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Systems biology analysis of the Clostridioides difficile
core-genome contextualizes microenvironmental evolutionary
pressures leading to genotypic and phenotypic divergence
Charles J. Norsigian1, Heather A. Danhof 2,3, Colleen K. Brand2,3, Numan Oezguen 4, Firas S. Midani 2,3, Bernhard O. Palsson 1,
Tor C. Savidge4, Robert A. Britton2,3, Jennifer K. Spinler 4 and Jonathan M. Monk 1✉

Hospital acquired Clostridioides (Clostridium) difficile infection is exacerbated by the continued evolution of C. difficile strains, a
phenomenon studied by multiple laboratories using stock cultures specific to each laboratory. Intralaboratory evolution of strains
contributes to interlaboratory variation in experimental results adding to the challenges of scientific rigor and reproducibility. To
explore how microevolution of C. difficile within laboratories influences the metabolic capacity of an organism, three different
laboratory stock isolates of the C. difficile 630 reference strain were whole-genome sequenced and profiled in over 180 nutrient
environments using phenotypic microarrays. The results identified differences in growth dynamics for 32 carbon sources including
trehalose, fructose, and mannose. An updated genome-scale model for C. difficile 630 was constructed and used to contextualize
the 28 unique mutations observed between the stock cultures. The integration of phenotypic screens with model predictions
identified pathways enabling catabolism of ethanolamine, salicin, arbutin, and N-acetyl-galactosamine that differentiated individual
C. difficile 630 laboratory isolates. The reconstruction was used as a framework to analyze the core-genome of 415 publicly available
C. difficile genomes and identify areas of metabolism prone to evolution within the species. Genes encoding enzymes and
transporters involved in starch metabolism and iron acquisition were more variable while C. difficile distinct metabolic functions like
Stickland fermentation were more consistent. A substitution in the trehalose PTS system was identified with potential implications
in strain virulence. Thus, pairing genome-scale models with large-scale physiological and genomic data enables a mechanistic
framework for studying the evolution of pathogens within microenvironments and will lead to predictive modeling to combat
pathogen emergence.
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INTRODUCTION
Clostridioides (Clostridium) difficile continues to be a leading cause
of hospital-borne infection, adversely affecting patient health as
well as causing significant healthcare costs1. The continued
evolution of C. difficile strains to both antibiotic resistance and
survival in the host greatly increases the challenges of treatment2.
C. difficile infection (CDI) occurs following the disruption of the
host microbiota after treatment with antibiotics and instances of
subsequent recurrent infections are common, often presenting
with more severe symptoms3. In the absence of the natural
microbiota, opportunistic, toxigenic strains of C. difficile flourish
and produce enterotoxins resulting in the observed patient
symptoms. These symptoms are wide-ranging and vary from
completely asymptomatic to antibiotic-associated diarrhea to
pseudomembranous colitis and even death. Frighteningly, the
rate of success for commonly used antibiotics metronidazole and
vancomycin is steadily falling4.
Studying this deadly pathogen in the laboratory requires well-

characterized stock strains. Unfortunately, the evolution of stock
cultures used in laboratory experiments has recently emerged as a
major concern. This evolution can lead to the accumulation of
genetic changes that have relevant physiological outcomes and
may alter experimental results making it difficult to replicate
results between labs. Recent studies identified seven mutations in

commonly used stock strains of Escherichia coli K-12 MG1655 with
implications for physiological experiments including loss of
function of glpR and crl5. C. difficile is no exception to this
phenomenon. Previous studies have demonstrated that accumu-
lated mutations in stock strains can have physiological implica-
tions and even altered virulence in a hamster infection model6.
Thus, with an explosion of research on C. difficile it is important to
delineate mutations in stock strains and explain their physiological
consequences.
To investigate the hypothesis that strains passaged in different

laboratories would exhibit divergent phenotypes, we generated
large-scale metabolic profiles of carbon utilization for three
isolates of a reference strain commonly used in C. difficile research:
CD630 isolates from two different laboratories as well as one close
relative sensitive to the antibiotic erythromycin (CD630Δerm).
Furthermore, whole-genome sequencing of the strains allowed a
comparison of both the genetic and phenotypic divergence
amongst the three laboratory stock cultures. Genome-scale
models (GEMs) of metabolism serve as a unifying platform to
advance coordination of research and therapeutic advance-
ments7,8. To contextualize the divergence in phenotype and
genotype between our stock strains we built and used a new GEM
of C. difficile 630.

1Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. 2Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston,
TX, USA. 3Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA. 4Department of Pathology and Immunology, Baylor College of
Medicine, Houston, TX, USA. ✉email: jmonk@ucsd.edu

