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Abstract

Patients with repaired or palliated right heart congenital heart disease (CHD) are often
left with residual lesions that progress and can result in significant morbidity. However,
right ventricular-pulmonary arterial evaluation and the timing of reintvervention is still
subjective. Currently, it relies on symptomology, or RV imaging-based metrics from
echocardiography or MR derived parameters including right ventricular (RV) ejection
fraction (EF), end-systolic pressure (ESP), and end-diastolic volume (EDV). However, the
RV is coupled to the pulmonary vasculature, and they are not typically evaluated
together. For example, the dysfunctional right ventricular-pulmonary circulation (RV-PC)
adversely affects the RV myocardial performance resulting in decreased efficiency.
Therefore, comprehensive hemodynamic assessment should incorporate changes in
RV-PC and energy efficiency for CHD patients.
The ventricular pressure-volume relationship (PVR) and other energy-based endpoints
derived from PVR, such as stroke work (SW) and ventricular elastance (Ees), can provide
a measure of RV performance. However, a detailed explanation of the relationship
between RV performance and pulmonary arterial hemodynamics is lacking. More
importantly, PVR is impractical for routine longitudinal evaluation in a clinical setting,
because it requires invasive catheterization. As an alternative, analytical methods and
computational fluid dynamics (CFD) have been used to compute energy endpoints,
such as power loss or energy dissipation, in abnormal physiologies.
In this review, we review the causes of RV-PA failure and the limitation of current
clinical parameters to quantify RV-PC dysfunction. Then, we describe the advantage
of currently available energy-based endpoints and emerging energy endpoints, such
as energy loss in the Pas or kinetic energy, obtained from a new non-invasive
imaging technique, i.e. 4D phase contrast MRI.

Introduction
Congenital heart diseases (CHDs) often lead to critical conditions causing morbidity, mor-

tality, and increased healthcare cost for patients during their treatment period, which

often begins from childhood. The recently reported incidence of CHD in the United States

is approximately 8 per 1000 live births [1]. From 1940 to 2002, about 2 million patients

with CHD were born in the Unites State [2], ranging in severity from simple pinholes

between heart chambers to major defects, which require consecutive surgical interventions

during childhood.

Recent advances in diagnosis and surgical treatments for CHD patients significantly

reduce (less than 2%) the early postoperative mortality rate [3]. However, the late post-

operative morbidity rate remains still high. In the third decade after the repair surgery,
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the mortality rate for certain surgeries is approximately 30%, and the morbidity rate is

higher still [4,5]. CHDs associated with the right heart, including tetralogy of Fallot,

double outlet right ventricle, transposition of the great arteries, and aortic valve steno-

sis requiring pulmonary valve homograft, account for 25% to 35% of the total CHD.

The primary cause of increased late postoperative morbidity and mortality rate is the

post-operative sequelae, i.e. RV-PA circulation (RV-PC) dysfunction and residual RV

outflow tract obstruction. The residual lesions, such as pulmonary regurgitation, result

in RV dilatation causing various degrees of RV myocardial dysfunction, arrhythmias,

LV dysfunction, and occasionally sudden death [6-13].

In the clinical setting, cardiac magnetic resonance imaging (MRI), including 2D phase

contrast MR imaging, and catheterization have been used as gold standards to assess sys-

tolic and diastolic ventricular volumes, flow, and pressure. However, these techniques are

limited by the fact that 1) 2D phase contrast MRI allows only the 1D axial flow informa-

tion through a prospectively chosen plane and 2) catheterization is invasive and is not

considered as a routine evaluation modality for longitudinal follow-up.

To circumvent these obstacles, energy-based endpoints have been proposed. Such

end-points will be discussed in the following sections. Energy-based endpoints are

believed to be superior indicators in assessing the status of ventricular hemodynamic

status over current techniques, including echocardiography, cardiac MRI, and catheter-

ization, when used independently [14,15]. Energy endpoints, for instance ventricular

stroke work (SW) and efficiency and energy loss, can combine multiple hemodynamic

measurements, such as ventricular volume, pulmonary flow, and pressure data, into a

single parameter.

The functional assessment of right heart including the pulmonary vasculature has

been less intensively studied since the result of right heart failure was thought to be

less important for patient outcomes. Also, the RV operates at lower pressures com-

pared to the left ventricle (LV) and the systemic arteries. The lower working pressure

of the RV is a result of a pulmonary vascular resistance that is lower than the systemic

vascular resistance because the pulmonary system has larger peripheral vessels with

shorter and relatively more distensible arteries and veins.

