviruses as observed for DENV in Ae.
aegypti (Rances et al., 2012). Besides its role in immune responses
in order to maintain host homeostasis, autophagy may also
be corrupted by some viruses to complete some proviral roles
(Sinkins, 2013). As an example, DENV requires specifically
autophagy linked to lipid droplets for optimal viral replication
in mammalian cells. DENV-induced autophagolysosomes are
found to colocalize with lipid droplets to become autolysosomes,
generating free fatty acids (Samsa et al., 2009). However,
lipid droplets are suspected as involved in DENV particles
assembly, which requires free fatty acids (Perera et al., 2012).
However, when Wolbachia-B is inoculated into Ae. aegypti,
DENV replication is strongly inhibited, suggesting a possible

competition for host resources between virus and bacteria. It
seems that Wolbachia competes for cellular resources with viruses
to grow/replicate through autophagy manipulation/modulation
for cholesterol supply (Moreira et al., 2009).

In the midgut, the bacterial flora competes with the
pathogens ingested during the blood meal for nutritional
resources (especially lipids, including cholesterol). Wolbachia
and Spiroplasma and also other bacteria could modify lipid
metabolism or sequester cholesterol, which is critical for the
formation of enveloped virion, thus restricting viral replication
(Yin et al., 2020). Thus, the presence of bacteria in the midgut
challenges the vector innate immunity or even modulates vector
metabolism, which may influence the transmission of arboviruses
(Jupatanakul et al., 2014; Hegde et al., 2015; Bonnet et al., 2017;
Gao et al., 2020).

Finally, microbiota may have direct effects on arbovirus
by secretion of secondary metabolites, which are molecules
produced by bacteria involved in survival, fecundity, or
defense, providing a selective advantage. The implication of
these metabolites was suggested since half of bacteria from
Ae. albopictus gut caused a reduction up to 44% of La
Crosse Virus (LACV) infectivity on Vero cells. Among these
bacteria, Pseudomonas rhodesiae, two Enterobacter ludwigii, and
Vagococcus salmoninarium exhibited the highest reduction effect
(Joyce et al., 2011). Similarly, Chromobacterium (Csp_P) isolated
from the midgut of field-caught Ae. aegypti and able to make
biofilms totally inhibits DENV in BHK cells, suggesting that the
biofilm formed by Csp P after 48 h of growth produced molecules
with antiviral properties (Jupatanakul et al., 2014).

Just as some bacteria are able to create symbiotic interactions
with vectors, several viruses are similarly able to persist
sustainably in mosquitoes and ticks. These arthropod-specific
viruses (ASV) replicate only in invertebrate cells, not in vertebrate
cells as arboviruses do. These specific viruses may modulate virus
transmission by the vectors.

Coinfections of Arthropod-Specific Viruses With
Arbovirus
The ASVs are a particular class of viruses that are only able
to replicate in arthropod cells, not in other cell lines. Initially
discovered 45 years ago in Ae. aegypti cells, the first ASV was an
insect-specific virus (ISV) named cell fusing agent virus (CFAV)
in reference to the syncytia formed in infected cells, which
belongs to the Flaviviridae family and was identified in many
mosquito populations around the world. This finding suggests
that it represents a possible ancestral lineage of flaviviruses
(Stollar and Thomas, 1975; Marin et al., 1995). The Kamiti
River virus (KRV) also belonging to the Flaviviridae family was
discovered many years later from Ae. macintoshi mosquitoes
collected in Kenya. While it is genetically and phenotypically
close to CFAV, it differs by the absence of syncytia formation in
infected cells (Crabtree et al., 2003).