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-020-00151-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-020-00151-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-020-00151-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-020-00151-9&domain=pdf
http://orcid.org/0000-0002-6347-0021
http://orcid.org/0000-0002-6347-0021
http://orcid.org/0000-0002-6347-0021
http://orcid.org/0000-0002-6347-0021
http://orcid.org/0000-0002-6347-0021
http://orcid.org/0000-0002-3175-2382
http://orcid.org/0000-0002-3175-2382
http://orcid.org/0000-0002-3175-2382
http://orcid.org/0000-0002-3175-2382
http://orcid.org/0000-0002-3175-2382
http://orcid.org/0000-0002-2473-7758
http://orcid.org/0000-0002-2473-7758
http://orcid.org/0000-0002-2473-7758
http://orcid.org/0000-0002-2473-7758
http://orcid.org/0000-0002-2473-7758
http://orcid.org/0000-0003-2357-6785
http://orcid.org/0000-0003-2357-6785
http://orcid.org/0000-0003-2357-6785
http://orcid.org/0000-0003-2357-6785
http://orcid.org/0000-0003-2357-6785
http://orcid.org/0000-0002-7830-7665
http://orcid.org/0000-0002-7830-7665
http://orcid.org/0000-0002-7830-7665
http://orcid.org/0000-0002-7830-7665
http://orcid.org/0000-0002-7830-7665
http://orcid.org/0000-0002-3895-8949
http://orcid.org/0000-0002-3895-8949
http://orcid.org/0000-0002-3895-8949
http://orcid.org/0000-0002-3895-8949
http://orcid.org/0000-0002-3895-8949
https://doi.org/10.1038/s41540-020-00151-9
mailto:jmonk@ucsd.edu
www.nature.com/npjsba


GEMs offer a systems-level analysis of an organism’s metabolic
capabilities and establish a formal relationship between genotype
and phenotype9. Two previous reconstructions iMLTC806cdf10 and
icdf83411 have been published for C. difficile strain 630. Here we
present iCN900 that builds on iMLTC806cdf and icdf834, and
reflects the most comprehensive knowledge base for C. difficile
630 to date. The model was used as a scaffold to interrogate the
issue of stock culture evolution. We analyzed the core-genome of
415 strains to identify allelic sequence variants between genes
determined to be present in each of the strains. Analyzing these
genes within the metabolic network context provided by iCN900
illuminates which C. difficile metabolic pathways may be under
evolutionary selective pressures. In addition, these data emphasize
how laboratory-specific microenvironmental pressures on stock
cultures contribute to divergent interlaboratory results that may
hinder translational science limiting the development of new
treatment options.

RESULTS
High-throughput screens highlight phenotypic differences
between three CD630 lab strains
To evaluate the phenotypic divergence of closely related strains,
we selected three different laboratory strains of C. difficile 630
including the close relative knockout 630Δerm strain6 (Supple-
mentary Table 1). We refer to the three strains as Savidge 630,
Britton 630, and Britton 630Δerm coinciding with their laboratory
of origin, noting that the Britton 630 strain is not parental to
Britton 630Δerm (“Methods”). Phenotypic growth profiles of all
three strains were generated in biological triplicate across 190
different carbon sources using Biolog Phenotype Microarrays12.
Using the growth data generated from each C. difficile strain, we
evaluated the phenotypic divergence of these closely related
strains. Overall, each of the three laboratory C. difficile strains
showed concordant phenotypes on 158 of the 190 compounds
tested (Fig. 1B). Thirty-two (16.8%) compounds displayed varied
growth phenotypes across this set of three lab-adapted
CD630 strains including several notable differences that are
interrogated using the GEM discussed below (Fig. 1A).
To robustly evaluate the genetic content of each of our three

investigated laboratory 630 strains, we completed whole-genome
sequencing and comparative genomics analyses to identify
genetic differences relative to the reference 630 sequence
(AM180355.1). We used breseq13 to identify single-nucleotide
variants (SNVs) and gene deletions with respect to the reference
sequence (Fig. 1C, D). Complete lists of predicted variants and
deletions are available in Tables 1 and 2, respectively (Supple-
mentary Data File 1). Seven variants previously noted as likely
mistakes in the original C. difficile 630 AM180355.1 reference
assembly6 were identified in all three strains. An additional
synonymous SNV (E304E (GAG→ GAA)) within the aminotransfer-
ase gene CD630_25320 was identified as common in all three
strains. The Savidge 630, Britton 630, and Britton 630Δerm each
had 8, 3, and 15 unique SNVs relative to the reference (Table 1).
Two gene deletions were identified common to all three

genomes and a third deletion was present only in 630 Savidge
and Britton 630Δerm. Savidge 630 and Britton 630 each
contained a single independent deletion relative to the reference
in conserved hypothetical proteins CD630_01960 and
CD630_12100, respectively. In contrast, Britton 630Δerm con-
tained five unique deletions not present in Savidge or Britton 630
(See Table 2). Three of the deletions unique to Britton 630Δerm
are two groups of 44 and 46 genes annotated as putative phage
genes and the expected 8 genes loss for the erythromycin-
sensitive derivative. In order to contextualize the remaining
genetic differences distinguishing these three strains from each

other and their impact on the observed phenotypic divergence
we updated and deployed a GEM of C. difficile 630 metabolism.

Genome-scale network reconstructions contextualize genetic
divergence by serving as a scaffold for structural systems biology
analysis
GEMs offer a powerful tool to contextualize and explain the effect
of genetic changes in pathogenic organisms that impact human
health. Therefore, we evaluated and updated a genome-scale
network reconstruction of C. difficile 630 (Supplementary Text 1).
The new C. difficile GEM, iCN900, contains an additional 66 genes,
46 reactions, and 70 metabolites compared to previous models of
this strain (Supplementary Table 2). New content was incorpo-
rated into the reconstruction using both bioinformatic tools and
manual curation. We implemented several tools to add new
content to the reconstructions including the enzyme detection
tool DETECT v214, searching for homologs in closely related
reconstructions15, and manual curation of pathways based on
false negative model predictions against experimental data
(“Methods”). This allowed for the inclusion of new transport
reactions as well as significant refinement of the accuracy of the
gene product rules for existing transporters. GEM additions
included reactions for tRNA synthetase, carbon and sulfur
metabolism, and cell envelope biosynthesis.
In addition to adding new content to the genome-scale