In this review, we first describe the cause of RV-PC dysfunction followed by the

importance of its long-term patient care. Secondly, we examine the advantages and

limitations of current clinical diagnostic parameters in assessing abnormal hemody-

namics in CHD patients. Thirdly, we discuss existing energy-based endpoints (Table 1)

for evaluating extent of severity of CHD in patients. Lastly, the newer energy-based

endpoints, such as energy loss and (turbulent) kinetic energy, derived from an emer-

ging non-invasive technique, i.e., 4D phase contrast MRI, are presented.

Right ventricular-pulmonary circulation dysfunction
The RV-PC dysfunction is a post-operative sequela of repaired CHD that patients are

confronted with aging. Typically, it involves one or more of the following: 1) pulmonary

regurgitation due to an absent of incompetent pulmonary valve, 2) pulmonic stenosis,

3) RV outflow tract obstruction within the RV chamber, and 4) pulmonary artery steno-

sis. It leads to increased RV work to maintain sufficient pulmonary circulation, resulting

in the RV and PA dilatation, and progressive RV dysfunction [16-18]. Pulmonary valve

replacement or repair needs to be performed before irreversible dysfunction occurs. The
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timing is important because any repair or replacement has a finite lifetime, and a younger

patient may need further interventions if it is performed too early. Currently, the valves,

conduits, and patches used for repair and replacement degrade over time and do not grow

as a patient grows [11]. Therefore, continuous monitoring of the abnormal hemodynamic

and energy status is crucial to determine the right timing for reintervention.

Hemodynamic assessment using current cardiac endpoints
With rapid development of magnetic resonance imaging (MRI) technology including

both pulse sequences and MR hardware, cardiac MRI has been employed as a gold stan-

dard to diagnose RV-PA vasculature status in CHD patients [6,19-25]. RV volume-based

indices obtained from cardiac MRI, such as RV ejection fraction (EF), end-diastolic and

end-systolic volumes (EDV and ESV, respectively), RV mass, and peak ejection and

filling rate, have been used to assess the status of RV and pulmonary vasculature [26].

Particularly, Pavlicek et al. [27] stratified 223 subjects in their study using RV EF: normal

RV EF (≥ 50%), moderately reduced RV EF (between 30 - 49%), and severely reduced RV

EF (≤ 30%). They performed both cardiac MRI and echocardiography for all subjects to

assess the right ventricular systolic function and compared the results between cardiac

MRI and echocardiography. Also, RV EDVI (body surface area indexed EDV) was widely

used to decide the timing for pulmonary valve replacement repair. Therrien et al., 2005

[11] suggested a cutoff value that is 170 ml/m2 of RV EDVI for reintervention. Their

study found that RV renormalization was not possible once RV EDVI exceeded the cut-

off value of 170 ml/m2.

The RV pressure-based parameters are also used to determine the right timing for inter-

vention for residual obstruction. According to the ACC/AHA guidelines by Warnes et al.

[28], the cutoff value of 50 mmHg was recommended for the RV end-systolic pressure

(ESP). Also, they recommended a cutoff value of 0.7 for RV/LV ESP ratio for surgical

interventions, such as pulmonary valve replacement repair, balloon angioplasty, and per-

cutaneous pulmonary valve implantation [29,30], to alleviate RV pressure overloading in

CHD patients with severe RV-PC dysfunction. They reported that the possibility of irre-

versible RV myocardial dysfunction was increased if RV/LV ESP ratio exceeded 0.7.