Over the past 10 years, the ISVs have been extensively
studied, identified, and characterized. To date, more than
60 ISVs have been identified and belong to the following
viral families: Flaviviridae, Togaviridae, Rhabdoviridae,
Bunyaviridae, Reoviridae, Mesoniviridae, Tymoviridae,
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Birnaviridae, Negeviruses, and Nodaviridae (Bolling et al.,
2015). Among them, some of these ISVs have been demonstrated
to strongly reduce arbovirus transmission (Bolling et al.,
2015). The flaviviruses Nhumirim virus (NHUV) isolated from
Culex chidesteri and Palm Creek virus (PCV) isolated from
Coquillettidia xanthogaster can reduce or completely abolish
the replication of few flaviviruses such as JEV, WNV, and Saint
Louis encephalitis virus (SLEV) for the first one and Murray
Valley Encephalitis Virus (MVEV) and WNV for the second
one on C6/36 cells (Bolling et al., 2012; Kenney et al., 2014;
Pauvolid-Correa et al., 2015). In addition, the presence of NHUV
also diminished the flaviviruses JEV and SLEV load in arthropod
cells (Kenney et al., 2014). Similarly, the Culex flavivirus, CxFV,
decreased WNV dissemination from 94 to 72% in Culex pipiens
colony at 7 days postinfection (Hoshino et al., 2007; Bolling et al.,
2012). Alone, the ISVs are capable of reducing or blocking viral
transmission; thus, when mosquitoes are infected with multiple
ISVs including CxFV, PCV, or NHUV, a reduction in WNV
transmission was observed (Bolling et al., 2012; Hobson-Peters
et al., 2013; Kenney et al., 2014). Likewise, the coinfection of
CFAV and Phasi Charoen-like virus (PCLV) interferes with the
replication of ZIKV and DENV and inhibits the infection of La
Crosse virus (LACV) in Ae. albopictus cells (Schultz et al., 2018).
Similarly, the LACV replication was also greatly diminished
upon Aedes cells coinfected with CFAV and PCLV (Schultz et al.,
2018). However, many of these studies were performed in Ae.
albopictus C6/36 cells that are RNAi deficient.

Mechanisms underlying the disruptions of arboviral
transmission by ISV are still poorly understood. Some hypotheses
suggest that interference occurs when only ISV and arbovirus
belong to the same viral family, as it has been observed with
LACV and PCLV, two bunyaviruses having similar viral cycles
(Schultz et al., 2018). However, some exceptions exist as has
been shown in C. quinquefasciatus; when infected with CxFV
(Flaviviridae), the replication of WNV (Flaviviridae) was
inhibited (Kent et al., 2010; Crockett et al., 2012). Conversely,
an infection with DENV and JEV was not reduced in a Culex
tritaeniorhynchus cell line (CTR cells) infected with CxFV
(Kuwata et al., 2015). These data clearly suggest that the ISV–
arbovirus interactions seem to be mostly specific to the virus and
mosquito species.

Conversely to mosquitoes, the identification of ASV in ticks
is less advanced due to the limited knowledge on these vectors
mainly focused on the tick-borne viruses (TBVs) rather than
tick-specific viruses (Calisher and Higgs, 2018). However, more
and more viruses composing the tick virome are discovered
(Pettersson et al., 2017; Vandegrift and Kapoor, 2019). Some
invertebrate viruses are identified in I. scapularis ticks ISAV-1 and
ISAV-2 (I. scapularis-associated virus 1 and 2) with the highest
similarities to Sobemovirus genus, a single-stranded positive-
sense RNA virus that infects plants. Similarly, in I. ricinus
collected in Norway, some viruses belonging to Bunyaviridae,
Luteoviridae, Mononegavirales, and Partitiviridae families were
identified as close to previously characterized viruses in
I. scapularis (Tokarz et al., 2014). In I. scapularis IDE2 cells, a tick-
specific orbivirus (Reoviridae family), the Saint Croix River Virus
(SCRV), has been detected (Attoui et al., 2001; Nuttall, 2009;

Bell-Sakyi and Attoui, 2013). In addition, in D. variabilis
ticks, a Omegatetravirus genus-like (Alphatetraviridae family)
was identified in only 11% of tested ticks with very low
amino acid similarities (<19%). This virus is usually isolated
from moths (order Lepidoptera) (Tokarz et al., 2014). As
for mosquitoes, the possible link between tick-specific viruses
and tick-borne virus transmission, is increasingly understood
(Vandegrift and Kapoor, 2019).

Coinfections of arboviruses and ASV are henceforth
established as limiting factors for mosquito and likely tick
infections. However, these arthropod-specific viruses are not the
only ones that may limit arthropod infection. Coinfections with
different arboviruses can also occur, either simultaneously or
sequentially in mosquitoes. This may result in various types of
interactions: competition, cooperation, or neutral coexistence.