network reconstruction for C. difficile 630, another major area of
improvement was the removal of erroneous energy generating
cycles (EGCs). EGCs allow for free energy generation during flux
balance analysis (FBA) simulations and have been shown to be a
prevalent problem in many non-curated GEM predictions. We
implemented an existing algorithm16,17 to identify and confirm
the existence of EGCs in the previous model (icdf834). We
manually investigated icdf834 and found erroneous EGCs for ten
energy carrying metabolites. We edited the reversibility of 29
reactions (Supplementary Table 3) to remedy these cycles making
the network completely devoid of EGCs and therefore better
suited to make accurate flux predictions utilizing FBA18. For a
complete list of the EGCs originally present as well as the
corresponding changes made to correct them see Supplementary
Table 3. Finally, we updated the model nomenclature to align it
with the BiGG standard, making its contents directly comparable
with over 100 reconstructions of diverse organisms present in the
BiGG database19,20. This improved model, iCN900, is available in
the BiGG database and as Supplementary Data Files 2–4.
Recent studies have supplemented GEMs with protein struc-

tures to form GEM-PROs resulting in expanded applications for
both genome- and protein-scale models21,22. This approach has
enabled further contextualization of SNVs within the metabolic
network. Protein structures have never been incorporated with a
GEM of C. difficile, therefore we evaluated the current state of
structural data available for C. difficile by mapping protein
structures to the Protein Data Bank (PDB). Overall 1221 genes
within the 630 reference genome map to a structure within the
PDB. A subset of 524 of these genes are contained within iCN900
(Supplementary Table 4). However, only 2.5% (29/1,145) of
mapped structures with less than 75 percent identity (PID) are
sourced from C. difficile. Conversely, 85.5% (65/76) of mapped
structures with greater than 75 PID are C. difficile specific
(Supplementary Fig. 1). This steep drop off in the number of
C. difficile mapped structures demonstrates the overall structural
knowledge gap for C. difficile. Only 20 of the genes within iCN900
map to a structure that is greater than 75 PID and sourced from
C. difficile. These represent the best characterized, metabolically
related C. difficile specific structures23–26.
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Experimental validation of iCN900 demonstrates high model
accuracy
We evaluated iCN900 by performing simulations on four in silico
media types as delineated by Larocque et al.10,11 (1) minimal, (2)
basal defined medium (BDM), (3) complete amino acid-defined
medium (CADM) and (4) complex media. We confirmed biomass
production by iCN900 under each in silico media type and further
showed that flux through the objective function increased
commensurate with the complexity of media type (Fig. 2A). We
also confirmed that known essential amino acids required by
C. difficile growth (cysteine, leucine, isoleucine, proline, trypto-
phan, and valine)27,28 are also required for biomass production.
To assess gene-essentiality prediction by iCN900, we performed

in silico single gene deletions and compared these predictions to
an available experimental dataset of essential genes for C. difficile
in strain R2029129. C. difficile R20291 is evolutionarily distinct from
strain 630 and the iCN900 model achieved an overall accuracy of
90% for these gene-essentiality predictions (Fig. 2B). The true
negative gene predictions are predominantly associated with

reactions encoding lipid metabolism indicating that in complex
media this portion of the metabolic network is particularly
sensitive to single gene knockouts both in silico and in vitro.
Examining the ten false negative predictions revealed genes
involved in pyrimidine metabolism indicating that perhaps
R20291 has alternative encoding mechanisms for reactions in this
pathway. Future improvements to CD630 reconstructions would
benefit from experimentally validated gene-essentiality datasets
specific to this strain.
Finally, we validated the ability of the iCN900 model to predict

growth capabilities on 190 diverse carbon sources by comparing
model predictions to the phenotypic microarray growth data
generated for the three independent laboratory strains of C. difficile
630 (Fig. 2C, Supplementary Table 1). In silico growth predictions of
the iCN900 model were generated using previously defined minimal
media conditions (“Methods”) and alternating the carbon source to
coordinate with that being tested in the experimental microarray10,27.
Of the 190 carbon sources tested, 114 were represented in the model
and overall model predictions agreed with experimental growth
capabilities for 75.4% of cases (Supplementary Text 2).

Fig. 1 Experimental phenotyping of three different laboratory stock cultures of C. difficile 630. The Savidge 630, Britton 630, and Britton
630Δerm are represented by red, green, and blue respectively. (A) Heat map of the maximal OD620 of C. difficile strains in Biolog phenotype
microarray plates for which the fold change among the strains had the greatest standard deviation between the strains. Selected carbon
substrates supporting differential fold change are shown. (n= 3 biological replicates per strain). (B) Venn diagram of 190 carbon substrates
tested. All three strains shared 158 growth phenotypes, while 21 phenotypes were shared between Savidge 630 and Britton 630, 9 between
Britton 630 and Britton 630Δerm, and 2 phenotypes between Britton 630Δerm and Savidge 630. (C) Venn diagram detailing the identified
gene deletions of each strain versus the reference sequence. (D) Venn diagram detailing mutations of each strain versus the reference
sequence.
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Targeted gap-filling of incorrect model predictions uncovers new
catabolic pathways in C. difficile metabolism
Comparison of phenotypic screens to model predictions can be
used to iteratively improve GEM reconstructions by informing the
inclusion of metabolic pathways missing in the network content.
Using the phenotypic microarray growth data generated from
each C. difficile strain, we evaluated the phenotypic divergence of
closely related strains against our curated iCN900 GEM. Our data
confirmed previously published studies30–32 and verified growth
of two of the three C. difficile 630 strains on salicin, arbutin, and N-
acetyl-galactosamine (GalNAc) (Fig. 1A). However, initially the
iCN900 model predicted the inability of CD630 to grow on these
compounds (Supplementary Text 3). Both salicin and arbutin are
β-glucosides and are produced in various plant species thus it is
plausible that these compounds could be available within the
human gut dependent on diet33,34. We identified homologous
genes in the pathways for catabolism of these two compounds in
Bacillus subtilis, a close relative of C. difficile. Our identified
candidate pathways have a similar pathway architecture: a
transporter (encoded for by ptsG-A and ptsI), a glucohydrolase
(encoded for by celF and bglA7), and efflux of 2-hydroxymethyl-
phenol or hydroquinone, respectively, both products of the
respective glucohydrolase. Homologs in the C. difficile 630
genome were identified and incorporated into iCN900 using
gene product rules based on homology with B. subtilis (Fig. 2D)
and the experimental evidence that these compounds support
growth.
Like salicin and arbutin, our experimental growth assays verified