Some patients with repaired RV heart disease have no outflow tract obstruction and

are left with purely regurgitation as their residual lesion. Patients have RV volume

Table 1 Comparison of registration results (see Figures 7 & 8) by different values of
parameter l2 (l1 = 5, l3 = 1) based on the proposed method

methods category performance evaluation

RMS PSNR COR MI

without MMBs l2 = 1e-4 0.0874 21.1311 0.3145 0.0605

l2 = 1e-2 0.0887 21.0074 0.3060 0.0618

l2 = 1 0.0915 20.7375 0.3111 0.0624

l2 = 1e+2 0.0843 21.4505 0.3100 0.0629

l2 = 1e+4 0.0852 21.3619 0.3075 0.0661

with MMBs l2 = 1e-4 0.0511 25.7932 0.4004 0.0811

l2 = 1e-2 0.0514 25.7391 0.3995 0.0806

l2 = 1 0.0515 25.7226 0.4090 0.0815

l2 = 1e+2 0.0435 27.1892 0.5303 0.0803

l2 = 1e+4 0.0483 26.2765 0.4545 0.0827
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overloading due to RV-PC dysfunction after the repair, while RV pressure level

progressively increases as RV-PC dysfunction worsens with age. For example, in recent

studies by Lee et al. [14,15], RV EDVI for the CHD patients did not correlated with

RV ESP. In Figure 1 the control group had a negative correlation between EDVI and

ESP (r = -0.46; p < 0.4), whereas, the patient group showed a much weaker correlation

between EDVI and ESP. It is evident that the CHD patients with similar RV volume

loading can have a variety of RV pressure loads. Consequently, either RV volume or

pressure measurements alone may not be adequate to delineate RV-PC dysfunction for

CHD patients. Hence, there is a need for a comprehensive clinical diagnostic endpoint

that can incorporate the ventricular volume, pressure, and PA flow information, to

better assess change in abnormal RV-PA hemodynamics due to RV-PC dysfunction in

CHD patients.

Energy-based analysis: ventricular pressure-volume relationship (PVR)
Starling’s Law of the heart

Otto Frank first recognized the characteristics of ventricular pressure-volume diagram

in 1899 [31]. Subsequently, in 1910s, Starling described the importance of the ventricu-

lar pressure-volume relationship, known as “Frank-Starling relationship” or “Starling’s

Law of the Heart” [32,33]. In general, Starling’s Law states that the increase in blood

volume induces the ventricular wall stretch, which affects the contractility of cardiac

muscle. The stroke volume (SV, the difference between the end-diastolic and end-

systolic volume) can increase when cardiac muscle has high contractility, independent

of the end-diastolic volume.

In the 1940s Bing et al. [34] suggested that there is a close relationship between the ven-

tricular systolic function, which is dependent on heart rate or contractility, and myocardial

oxygen consumption (M
·
V O2). This is because the heart relies on the aerobic oxidation of

cardiac muscle for energy generation. Afterward, many researchers used this conceptual

idea to assess the ventricular work and the pumping efficiency.

Figure 1 Correlations between end-systolic pressure (ESP) and end-diastolic volume index (EDVI).
No correlation was observed between ESP and EDVI in the patient group, whereas the control group had
a weak negative correlation between ESP and EDVI (r = -0.46; p < 0.4). [15]
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Ventricular pressure-volume relationship (PVR)

In line with Starling’s Law, the ventricular pressure-volume relationship (PVR) has

been widely accepted in evaluating ventricular performance and efficiency [35-40]. The

pivotal studies using the end-systolic and diastolic pressure-volume relationships

(ESPVR and EDPVR, respectively) were conducted by Suga et al. [37,39,41,42] in

1970s. Conceptually, they showed that the ventricular contractility, which plays a key

role in evaluating RV performance, can be obtained from the ventricular end-systolic

elastance (Ees) using the end-systolic pressure-volume relationship (ESPVR) [42]. The

Ees can be calculated from the slope of ESPVR curve because the ESPVR changes

linearly, independent of afterload conditions (Figure 2A). As shown in Figure 2B, Ees
calculated at a fixed preload condition has the same value as the one obtained by

reducing filling volume for a fixed afterload condition (Figure 2A) [19]. With the devel-

opment of isolated blood-perfused heart methodology [39], the concept of Ees rapidly

expanded to human studies using echocardiography [43,44]. However, a majority of

studies focus on the LV, not the RV.

Ventricular stroke work and the efficiency
Suga et al. [41,42] introduced the time varying elastance heart model and obtained the

total mechanical energy of the heart by calculating the area enclosed by pressure-

volume loop. They showed that the total mechanical energy had a linear relationship

with myocardial oxygen consumption (M
·
V O2) under various loading conditions. In

1977, Baxley [45] used the Eq. 1 (given below) proposed by Bing [34] and showed an

imbalance in M
·
V O2 and the LV function in 38 patients with various CHD diseases

such as aortic and mitral valve stenosis, and severe aortic and mitral regurgitation.