Coinfections of Arboviruses
Owing to globalization, co-circulation of arboviruses in the
same region is quite common as observed for JEV and DENV
in Asia, DENV and YFV in Africa, and ZIKV, DENV, and
YFV in South America (Oladipo et al., 2018; Kayiwa et al.,
2019; Saxena et al., 2019; Vogels et al., 2019). Therefore, a
vertebrate host can be coinfected by two or more arboviruses.
For example, in Brazil, 12 people were described as coinfected
with both DENV and ZIKV during the dengue outbreak in
2016 (Estofolete et al., 2019). A mosquito can be infected with
multiple arboviruses (acquired simultaneously or sequentially)
and presumably transmit the different viruses in a single bite
(Vogels et al., 2019). It was demonstrated that both Ae. aegypti
and Ae. albopictus were able to cotransmit DENV and CHIKV
after sequential infections with both viruses (Nuckols et al.,
2015). Similarly, Ae. aegypti mosquitoes coinfected with any of
CHIKV, ZIKV, and DENV-2 combinations could transmit all
viruses whatever the combination (Ruckert et al., 2017). However,
if such coinfections can occur in vectors, it is likely that, in
some cases, the presence of an arbovirus in the mosquito limits
the transmission of a second arbovirus, as it was observed with
ISVs. Indeed, in C6/36 cells infected with DENV and then
superinfected 7 days later with YFV, a significant decrease in
YFV replication was detected (Abrao and da Fonseca, 2016).
Similarly, a successive infection with YFV and DENV-2 at day
7 also led to a decrease in DENV-2 replication, suggestive of
a blocking mechanism that is provoked by the first flavivirus
infection (Abrao and da Fonseca, 2016). Mechanisms underlying
the blocking of one arbovirus by another are not well understood
yet and deserve to be further investigated. It has been suggested
that an arbovirus primoinfection could trigger the host immune
system, described as immune priming, hindering the replication
of a second ingested arbovirus (Abrao and da Fonseca, 2016).

As demonstrated until now, the internal factors including
vector genetics and epigenetics play critical roles in the
vector infection, dissemination, and transmission of pathogens.
However, factors related to the nature of the vector, their habitat
(which impacts the vector microbiome), the class of pathogen
they can host, and the history of past viral infections could also
modulate vector infection. Furthermore, internal factors alone
are not sufficient to explain the specific interactions between
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the vector and the pathogen, suggesting that other factors may
intervene such as the direct and global environment.

ROLE OF EXTERNAL FACTORS IN VIRUS
TRANSMISSION BY MOSQUITOES AND
TICKS

Modulation of the vector capacity is, as described above,
driven by vector internal parameters that compose the vector
competence and by vector–environmental interactions. These
interactions between the vector and living organisms in the vector
ecosystem (plants, vertebrates, etc.) are named biotic factors.
Conversely, the abiotic factors represent the relations of vectors
with their physicochemical environment.

Biotic Factors
Biotic factors refer to effects of living organisms interacting
within an ecosystem. Among them, predation, intra-, and
interspecific competition, parasitism (entomopathogenic
parasites), and availability and quality of food resources are some
examples. Here, we will focus on how vector diet, food habit, and
breeding site composition can influence pathogen transmission.