N-acetyl-galactosamine was sufficient to support growth of two of
the three C. difficile 630 strains tested, but this phenotype was
absent from our initial rendition of the iCN900 model. N-acetyl-
galactosamine is of particular interest because as a host-derived
glycan it is proposed to be an important carbon and nitrogen
source for C. difficile in the gastrointestinal tract30. We hypothe-
sized that N-acetyl-galactosamine utilization would be facilitated
by a phosphotransferase system (PTS) similar to those seen in
other enteric bacteria and investigated other GEMs for N-acetyl-
galactosamine catabolic pathways. We identified an isomerase
encoded by agaI in E. coli35 that converts N-acetyl-galactosamine-
6-phosphate to tagatose-6-phosphate. Our experimental dataset
indicates all three C. difficile 630 strains grew significantly (P=
0.006, Paired T-Test) in the presence of tagatose (6.59 fold-change
relative to negative control) but did not grow on galactose (0.89
fold-change), thus supporting the possibility of this interconver-
sion. In agreement with the experimental results, iCN900 predicts
C. difficile growth on tagatose (true positive), and no growth on
galactose (true negative). This inference along with the strength of
the experimental evidence led to the inclusion of the PTS and
isomerase within iCN900. Further experimental work to identify
any additional genes that encode this machinery would increase
understanding of N-acetyl-galactosamine utilization by C. difficile,
which may have important implications in the context of infection.
Surprisingly, iCN900 predicted an inability to be grown in

ethanolamine, which is in contrast to our experimental evidence
and the literature that many gut bacteria, including Clostridia, are
capable of ethanolamine catabolism as a sole carbon or nitrogen
source36. Furthermore, phosphatidylethanolamine is a prevalent
membrane phospholipid, which is catabolized into glycerol and
ethanolamine, suggesting that ethanolamine is an abundant
nutrient in the gastrointestinal tract. iCN900 contains the genes of
the eutG operon and the corresponding enzymes for usage of
ethanolamine37. Previous studies have shown that C. difficile
630 strains can utilize ethanolamine in vitro, however, the media
conditions in these studies included glucose along with ethano-
lamine37. We postulated that if phosphatidylethanolamine is a
primary source of ethanolamine within the gut, then glycerol
would be concurrently available to C. difficile. Interestingly,Ta
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glycerol scored as a false positive in our initial prediction. Further
analysis revealed that when both glycerol and ethanolamine were
components of the in silico minimal media the biomass objective
flux increased to 0.034 from 0.014 on glycerol alone or 0 on
ethanolamine alone. This apparent synergistic usage predicted by
iCN900 of these two metabolites is interesting given their likely
co-availability in the host. Glycerol as a sole carbon source has a
limited uptake flux value of 4.56 and valine and leucine were
identified as non-carbon limiting nutrients. When both ethanola-
mine and glycerol are available both have an uptake flux of ten,
indicating an energetically favorable complement of catabolic
pathways. Ethanolamine utilization produces acetyl-CoA, which is
a key metabolite in many downstream metabolic pathways. We
hypothesize that the ability to use ethanolamine as a source to
produce the necessary acyl-carrier proteins frees glycerol to be
used for other growth requirements. While no modifications were
made to the network to change the determination of glycerol as a
false positive prediction and ethanolamine as a false negative
prediction, it is worth noting this potential feature of C. difficile
physiology and a future validation of this prediction would be
valuable.

iCN900 links observed mutations to unique phenotypes
With an updated reconstruction completed, we used this resource
to evaluate the mutations and deletions observed between the
three reference strains (Tables 1 and 2). Of the deleted genes, two
are implicated in the metabolism of fructose and mannose that
are of particular interest. First, Savidge 630 and Britton 630Δerm
each contain a deletion of CD630_02880, which is part of the GPRs
for both fructose and mannose PTS reactions. Second, a unique
deletion in Britton 630Δerm of CD630_31350, a gene involved in
the fructose bisphosphate aldolase reactions. Growth results
reveal the maximum fold change in optical density during
fructose utilization is 24.3% lower (P= 0.24, Paired T-Test) in
Britton 630Δerm versus Savidge 630, and 34.8% lower (P= 0.008)
versus Britton 630. During mannose utilization, growth reduction
is 35.1% (P= 0.1) and 40% (P= 0.03), respectively. While there is
no significant decrease in growth on both sugars between Britton
630Δerm and the Savidge strain, the decreases between Britton
630Δerm and Britton 630 are both statistically significant. Given
the co-occurrence of deletions in the transport systems for these
sugars and fructose bisphosphate aldolase reactions, we hypothe-
size that the deletions together result in the observed growth