Efficiency =
LV SW

Total M
·
V O2 × 2.059

× 100 (1)

In the above equation, LV stroke work (SW) was calculated by multiplying stroke

volume (SV) and mean LV pressure. The total M
·
V O2 was computed as LV mass/100g

multiplies by M
·
V O2/100g, while M

·
V O2/100g value was obtained using the nitrous

Figure 2 A) At a fixed ventricular afterload pressure, the decrease in ventricular filling pressure
results in shifting of the P-V loops towards lower volumes at both the end-systole/diastole phase.
Ees, a slope of pressure and volume, and Vo can be characterized by the linear end-systolic
pressure-volume relationship (ESVPR). On the other hand, the non-linear end-diatolic pressure-volume
relationship (EDPVR) was obtained. B) the P-V loops become longer and thinner when ventricular afterload
increases at a fixed preload pressure [19].
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oxide washout technique. The energy equivalent for O2/ml was 2.059 kg.m. Further, De

Tombe et al. [46] confirmed that the peak LV SW and the efficiency (= SW/M
·
V O2)

occurred at the nearly same time. However, invasive catheterization is required to obtain

the pressure data for calculating these endpoints, and thus limits the applicability of SW

and efficiency analysis in the longitudinal monitoring of human subjects.

Further refinement of the efficiency calculation requires a more accurate measure of

myocardial metabolism. A non-invasive measurement of myocardial metabolism can be

made using positron emission tomography (PET) imaging. Porenta et al. [47] used C-11

acetate PET imaging (Figure 3) to derive oxygen consumption from the slope of the
11C-clearance curve recorded during myocardial washout. They modified Eq. 1 to com-

pute mechanical efficiency of the LV as shown in Eq. 2.

Efficiency =
MAP × SV × HR × 1.33 × 10−4

M
·
V O2 × LVM × 20

(2)

where MAP = the mean arterial pressure, HR = heart rate, and LVM = LV mass.

They found that mechanical efficiency in 11 normal subjects was not significantly dif-

ferent between at the rest and stress conditions (29 ± 6% at rest and 32 ± 6% during

dobutamine stress). However, external work efficiency was significantly lower at rest

(16 ± 6%) compared to dobutamine stress condition (21 ± 4%).

As discussed above, most studies on the ventricular SW and the efficiency were

performed for the LV, and only a few studies have described the RV SW and the

efficiency [14,15,48-50]. This is because the importance of RV performance has been

underappreciated. The RV operates under lower pressure conditions compared to LV

Figure 3 PET sequence in a midventricular short axis at rest and dobutamine stress. A) images
with 11C acetate uptake to estimate myocardial perfusion, B) ECG-gated images to estimate myocardial
oxygen consumption. C) The elapsed time after tracer injection was shown under each image. D) The
vertical long axis images at both the systolic and diastolic phases [47].
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and, further, it is difficult to measure RV volume data due to its shape and eccentric

movements. The RV has a crescent type twisting shape unlike the LV [51].

Recently, Das et al. [49] proposed a methodology to assess RV SW and the mechani-

cal efficiency, energy transfer ratio (eMPA), using non-simultaneously acquired RV pres-

sure, volume, and blood flow data, as follows. RV SW was calculated from RV pressure

and volume synchronized by ECG gating (Eq. 3):

RV SW =
∫∫

A P dV =
1
2

∮
C (PdV − VdP) (3)

where P is RV pressure, V is RV volume. The rate of energy transfer at the main PA

(MPA) was computed using Eq. 4:

Energy transfer rate
(
Ė
)

=
∫∫

A

(
pm +

1
2

ρ�um · �um

)
�um · ndAm (4)

where pm is the MPA pressure, �um is blood velocity at the MPA, and Am is MPA

area. Finally, energy transfer ratio (eMPA) was obtained by a ratio of net energy transfer

at the MPA (Enet) to RV SW (Eq. 5):

Energy transfer ratio (eMPA) =
Enet

RV SW
(5)

where the net energy transfer at the MPA was computed by integration of energy

transfer rate ( Ė , Eq. 4) over the cardiac cycle (T). In their pilot study, the patient with

tetralogy of Fallot had lower RV stroke work (patient: 0.078 J/s vs. control: 0.115 J/s),

and lower energy transfer at the MPA (patient: 0.044 J/s vs. control: 0.121 J/s). Conse-

quently, the eMPA for the patient was considerably lower than that for the control