Diet is an important factor that can affect many mosquito
traits such as longevity, frequency of bites, reproduction, and
susceptibility to pathogens (Carvajal-Lago et al., 2021). Recently,
it was shown that Anopheles coluzzii fed on papaya nectar
lived longer and had better mating rates than those fed on
banana nectar (Nignan et al., 2020). In addition, Culex pipiens
fed with low sugar content solutions (2 and 10% sucrose)
were more likely to transmit WNV than those fed on high
sugar diet (40%). Furthermore, the nutritional deficiency caused
by low sugar diet decreased mosquito energy and fitness and
provoked nutritional stress, thus favoring the viral infection
(Vaidyanathan et al., 2008). In addition, the blood source may
influence pathogen infection and transmission by vectors mainly
by modulating cellular responses and immune priming. First, the
degradation of ingested hemoglobin (Hb) can yield the secretion
of antimicrobial peptides in mosquitoes and ticks (Sojka et al.,
2013; Pakpour et al., 2014). Hb degradation also catalyzes the
synthesis of ROS, which may favor parasites development in
mosquitoes (Peterson et al., 2007). Insulin/insulin-like growth
factor highly conserved in arthropods (Pakpour et al., 2014) is
involved in different immune pathways (Luckhart and Riehle,
2007); insulin inhibits RNAi pathway but activates JAK/STAT
pathway eliciting antiviral effects in mosquitoes following
infection with WNV, DENV, and ZIKV (Ahlers et al., 2019).
Transforming growth factor beta 1 (TGF-β1) from mammalian
blood also regulates the production of the antiviral nitric oxide
(Kreil and Eibl, 1996; Lin et al., 1997). Moreover, IFN-γ is able
to activate IFN-dependent pathway in arthropods including the
JAK/STAT pathway.

Pathogen transmission is also influenced by vector biology,
especially at the interface of vector and the vertebrate host.
As pool feeders, ticks, and particularly hard ticks, may have
very long blood feeding depending on life stages (from days to
weeks), allowing important blood absorption (up to 100 times

their weight). Since they alternatively ingest blood and secrete
saliva, they inject pathogens all along their long blood meal
facilitating pathogen transmission. Indeed, as main tick genera of
public health importance, Ixodes, Dermacentor, Amblyomma, or
Rhipicephalus (excepted R. annulatus) has a three-host life cycle,
meaning that each development stage (larva, nymph, and female)
feeds on different vertebrate hosts (Centers for Disease Control
and Prevention, 2017). Hyalomma ticks alternate between two
hosts during their life cycle, while Ornithodoros are multihost
argasid ticks. This host alternation also promotes pathogen
transmission from one vertebrate to another. Tick cofeeding is
characterized by pathogen transmission between infected and
non-infected vectors that feed in close spatiotemporal proximity
on the same host that has not yet developed a systemic infection.
At the bite site, some tick-borne pathogens, including viruses,
are thus able to rapidly pass from infected ticks to pathogen-
free ticks through blood and lymph (Gordon et al., 1993; Labuda
et al., 1993; Randolph et al., 1996). This phenomenon is not
documented for mosquitoes, as they feed directly from capillaries
and not from a hemorrhagic pool.

The last factor impacting the pathogen transmission is the
breeding site, especially for mosquitoes, as their life cycle
consists of both aquatic and terrestrial phases. The nature and
composition of mosquito breeding sites influence the growth,
lifespan, microbiota, and transmission of pathogens at the
adult stage (Dickson et al., 2017; Hery et al., 2021a,b). In
fact, a nutrient-poor breeding site may weaken the mosquito
immune system, which may promote transmission of arboviruses
in adults. Indeed, food starvation of Ae. aegypti larvae was
demonstrated to increase infection rate (from 37 to 55%) and
dissemination rate (from 26 to 45%) of Sindbis virus in adult
mosquitoes (Muturi et al., 2011).

Abiotic Factors
In their natural habitats, vectors are constantly exposed
to different environmental factors affecting the vectorial
system, creating favorable or unfavorable conditions to vector
transmission. Abiotic environmental factors assemble all
physicochemical parameters of an ecosystem and include
climatic, chemical, and topographical factors, the latter affecting
significantly VBDs.