Fig. 2 Properties and validation metrics of iCN900. (A) Model predictions for biomass flux on four different in silico media types: Complex
media, CADM, BDM, and minimal media. Importantly, the biomass objective flux reflects the increasing amount of nutrients in each media
condition. The overall gene, reaction, and metabolite content of iCN900 is summarized within the inset box. (B) Comparison of model
predictions of essential genes on complex media compared to experimental gene-knockout results from Dembek et al. (C) C. difficile optical
density at 620 nm was measured over time in Biolog Phenotype Microarray plates. Representative growth curves for the Savidge 630 strain on
5 indicated carbon sources (of the 190 tested) and the negative control are shown. Experimental growth of C. difficile was compared to iCN900
metabolic flux predictions, to determine the accuracy of predictions as summarized in the inset box. (D) Putative metabolic pathways for
C. difficile utilization of salicin and arbutin were incorporated into iCN900 through targeted gap-filling enabled by comparison to experimental
growth data.
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reduction for the Britton 630Δerm strain with perhaps the more
consequential deletion being CD630_31350.
Mutations within coding sequences and particularly those in

genes annotated with metabolic functions were prioritized. The
Savidge 630 strain possesses a substitution in the aspartate kinase
gene (G68C (GGT→ TGT)). However, there were no physiological
changes in the growth experiments on aspartic acid, which is
likely explained by the presence of aspartic acid in the basal
medium. Savidge 630 also contained a unique nonsynonymous
substitution (E258D (GAA→ GAC)) in CD630_30890, which is part
of the gene product rule for the trehalose phosphotransferase
reaction. Analysis of the growth screen data indicated that the

maximal optical density of the Savidge 630 strain during trehalose
utilization was over 30% greater (P= 0.04) than either the Britton
630 or the Britton 630Δerm strains. Mapping of this substitution to
the predicted protein structure reveals that it occurs within a
hydrophilic region of the protein (Fig. 3A), suggesting that the
substitution may confer an advantage to the import or
phosphorylation of trehalose entering the cell. To test this
hypothesis, growth curves in minimal medium supplemented
with 10, 25, and 100 mM trehalose were compared (Fig. 3B),
revealing that at the lower concentration of trehalose the Savidge
630 strain grew significantly better than the other two strains (P ≤
0.0001). However, in higher concentrations of trehalose, the
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Fig. 3 Characterization of phenotypic growth differences of lab-adapted isolates on trehalose. (A) Predicted protein structure of C. difficile
PTS_(CD630_30890) based upon the crystal structure of the MalT transporter. The EIIC domain is shown as a dimer, with the E285D
substitution of the 630-Savage isolate highlighted in red on the cytoplasmic interface. The model shading indicates amino acid
hydrophobicity (gray residues are hydrophobic and blue residues are hydrophilic according to the Kyte-Dolittle scale). (B) Growth curves of
C. difficile isolates, Savidge 630 (red), Britton 630 (green) and Britton 630Δerm (blue) in defined minimal medium supplemented with trehalose.
The gray line indicates the maximal optical density of the negative control wells. Optical density at 620 nm measured at 10min intervals, The
plotted bar is the mean of three biological replicates assayed in duplicate wells and the error bars represent the standard deviation of the
mean. (C) Growth curves from the conditions in (B) were analyzed by Gaussian process curve fitting to calculate the total carrying capacity,
doubling time, and total area under the curve (error bars represent the standard deviation of the mean **P ≤ 0.001, ***P ≤ 0.0001).
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growth of the Britton 630Δerm isolate (25 mM) and the Britton 630
isolate (100 mM) matched that of Savidge 630. The significant
increase in growth at 10 mM supplementation of trehalose
indicates that the substitution may increase affinity of the PTS
for trehalose transport, improve efficiency of transport, or increase
expression and/or stability of the transporter however the role of
the this E258D substitution in trehalose uptake still needs to be
explored. Analysis of the growth curves by Gaussian Process
modeling38 allowed us to quantify growth rate, area under the
curve, and carrying capacity of the isolates in each condition
(Fig. 3C).
Both the Savidge 630 strain and the Britton 630Δerm strain had

unique mutations within the CD630_26670 gene, which codes for
part of the PTS reaction for α-glucose. In the Savidge 630 strain the
single-nucleotide polymorphism results in a substitution of
isoleucine for valine (V228I (GTT→ ATT)), however, the mutation
in the Britton 630Δerm strain switches the stop codon to glutamic
acid (*524E (TAA→ GAA)). The loss of this stop codon in the
Britton 630Δerm strain results in extension of the CD630_26670
coding region directly into the downstream gene with the next
stop codon at position 691. The lack of a stop codon would likely
produce an aberrant transcript subject to degradation by cellular
regulatory mechanisms39. Analysis of the growth data supports
the hypothesis these substitutions impair the import of α-glucose
as growth via maximum optical density of the Savidge 630 strain is
reduced by 21.7% and the Britton 630Δerm strain is reduced by
30.4% compared to Britton 630 strain (P= 0.05), which is devoid of
any mutations in these genes. Overall, the mutational analysis
provides insight into unintentional evolution occurring in
laboratory strains and highlights the need for resequencing
strains used commonly across many labs to more accurately

reflect the heterogeneity among reference sequences. This is
particularly important for the accuracy of corresponding GEMs
and downstream constraints-based analyses.