(patient: 0.56 vs. control: 1.06). Further, Lee et al. [15] calculated RV SW for a group

of CHD patients and controls, and found that the mean eMPA of the patient group was

significantly lower than that of the control group (0.56 ± 0.33 vs.1.56 ± 0.85; p < 0.04),

despite the fact that the patient group had significantly higher RV SWI (RV SW indexed to

body surface area), than the control group (0.205 ± 0.095 J/s.m2 vs. 0.090 ± 0.038 J/s.m2;

p < 0.02 in Figure 4).

Right ventricular-pulmonary vascular function
The ventricles are coupled with arterial systems to ensure sufficient cardiac output while

maximizing the mechanical efficiency [52]. For the right ventricle, the pulmonary vascu-

lature has increased compliance and lower resistance compared with the LV, resulting in

lower RV afterload. The RV is well-adjusted to lower afterload with its relatively thinner

and more compliant wall [53]. Consequently, RV-PA coupling has a significant impact

on RV performance. Thus, pulmonary vasculature characteristics, such as pulmonary

arterial stiffness and power loss in the PA, need to be taken into consideration when

assessing comprehensive hemodynamic changes in abnormal right heart physiology.

In terms of pulmonary vascular hydraulic power, Milnor et al. [54] used harmonic

analysis (a.k.a. Fourier analysis) to calculate pressure energy and kinetic energy compo-

nents in the pulmonary circulation (Eq. 6):

ẆT = ẆM + ẆO (6� 1)

Lee et al. BioMedical Engineering OnLine 2015, 14(Suppl 1):S8
http://www.biomedical-engineering-online.com/content/14/S1/S8

Page 7 of 20



Ẇm = POQO (6� 2)

·
W
O

=
1
2

∑N

n=1
(Qn)

2Zncosθn (6� 3)

where ẆT is the total hydraulic power computed as the summation of the pressure

energy (Ẇm ; Eq. 4-2) associated with mean pressure (PO) and mean flow (QO), and the

oscillatory component term (ẆO ; Eq. 6-3). Knowing that pressure flow waves can

be represented by Fourier series, N (in Eq. 6-3) is the total number of harmonics, n

the harmonic number, Zn is PA impedance modulus at the fundamental frequency of

pressure wave, and θn is impedance phase at that frequency. They showed that 78% of

input power was dissipated through the pulmonary bed. Also, the energy transferred to

the PAs for a fixed mean flow decreased as the heart rate increased. Using the same

method, Fitzpatrick et al. [55] confirmed the effects of pulmonary vascular obstruction

caused by pulmonary thromboembolism on RV afterload.

Hunter et al. [56,57] used Doppler ultrasound and catheterization data of pulmonary

arterial hypertension (PAH) patients in a classical mechanical oscillator model [56] and

harmonic analysis [57]. They found that the change in pulmonary arterial stiffness cal-

culated from their model correlated with clinical pulmonary arterial stiffness and

hemodynamic parameters, such as pulmonary flow, and RV SW. Also, RV-PA coupling

studies of PAH have been done in a dog model [48] and an engineered mouse model

[50]. Both studies showed that the RV can accommodate the acute increase in RV

pressure without increasing RV SW while decreasing the efficiency and arterial compli-

ance, found in PAH patients.

Analytical and computational fluid dynamics methods
For years, the ventricular pressure-volume relationship (PVR) has provided valuable

insight into ventricular contractility and its relationship to different pressure and

volume loading conditions. However, invasive catheterization is required for accurate

Figure 4 The mean energy transfer ratio (eMPA) was significantly lower in the CHD patient group
(0.56 ± 0.33) than control group ((1.56 ± 0.85; p < 0.04). However, the mean RV body surface area
indexed SW (SWI) was significantly higher in the CHD patient group (0.205 ± 0.095 J/m2) than control
group (0.090 ± 0.038 J/m2; p < 0.02) [15].
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pressure measurement. In recent years, therefore, analytical and computer fluid

dynamics (CFD) techniques have been used as alternatives to obtain hemodynamics in

the ventricles and large arteries, including pulmonary arteries, and aorta.