Impact of Climatic Factors on Vectorial Transmission
Due to the seasonality of many VBDs, a close relation between
the occurrence of VBDs and climate has been underlined
(Lord, 2004; Altizer et al., 2006; Grassly and Fraser, 2006).
Rainfall, humidity, photoperiod, and temperature are important
climatic variables that affect either directly or indirectly not
only various aspects of vector biology (development, survival,
longevity, distribution, and seasonality) but also replication and
transmissibility of viruses (Costanzo et al., 2015; Burtis et al.,
2016; Young, 2018; Bellone and Failloux, 2020). Rainfall is
involved in formation and persistence of mosquito breeding
sites and thus conditions mosquito densities (Ho et al., 1971;
Fouque and Reeder, 2019). Different studies showed a positive
correlation between rainfall and the incidence of chikungunya
in India (Shil et al., 2018) and that of dengue in the Philippines
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(Su, 2008). Rainfall also affects tick population, since these
vectors, hard or soft tick species, are very dependent on local
hygrometry to survive in their respective habitats. In Australia,
Argentina, and Kenya, global modifications of tick habitats
through the modification of seasonality and intensities of rainfalls
and temperature raising increase the densities of the cattle
tick Boophilus microplus, and losses in beef cattle industry
are expected (White et al., 2003; Estrada-Pena et al., 2006;
Keesing et al., 2017). Humidity is well known for promoting
mosquito and tick survival, therefore enhancing their chance
to transmit pathogens (White et al., 2003; Schmidt et al.,
2018). In Vietnam, dengue epidemics have been demonstrated
to be closely linked to increases in rainfall and humidity; the
incidence of dengue fever increased by 1% for every 50 mm
increase in rain water and 1% of humidity (Xuan le et al.,
2014). In addition, low local humidity indirectly influences TBP,
as the climate and environment directly affect tick-questing
behavior and abundance. However, in temperate regions, tick
abundance is probably more related to the host availability
than to climate variations (Paul et al., 2016). Photoperiod is
another parameter that profoundly affects vectors’ life traits
(Costanzo et al., 2015). For the mosquito Ae. albopictus, a
drop of photoperiod in autumn induces the production of
diapausing eggs, signing the end of mosquito adult activities
and the period suitable for pathogen transmission (Armbruster,
2016). However, in tropical regions, the mosquito Ae. aegypti
can also respond to photoperiod changes; females subjected
to photoperiod reductions survived longer and blood fed
more frequently than females exposed to longer photoperiods
(Costanzo et al., 2015). Interestingly, ticks are also very
dependent on the photoperiod, which rhythms their activity and
rest periods in nature. Prolonged photoperiod affects soft tick
mortality, with up to 36% of mortality in Ornithodoros turicata.
Surprisingly, the opposite effect was observed on the progeny of
O. turicata that was continuously reared in the dark (Adéyeyè
and Phillips, 1996); larvae in continuous darkness gained more
weight than those reared under standard conditions (Adéyeyè
and Phillips, 1996). The long photoperiod also shortens the
tick life cycle by reducing molting time. But conversely, ticks
exposed to long photoperiod begin their oviposition later than
those exposed to short photoperiod or continuous darkness
(Adéyeyè and Phillips, 1996).

Lastly, temperature is one of the most important abiotic
factors, affecting significantly vectors and the pathogens
they transmit (Samuel et al., 2016). Because arthropods
are poikilothermic ectotherms, many of their life traits
including egg viability, development of immature stages,
adult survival, behavior, and physiology (i.e., microbiota
and immune responses) strongly depend on environmental
temperature (Murdock et al., 2012; Lefevre et al., 2013;
Narasimhan and Fikrig, 2015; Thapa et al., 2019; Bellone
and Failloux, 2020). Along with the photoperiod, seasonal
temperature oscillation is a critical factor for tick activity and,
subsequently, pathogen transmission. Temperature increases
after the winter period associated with longer photoperiod,
speeds up egg hatching, oviposition, and molting. The questing
behavior of nymphs and females is also positively affected

by warmer temperatures (Randolph et al., 2002; Li et al.,
2016).

Likewise, the replication and transmission of many pathogens
including arboviruses are widely temperature dependent (Bellone
and Failloux, 2020). Higher temperatures can shorten the vector
developmental cycle (Delatte et al., 2009) and the extrinsic
incubation period, the time required for vectors to become
infectious following the ingestion of an infected blood meal
(Liu et al., 2017; Wimalasiri-Yapa et al., 2019; Winokur et al.,
2020), all increasing vectorial capacity. However, in a more
subtle way, higher temperatures can also reduce vector lifespan
(Estrada-Pena et al., 2012; Brady et al., 2013), which decreases the
vectorial capacity.