iCN900 applied to analyze sequence variation within the C. difficile
core-genome
We used the iCN900 model to link mutations amongst the three
strains to the differences observed within the phenotypic growth
profiles. iCN900 is specific to C. difficile 630, one of the most well
characterized strains and often used as a reference strain in
studies. However, we have shown that there is genetic divergence
within even 630 stock cultures from different laboratories. As
demonstrated above, single-nucleotide variations can manifest
themselves as deviations in metabolic profiles pointing to the
importance of even small amounts of genetic divergence between
C. difficile isolates. Therefore it is worth considering the sequence
variation amongst shared genes within several strains of the
species. To this end we used bi-directional BLAST to identify the
genes within C. difficile 630 present at greater than 80 PID in 415
high-quality, publicly available genomes (Fig. 4A). From these
genes, those that were present in more than 99% (411/415) of the
strains were determined to comprise the core-genome of
C. difficile. A total of 2756 of 3828 C. difficile 630 genes comprise
the core-genome (Supplementary Data File 5). iCN900 was then
utilized to investigate the metabolic core-genome which con-
sisted of 765 core metabolic genes. A GEM based on the function
of these 765 genes was created to investigate core C. difficile
metabolic capabilities; iCN765 (Supplementary Data File 6). This
representation of the core metabolic functions of the C. difficile
species represents a potentially valuable starting point for

Fig. 4 Core-genome of C. difficile reveals metabolic subsystems with greater sequence variation. (A) By comparing the genomes of 415
publicly available C. difficile genomes the core-genome was calculated and includes 765 metabolic genes. (B) Analyzing the sequence variation
among the 765 core metabolic genes demonstrates that the average difference in amino acid sequence range from 0 to just over 20 for these
shared genes. (C) The genome-scale reconstruction enables stratification of the genes by metabolic subsystem and comparison of average
amino acid differences of each gene within a subsystem. This reveals that nitrite and starch/sucrose metabolism have the highest degree of
sequence variation, whereas Stickland reactions and leucine fermentation are the most conserved.
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reconstruction of other strains. The core model was used to
investigate metabolic phenotypes common to all strains of C.
difficile. Simulations with in silico minimal media predict that the
core metabolic network cannot produce biomass. However, media
supplementations were identified that enable synthesis of certain
biomass constituents. Protein synthesis required supplementation
with histidine, lysine, arginine, and threonine. Supplementation
with uridine or uracil enabled DNA and RNA synthesis and
nicotinate supplementation enabled associated cofactor produc-
tion. Following these media supplementations the core network
still lacks the ability to produce the lipid and peptidoglycan
biomass components. Performing gene-essentiality analysis on
the full C. difficile 630 model using this supplemented in silico
media condition predicts that there are four non-core genes
which are essential for the production of lipids and peptidoglycan.
Upon further examination, three of these genes are present within
96% (398/415) of the strains, thereby designated as non-core and
perhaps the strains without these genes have either acquired
alternative encoding mechanisms or vary in lipid/peptidoglycan
composition. It is worth noting that the strains without these three
genes represent the strains of type MLST11 and MLST254 within
the group of 415. The final non-core gene essential to production
of peptidoglycan is only present within 13% (54/415) of strains
and is involved in the production of teichoic acid for cell wall
synthesis.
Beyond investigating conserved metabolic functions, examining

the conserved sequences amongst the 415 strains provides other
novel insights (Fig. 4B). In the core metabolic gene products, we
evaluated the average amino acid difference and found them to
range from zero (completely conserved amino acid sequence
across all strains) to just over 20 average amino acid differences
between strains. For example, we identified strain FDAARGOS_268
(PATRIC ID:1496.2022) with the same trehalose phosphotransfer-
ase (CD630_30890) E258D mutation described in Savidge 630
above as well as strain QCD-32g58 (PATRIC ID: 367459.5) with an
E258K substitution in the same protein. Strain QCD-32g58 was
isolated in 2017 from a patient in Quebec, Canada with severe CDI
and is noted to be a representative of a predominant Quebec
strain. Furthermore, the greatest average amino acid differences
(>20 average amino acid differences) occurred in two gene
products, CD630_01370 and CD630_35270, that are implicated in
transport reactions for cellobiose and iron, respectively. Each
individual gene can also be interrogated for the frequency of each

allele sequence within the group of 415 strains (Fig. 5A) and these
sequences can be compared for their similarity to one another
(Fig. 5B). For the genes that are part of the GEM-PRO the
mutations per allele can be mapped to the representative
structure providing a three dimensional view of the effect of the
change (Fig. 5C). We performed this analysis for the thiD gene
encoding phosphomethylpyrimidine kinase and gained insight
into the areas of the protein structure where the sequence
variants manifested.
The GEM-PRO also allows for a systems-level analysis of the

variation within these core-gene products by stratifying the average
amino acid differences per reaction to metabolic subsystems
(Fig. 4C). This network context illuminates the metabolic sub-
systems that may be under evolutionary selective pressures due to
higher degrees of sequence variation. The reactions for nitrite
metabolism, starch and sucrose metabolism, and folate biosynthesis
have the greatest variation indicating these are potential evolu-
tionary hotspots. Conversely, leucine fermentation and Stickland
reactions are the most conserved in terms of sequence suggesting
that these enzymes and related functions are defining traits within
the species.
To increase the analysis of metabolic network areas that may be