As mentioned earlier, however, most studies were performed with the left heart dis-

ease such as Fontan and aortic stenosis. Ascuitto et al. [58] used an analytical approach

for mixing fluids in systematic-to-pulmonary collaterals in Fontan-like circulation.

They evaluated the pulmonary arterial pressure and increase of flow energy loss due to

mixing in collateral flows. Dasi et al. [59] formulated energy dissipation in the total

cavopulmonary connection (TCPC) using dimensionless analysis by applying analytical

approach and found that it can determine the hemodynamic characteristics, such as

energy dissipation, cardiac output change, and flow split in TCPC. Also, they used the

generalized theoretical analysis for energy dissipation and introduced new energy

indices, such as circulation energy dissipation index (CEDI), aortic valve energy dissipa-

tion index (AV-EDI), and total TCPC energy dissipation index (TCPC-EDI), to evalu-

ate complex hemodynamics in patients (Eq. 7; [60]).

Circulation energy dissipation index (CEDI) =
Mean SW(
ρ

Q3

BSA2

)
(7� 1)

Aortic valve energy dissipation index (AV − EDI) =
(

BSA

AA

)2(1
S

− 1
)2

(7� 2)

Total TCPC energy dissipation index (TCPC − EDI) =
ε

ρ
Q3

BSA2

(7� 3)

where r is blood density, Q : mean flow rate, AA is aortic cross-sectional area, S is

geometrical shape factor, and ε

(
= 5.33 × 10−5 Q3

A2
A

[
1
S

− 1
]2

)
is mean energy dissipa-

tion at TCPC. CEDI represents the level of energy dissipation in normal physiology,

while the other two indices, AV-EDI and TCPC-EDI, illustrated energy dissipation in

abnormal physiology linked to aortic valve insufficiency and Fontan physiology,

respectively.

Meanwhile, Hunter et al. [61] used biplane X-ray angiograms for reconstruction of

3D patient-specific PA geometry, which was adopted for CFD analysis (Figure 5).

They showed the details of the changes in PA hemodynamics for PAH patients with

pre/post-operative septal defect and reactivity challenge. Both cases showed that PA

hemodynamics, such as pressure, flow, wall shear stress, and vascular stiffness, were nor-

malized after repair. Tang et al. [62] used a multiphysics-based fluid-structure interaction

analysis, incorporating myocardial tissue characteristics. They confirmed the favourable

changes in RV hemodynamics after a surgical procedure; thus improving RV EF

(Figure 6). Also, Das et al. [49] computed energy transfer rate (eMPA) at the PAs (as

described earlier) using CFD to obtain energy transfer ratio between the RV and MPA.

Many recent studies have investigated the Fontan physiology that involves the total

cavopulmonary connection (TCPC) between the venae cava and the PA while bypassing

the RV. Soerensen et al. [63] performed CFD analysis together with 2D phase contrast
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MRI to obtain flow and power loss in a TCPC configuration. They calculated power loss

in a complex TCPC using both CFD analysis and MRI measurement (Eq. 8):

ĖTCPC = ĖSVC + ĖIVC − ĖLPA − ĖRPA (8)

where ĖSVC is the rate of energy transfer at the superior vena cava (SVC), ĖIVC is the

rate of energy transfer at the inferior vena cava (IVC), ĖLPA is the rate of energy trans-

fer at the left PA (LPA), and ĖRPA is the rate of energy transfer at the right PA (RPA).

In line with the research conducted by Soerensen et al., Whitehead et al. [64] reported

that the non-linear power loss through TCPC connection significantly increased during

exercise in Fontan patients (Figure 7). In general, these methodologies for assessing

energy or power loss in Fontan circulation can be applied to the right heart disease,

especially in the case of RV-PC dysfunction.

Figure 5 Patient-specific 3D geometry reconstruction and mesh generation procedures using X-ray
angiogram. A) AP images of PA and B) lateral PA bi-plane angiogram showing centerlines overlapped on
the AP image and diameter superimposed on the later image. C) the skeleton image of the PA, D) after
creating surfaces on the skeleton image. E) The fluid domains (in red) and structure domains (in green) are
shown, and F) a representative cross section of the MPA mesh [61].