The impact of climate change, especially global warming, on
VBDs has become the topic of intense debate (Hongoh et al.,
2012; Morin and Comrie, 2013; Caminade et al., 2019). Climate
change has already favored the mosquito species Ae. albopictus
to settle in temperate regions (Caminade et al., 2012). Less than
30 years after its first detection in Europe, Ae. albopictus has
been incriminated in local transmission of DENV, CHIKV, and
ZIKV (Bellone and Failloux). Another species, Cx. tarsalis, has
spread over an area that is 1.06–2.56 times its current distribution
and 1.08–2.34 times, the current geographic area of WNV it
transmits (Chen et al., 2013). Likewise, different tick species
are likely to establish more northern permanent populations in
a climate-warming scenario (Gray et al., 2009); Ixodes ricinus
expansion has been accompanied by an increased prevalence
of tick-borne encephalitis. Collectively, it appears obvious that
climate change, if not mitigated or properly managed, is very
likely to broaden the geographic range of some VBPs, thus
exposing human populations to higher risk for VBDs (Githeko
et al., 2000; McMichael et al., 2006; Gould and Higgs, 2009;
Semenza and Suk, 2018). However, caution should be taken with
uncertainties of some prediction models neglecting the complex
interactions between pathogens, vertebrate hosts, vectors, and the
environment (Sutherst, 2004; Reiter, 2008; Tabachnick, 2016).

Chemical Factors
The chemical composition of breeding sites conditions the
choice of mosquito laying site, impacting larval development and
mosquito survival (Hershey et al., 2010; Matthews et al., 2019;
Hery et al., 2021a,b). In urban parks in São Paulo, Brazil, type and
pH of larval habitats were the best predictors of Ae. albopictus
presence and abundance (Medeiros-Sousa et al., 2020). For Ae.
aegypti, pH and salinity were the best predictors of mosquito
abundance, while dissolved oxygen and type of larval habitat
were better predictors of presence of mosquito species (Medeiros-
Sousa et al., 2020). Other factors such as concentration of mineral
elements, especially heavy metals like iron, zinc, and copper, are
also important, especially in areas disrupted by human activities
(Jeanrenaud et al., 2020). As the tick’s life cycle does not pass
through an aquatic phase, it is likely that ticks are less sensitive
to chemical compounds in their environment than mosquitoes.

Topographic Factors
Altitude is a topographic factor that can be used as a proxy of
vector transmission risk. Increase in altitude is associated with
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different ecological factors critical for vector development, in
particular temperature. Above 1,600 m, Ae. aegypti occurrence
is predicted in < 1% of the total land area of 16 countries in
America. Across all 16 countries, only 1.1% of historical dengue
cases were reported above 2,000 m, suggesting that the risk of
epidemics may be reduced at high altitudes (Watts et al., 2017).
Regarding ticks, in Europe, I. ricinus is found up to approximately
2,000 m of altitude, depending on countries (Medlock et al.,
2013). For example, in the colder, northern part of Europe, the
altitudinal limit of I. ricinus is approximately 500 m above sea
level in western Norway (Jore et al., 2011), 600 m in northeastern
Scotland (Gilbert, 2010), rising to 1,100–1,500 m in northern
Italy, Switzerland, and the Czech Republic (Rizzoli et al., 2002;
Daniel et al., 2005; Burri et al., 2007), and could reach 2,000 m in
Spain (Medlock et al., 2013). These limits revealed that favorable
living conditions of I. ricinus depends on the region, and the
absence of vectors necessarily breaks the pathogen transmission
cycle despite the presence of hosts. The absence of the vector thus
rhymes with a very low epidemic risk.

Ultimately, all environmental factors interact among them
and with each partner of the vectorial triad. It is far from
easy to understand such ecological complexity and reproduce
their effects under controlled laboratory conditions. In addition,
as all biological systems, the vectorial system evolves with
species, which must adapt and evolve for survival. For
example, chemical insecticides are widely used to control
mosquitoes and ticks, which therefore have developed several
mechanisms to counteract insecticide lethal effects, leading to
maintaining pathogen transmission in resistant arthropod strains
(Dusfour et al., 2019).