under selective pressure within C. difficile, we considered the
classification of enzyme specificity. Generally, it is understood that
specificity is an evolutionarily beneficial trait toward increased
catalytic efficiency. We used iCN900 to classify the genes and
reactions within as either generalist or specialist. As previously
reported40 we define a specialist gene as one that participates in
only one reaction and generalists as those involved in multiple
reactions. We applied this criteria to all metabolic enzymes within
and showed that there are 410 specialist genes encoding proteins
catalyzing 287 specialist reactions and 231 generalist genes
encoding proteins catalyzing 484 reactions. This distribution is
similar to that previously found for E. coli40. Of the specialist genes,
76 encode subunits of a complex and 148 are isozymes. Similar to
our analysis of the sequence variation of the core-genome, we
used the reconstruction to evaluate the distribution of specialist
and generalist reactions per metabolic subsystem. Analyzing each
subsystem we found that certain subsystems were enriched in
specialist enzymes and others in generalist enzymes. Starch and
sucrose metabolism, folate biosynthesis, vitamin B12 and proto-
heme metabolism, and histidine metabolism are all enriched in
specialist reactions (hypergeometric P < 0.05). Valine, leucine and

Fig. 5 Allele diversity for thiD as an example of sequence diversity. (A) The 415 sequences for the thiD gene have 11 variant sequences
(alleles) variably present within the population. Notably the reference sequence allele is present within 79.7% of the population, whereas the
next most frequent allele is present in 5.3% of the population. (B) The degree of similarity between each sequence is readily accessible. For
example the thiD 6 and thiD 7 sequences are similar to one another sharing a K60N mutation. (C) Through the use of the GEM-PRO each
mutation by variant can be visualized within the 3D space of crystal structures where applicable.
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isoleucine metabolism, glycerolipid metabolism, one carbon pool
by folate, and fatty acid biosynthesis are all enriched in generalist
reactions (hypergeometric P < 0.05). Consistent with the calcula-
tion of sequence variation amongst subsystems the specialist
enriched subsystems had an average of 1.61 amino acid
differences and the generalist enriched subsystems had an
average of .69 average amino acid differences (Supplementary
Fig. 2). These network based analyses enabled by the reconstruc-
tion provide insights into the pressure surrounding the core
metabolism of C. difficile as a species and point to vulnerable
processes worth investigating as potential drug targets.

DISCUSSION
Genome scale metabolic network reconstructions provide a
valuable format to unify disparate knowledge about an organism,
and contribute a tool that may be used to investigate an
organism’s properties. We developed the most comprehensive
knowledge base for C. difficile strain 630 to date and utilized the
model to (1) investigate catabolic capabilities in conjunction with
experimental data; (2) serve as a framework for investigation into
genetic drift amongst different laboratory C. difficile 630 strains
and a derivative strain; (3) analyze the sequence variation
amongst the genes within the core-genome of C. difficile. The
GEM performs with as much as 90% accuracy in predicting gene
essentiality and 75% accuracy in predicting catabolic capabilities.
The metabolic network represented within iCN900 is devoid of
EGCs and the standardization of reaction and metabolite
identifiers opens up the possibility of inclusion in studies of
multiple organisms that share this namespace. Phenotypic
profiling and model driven discovery identified new pathways
potentially relevant to C. difficile survival due to their presence in
the diet (arbutin and salicin) or as components of the human gut
(N-acetyl-galactosamine). By coupling the generation of the new
reconstruction, iCN900, with extensive phenotypic profiling and
further genome analytics we have increased the body of
knowledge about this pathogen.
The process of crafting iCN900 evoked questions of genetic drift

amongst isolates of the same strain of bacteria. The variability in
both genotype and phenotype of isolates that are either deemed
strain 630 or are closely related points to the need to resequence
strains used in experiments and to recognize that reference
sequences represent only a single time-point in the lifetime of a
strain. This point was borne out in our comparison of the trehalose
transporter between laboratory strains. Hypervirulent strains of C.
difficile are known to metabolize trehalose, a process recently
attributed to hypervirulent strain evolution coinciding with the
widespread adoption of trehalose in our diet41. Microevolution of
strains within laboratories could impart divergent conclusions
between laboratories undergoing similar experimental processes
to evaluate pathogen evolution and virulence, which may serve to
hinder translational science and limit new treatment options. This
phenomenon has been observed in other model organisms
including E. coli5 and yeast42. In E. coli, glpR mutations have been
observed leading to constitutive expression of genes involved in
glycerol catabolism likely due to repeated passage on glycerol
containing media. Similar unexpected glpR alleles have been
found in several other E. coli strains43. Thus a similar process of
unintentional domestication of laboratory C. difficile strains based
on adaptation to laboratory media may be underway. Given the
importance of metabolism in infection kinetics and virulence,
diligence in tracking genetic drift within strains will collectively
improve scientific rigor and reproducibility with the potential to
strengthen bodies of scientific evidence between laboratories.
Motivated by the demonstrated divergence in metabolic profile

from small amounts of genetic diversity, the core-genome of C.
difficile was constructed based on 415 publicly available genome
sequences and sequence variation was analyzed. The

reconstruction was used to identify metabolic traits common to
the species and amino acid differences and enzyme specificity
were used to evaluate which pieces of the metabolic network may
be under selection pressures and those that are more conserved.
Interestingly, and in agreement with the growing literature41,44,45

concerning sugar metabolism of pathogenic C. difficile strains this
analysis revealed that even conserved starch and sucrose
metabolism genes are some of the most varied in terms of
sequence. This demonstrates that C. difficile strains are actively
evolving more efficient machinery to best adapt to their nutrient
niche (be it in a lab or in the colon) and that unique catabolic
capabilities could arise in response to availability of certain
nutrients.
The generation of this high-quality reconstruction enables

future studies extrapolating this model across multiple strains to
investigate species diversity. While we focused on core metabolic
capabilities in this study, the exploration of accessory metabolic
gene sets are underway and could give insight into the metabolic
capacity specific to hypervirulent strain families of C. difficile. The
ability to identify evolutionary hotspots and specialized enzymatic
reactions within hypervirulent strains may help direct drug
development targeting previously unappreciated metabolic pro-
cesses critical to pathogen survival. Furthermore, the ability to
simulate coordinated changes in dietary supplements and
predicted evolutionary hotspots could give insight into pathogen
emergence.