Lee et al. BioMedical Engineering OnLine 2015, 14(Suppl 1):S8
http://www.biomedical-engineering-online.com/content/14/S1/S8

Page 10 of 20



Emerging techniques: 4D phase contrast MRI
4D phase contrast MRI, three dimensional and directional velocity data over the car-

diac cycle, can be performed for ventricular chambers and large vessels [65-67]. This

technique enables us to visualize and quantify time varying 3D blood flow in CHD

patients (Figure 8) in contrast to standard 2D phase contrast MRI acquisitions of most

clinical MR protocols.

Considering the complex nature of 3D blood flow in CHD patients, the irregularity and

fluctuation of flow characteristics are important aspects of energy-based analysis [67-69].

4D phase contrast MRI is being increasingly used not only as a tool for the complex blood

flow visualization, but also for calculating hemodynamics and energy endpoints. For

instance, the kinetic energy (KE) of blood flow can be calculated using 3D velocity fields

obtained from 4D phase contrast MRI data [70-73]. Carlsson et al. [70] quantified the ven-

tricular KE in normal healthy subjects. They calculated KE using a simple equation (Eq. 9):

KE =
∑Nvox

n=1

(
1
2

× ρ × u2
i

)
(9)

where Nvox is total number of voxels in the ventricle, r is the density of a voxel

which is assumed to be 1.05 g/ml, and u is the blood velocity in the voxel. They found

that the average KE in both the ventricles was related to EDV, ESV, and SV. The com-

puted KE for the LV and RV accounted for less than 1% and 3% of the external work

done by the LV and RV at rest, respectively. However, it increased up to 3% and 24%

for the LV and RV during peak exercise.

Figure 6 A model construction procedures using cardiac MR imaging for CFD: a) cardiac MR images
for a subject, b) contouring for the ventricles, c) reconstructed 3D chambers, d) a pig model showing
myocardial fiber orientation, e) a human heart with fiber orientation, f) CFD model incorporating
myocardial fiber orientation, and 3) two-layer model [62]
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Dyverfeldt et al. [68,69] demonstrated the relation between the standard deviation of

the blood flow velocity and turbulent intensity computed from 4D phase contrast MRI,

which allowed them to compute turbulent kinetic energy (TKE).

TKE =
∑Nvox

n=1

(
1
2

× ρ × u′2
n

)
(10)

where u′
(

=

√
1
N

∑N

i=1
(ui − ū)

2
)

is the fluctuating component in velocity (u). In

follow-up study, they showed that the total TKE in the ascending aorta in patients

with aortic stenosis and dilation was related to pressure loss [71]. Lantz et al. [73]

showed an agreement between KE and TKE computed from two methodologies, 4D

phase contrast MRI and CFD. They indicated that KE decreased at the stenosis after

the repair, while the total TKE levels decreased in the coarctation although blood flow

increased after the repair (Figure 9).

Further, Lee et al. [74,75] used 4D phase contrast MRI data (Figure 10) to compute a

hemodynamic endpoint, energy loss in the branch PAs, non-invasively to characterize

RV-PC dysfunction in CHD patients. The used blood flow and pressure drop in the

branch PAs obtained from 4D phase contrast MRI. Energy loss in the branch PAs was

Figure 7 Flow characteristics for a TCPC at the different flow conditions: baseline MRI, and 2× and
3× baseline exercise conditions. As seen, the superior vena cava (SVC)-the interior vena cava (IVC) flow
collision and power loss (dissipation) would increase in region of SVC [64].
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defined as the difference in energy transfer between inlet (MPA) and outlets (the

branch PAs, i.e., LPA and RPA) as shown in Eq. 11.

ĖLOSS PA = ĖMPA − ĖLPA − ĖRPA (11)

They showed that the total energy loss in the branch PAs for the patients with PA

pathophysiology was an order of magnitude larger than the control subjects. More impor-

tantly, the total energy loss varied significantly among patients who had the different levels

of RV-PC dysfunction (Figure 11 and 12). It can be noted that energy loss endpoint may

be a sensitive measure in assessing the level of RV-PC dysfunction for CHD patients.