DISCUSSION

The vectorial capacity is a multifactorial process that includes
several parameters influencing pathogen transmission, which,
in mosquitoes and ticks, results from intensive and long-
term interactions between vectors and their vertebrate hosts
(Figure 4). Transmission is more an exception than a rule, and
the majority of blood-circulating pathogens in vertebrates is
not transmitted by vectors. Long-term coevolution of pathogens
and vectors allowed finding the most appropriate evolutionary
combination. Vector genome contains NIRVS, which are known
to likely modulate pathogen transmission. In addition to vector
genetics, the vector immune responses also condition the
success of pathogen transmission. Vectors can naturally limit
viral infection by deploying an arsenal of immune pathways
(Toll, IMD, JAK/Stat, and RNAi pathways), each having an
efficiency depending on the virus–vector combination. Moreover,
the vector microbiome also modulates the vector competence;
bacterial flora and ISV act on viral transmission. These factors,
common for mosquitoes and ticks, differentially affect these
two vectors due to their biology. In mosquitoes, the aquatic
developmental phase (involving the immature stages: larvae and
nymphs) influences the microbiota composition, which is critical
to determine the vectorial capacity. Indeed, chemical and organic
composition of mosquito larval breeding site also drastically
impact the adult physiology, including pathogen transmission.
As ticks are hemimetabolous arthropods (with incomplete
metamorphosis), they are less sensitive to habitat variations
than mosquitoes, thus influencing less their development.
Particularities of ticks in blood feeding, blood digestion, and

FIGURE 4 | Overview of factors influencing the vectorial system. Vector capacity results from complex interactions of multiple factors influencing pathogen
transmission by a vector. Internal factors like genetic, evolution, immunity, or interactions with other microorganisms are modulated by external parameters such as
abiotic (like climate or topography) and biotic (like nutrition or hosts) factors (Lefevre et al., 2013). Created with Flaticon.com.
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molting might explain to date the smaller number of arboviruses
transmitted by ticks compared to mosquitoes. Contrary to
mosquito-borne viruses, tick-borne viruses do not need to induce
a high viremia in their vertebrate hosts to ensure vector infection,
which is counterbalanced by a long blood meal lasting for hours
to weeks and a longer tick life span (measured in years rather than
in weeks or months for mosquitoes). Interestingly, it has been
suggested that low viremia in hosts has contributed to favor non-
viremic transmission between cofeeding ticks, which promotes
the persistence of TBV in nature. Both mosquitoes and ticks
are sensitive to temperature, hygrometry, and photoperiod, but
tick movements are more dictated by vertebrate host movements
than for mosquitoes: ticks passively wait for hosts (except
for Hyalomma), while mosquitoes undertake active search for
feeding. Some mosquito species are exclusively anthropophilic
(Ae. ae. aegypti and An. gambiae complex), while for ticks,
humans are more an accidental host, since no tick species
are strictly anthropophilic. Consequently, since ticks are less
associated with the human environment, they are less detrimental
for human health than mosquitoes. However, in temperate
regions like Europe, ticks remain the most important vectors;
I. ricinus is the most common tick species in Europe and is also a
vector of Lyme disease agent (Semenza and Suk, 2018).

Globally, mosquito spreading is favored by transportation and
touristic activities that led to a large repartition of mosquitoes in
the world and also that of their associated pathogens including
mosquito-borne viruses. This wide distribution is due to the
resistance to desiccation of mosquito eggs, allowing long trips
in duration and distance as known for Ae. albopictus from
Asia to America and Europe or for Ae. ae. aegypti, from
Africa to America. Occasionally, ticks such as Ixodes uriae and
Ornithodoros maritimus can move over long distances hooked
on birds, but globally, hard tick’s dispersion is rather terrestrial
via animals.

To date, our knowledge on arboviruses transmitted by
mosquitoes and ticks showed that those with human importance

are mainly transmitted by mosquitoes rather than by ticks. Tick-
borne viruses are not transmitted by mosquitoes, and mosquito-
borne viruses are rarely transmitted by ticks, suggesting
important vector specificity in the arboviral transmission.
Successful arbovirus transmission is conditioned by viral
adaptation to vector physiology and behavior. Improving
knowledge on virus–vector interactions, more advanced for
mosquitoes than for ticks, will help in providing more reliable
predictions of arboviruses emergence and implementing adapted
vector control measures using, for example, Wolbachia artificially
enriched mosquitoes, or genetically manipulated mosquitoes to
boost their immune responses that ultimately may reduce their
capacity to transmit pathogens.
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