METHODS
Reconstruction
We began the reconstruction of iCN900 by using previous efforts
iMLTC806cdf10 and icdf83411 for C. difficile strain 630. This starting point
was refined and translated to a reconstruction within the standardized
BiGG namespace. This reconstruction was then extensively manually
curated. In addition, evaluation metrics as delineated in a protocol for
generating reconstructions were executed9. Model content was iteratively
improved by comparison to existing and generated experimental data.
iCN900 reflects the final version of this iterative workflow.

Constraint-based modeling
Constraints-based analyses were conducted using the COBRApy toolbox.
For the in silico growth simulation of sole carbon source utilization the
minimal media27 was used and glucose was removed in an iterative
fashion and other carbon source exchange reactions were opened to
evaluate if growth was possible. Growth versus no growth was determined
through FBA in each condition, optimizing for the biomass function. Within
these simulations we consider biomass objective flux of greater than zero
designated carbon sources that supported growth.

Protein structure integration
The GEM-PRO21,22 pipeline was used to annotate iCN900 with available
protein structure information. The list of genes within iCN900 was mapped
to sequences within Uniprot and consequently the Uniprot ID enables
automatic mapping to the PDB. The representative sequences are then
BLASTed to the PDB and the best ranking structure available was identified
for each model gene was identified and the quality of those rankings are
presented.

Core-genome
A total of 1246 whole-genome sequences of C. difficile were downloaded
from the PATRIC database46 on August 25, 2019. To filter for high-quality
genomes a cutoff of assemblies composed of 100 or fewer contigs was
applied. Furthermore, an MLST analysis of the genomes was performed
using MLST47,48. All genomes that could not be assigned to an MLST type
or species were also filtered out. This led to a final set of 415 genome
sequences for downstream analysis.
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Designation of specialist and generalist enzymes
We classified 697 metabolic enzymes within iCN900 as either specialists or
generalists. The selection criteria was a simplified approach as presented
within40 as the supplementary information to refine the approach is not as
well defined for C. difficile as for E. coli. The 697 genes to be classified were
selected from the reconstruction on the basis that they are not involved in
any transport reactions. Following the definition of the group each was
classified according to the following rule; specialist if the gene is present
within the GPR of only one reaction and generalist for those involved in
more than one reaction. In turn it was possible to classify the encoded
reactions in a corresponding manner as either specialist or generalist. The
reaction classifications were then analyzed according to their metabolic
subsystems and each subsystem was tested for enrichment of either class
through the hypergeometric test.

Whole-genome sequencing
Cryofrozen isolates of each C. difficile strain were incubated on Brain Heart
Infusion (BHI) agar under anaerobic conditions for 24–48 h. Genomic DNA
was extracted using the MasterPure Complete DNA & RNA Purification kit
(Lucigen, MC85200) and libraries of fragmented genomic DNA were prepared
using NEXTflex Rapid DNA-Seq Kit (Bioo Scientific, NOVA-5149-02). Paired-end
reads (2 × 150 bp reads) were generated on the MiSeq platform (Illumina, San
Diego, CA, USA) using the Illumina MiSeq Reagent Kit v2 (MS-102-2002) and
PhiX Control Kit v3 (FC-110-3001). Breseq v0.3113 was run with default
parameters on each set of paired-end reads with the C. difficle 630 genome
(AM180355.1) as a reference. We note that the individual CD630 strains
utilized within this study have each been subcultured within their respective
labs over time. The Britton 630 strain was received from a colleague at Tufts
University on July 23, 2008 and the Savidge 630 strain was received from a
colleague at the University of Houston in August 2014. Further we note that
the Britton 630 strain is not the parent strain to Britton 630Δerm.

Phenotypic profiling by biolog
Strains were cultured in BHI medium (Difco) supplemented with 0.5% (w/v)
yeast extract (Fischer Scientific) overnight (~16 h) in an anaerobic chamber
(5% hydrogen, 90% nitrogen, 5% carbon dioxide). One milliliter of
overnight culture was diluted into 10ml of defined minimal media with
previously described composition (Theriot et al, 2017) and 100 µl was
added to each well of Biolog Phenotypic Microarray plates (PM1 and PM2).
Growth assays were performed under anaerobic conditions with optical
density at 620 nm read every 10min over a period of 16 h, in triplicate for
each C. difficile 630 strain. Statistical analysis was performed by two-way
ANOVA, (with Tukey’s correction for multiple comparisons where appro-
priate) in GraphPad Prism Software (v. 7.04).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All data generated in this study are included with this published article and
associated supplementary data files. iCN900 is additionally available on the BiGG
Models Database. Three laboratory stock strain sequences used in this study are
available on NCBI with the BioProject accession number PRJNA649005.
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