Limitation

Although 4D phase contrast MRI is a validated technique to measure blood velocity, it

has limitations including 1) relatively long scan time (10~20 minutes depending on the

acquisition volume), 2) moderate spatial resolution (2.0~2.5 mm3) which limits its

Figure 8 Pathline visualization of cardiac blood flow using 4D phase contrast MRI. Pathlines are
originated from planes at the mitral valve (red-yellow) and the tricuspid valve (blue-turquoise) at early
diastolic ventricular inflow. A separately acquired balanced steady-state free precession three-chamber
image was superimposed for providing anatomical orientation [67].
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applicability to compute hemodynamics near or at the vessel wall, and 3) requirement

for complex data post-processing. New approaches are being developed to address

many of these problems. For example, fast imaging techniques, such as k-space under-

sampling (radial acquisition, compress sensing, and etc) [76,77] and multidimensional

parallel imaging [78,79], have been proposed to reduce the scan time (down to 5~8

minutes) and to improve spatiotemporal resolution. In terms of computing hemody-

namics near or at wall using 4D phase contrast MRI, Stalder et al. [80] proposed a

method that combines B-spline interpolation and Green’s theorem to optimize

Figure 9 A) Upper row shows volume renderings of velocity magnitude (> 1 m/s) and B) lower row
depicted TKE right after peak flow rate. Centerline (solid line) and direction of the jet from the throat of
the coarctation (dash line) are shown in velocity rendering. Elevated TKE in the jet direction for the pre-
intervention case was shown in the distal the coarctation, however, TKE was reduced in the post-
intervention case [73].

Figure 10 The streamlines originating from the MPA for the representative subjects, A) control and
B) patient at the systolic phase; 4D phase contrast MRI study [75].
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Figure 11 3D gadolinium-enhanced magnetic resonance angiography (Gd-MRA) of PA for patient
A, B and C. The patients have different levels of RV-PC dysfunction; A) MPA and LPA dilation and RPA
stenosis causing severe pulmonary regurgitation and imbalance in pulmonary flows, B) pulmonary
regurgitation and small narrowing in the branch PAs, and C) shortened and dilated MPA-LPA connection
and mild RPA stenosis with pulmonary regurgitation [75].
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quantification of blood flow and wall shear stress. Further, several groups have devel-

oped methodologies for fast and accurate data post-processing [81-84]. Together

with continuous improvements in MR sequences, MR hardware and software, and

computing power, the 4D phase contrast MRI has drawn increased attention from

researchers and clinicians. The 4D phase contrast MRI can make a positive impact

on current cardiac MRI protocols, leading to better diagnosis of patho-physiologic

vasculature.

Figure 12 The characteristics of blood flow (left column) and energy loss in the branch PAs (right
column) for three patients (A-C) and a control subject (D) [75]
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Future direction
The computation of energy-based endpoints, such as ventricular pressure-volume rela-

tionships, stroke work, and efficiency, traditionally requires cardiac catheterization.

Computation fluid dynamics (CFD) utilizing data from ultrasound or phase contrast

MRI (and pressure data from catheterization) can be used to estimate energy-based

endpoints. Recently, non-invasive 4D phase contrast MRI has become available to

compute energy-based endpoints avoiding catheterization, and consequently reducing

risks for patients while decreasing costs. Therefore, we believe that non-invasive meth-

odologies, such as 4D phase contrast MRI, can be used to calculate energy-based end-

points to follow longitudinally CHD patients and help with interventional planning.

Conclusions
The RV-PC dysfunction is a common chronic disease in post-operative CHD patients that

poses a threat to the patient’s lives over time unless it is timely treated. The status of

RV-PC dysfunction needs a careful evaluation during routine follow-up for a patient

because of its adverse effect on RV-PA hemodynamics. The RV pressure-volume relation-

ship (PVR) is the gold standard for detailed ventricular function throughout the cardiac

cycle independent of loading conditions. Energy-based endpoints derived from PVR, such

as RV SW, the ventricular efficiency, and energy transfer ratio between the RV and the

MPA, have also been useful means to characterize the RV performance. However, these

approaches are not widely applicable in clinical settings since they require invasive cathe-

terization and involve simultaneously measured RV pressure and volume. Therefore, the

new energy endpoints, for instance, energy dissipation, energy loss in the PAs, kinetic

energy loss, or turbulence kinetic energy, computed using non-invasive methodologies, 4D

phase contrast MRI and CFD, are emerging, and may be useful surrogates. As described

in this review, energy-based endpoints are capable of better delineating and quantifying

comprehensive hemodynamics and associated energy changes caused by RV-PC dysfunc-

tion. Therefore, energy-based endpoints can be useful measures in helping clinicians to

make better clinical decisions for patients with abnormal RV-PA physiology.
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